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Simple Summary: Several fungal species are well suited to control arthropods, being able to cause
epizootic infection among them and most of them infect their host by direct penetration through the
arthropod’s tegument. Most of organisms are related to the biological control of crop pests, but, more
recently, have been applied to combat some livestock ectoparasites. Among the entomopathogenic
bacteria, Bacillus thuringiensis, innocuous for humans, animals, and plants and isolated from different
environments, showed the most relevant activity against arthropods. Its entomopathogenic property
is related to the production of highly biodegradable proteins. Entomopathogenic fungi and bacteria
are usually employed against agricultural pests, and some studies have focused on their use to
control animal arthropods. However, risks of infections in animals and humans are possible; thus,
further studies about their activity are necessary.

Abstract: The present study aimed to review the papers dealing with the biological activity of fungi
and bacteria against some mites and ticks of veterinary interest. In particular, the attention was
turned to the research regarding acarid species, Dermanyssus gallinae and Psoroptes sp., which are the
cause of severe threat in farm animals and, regarding ticks, also pets. Their impact on animal and
human health has been stressed, examining the weaknesses and strengths of conventional treatments.
Bacillus thuringiensis, Beauveria bassiana and Metarhizium anisopliae are the most widely employed
agents. Their activities have been reviewed, considering the feasibility of an in-field application and
the effectiveness of the administration alone or combined with conventional and alternative drugs
is reported.
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1. Introduction

Biological control has been defined as “the intentional introduction of an exotic bio-
logical agent for permanent establishment and long-term pest control” [1].

The present study aimed to review the papers dealing with the biological activity
of fungi and bacteria against some mites and ticks of veterinary interest. In particular,
attention was turned to the research regarding acarid species, Dermanyssus gallinae and
Psoroptes sp., which cause severe threat in farm animals and, regarding ticks, also pets.
Furthermore, some agents can involve human health, too.

2. Entomopathogenic Fungi

Several fungal species are well suited to control arthropods, being able to cause
epizootic infection and most of them infect their host by direct penetration through the
arthropod’s tegument [2]. Most of the organisms are related to biological control of crop
pests, but, more recently, have been applied to combat some livestock ectoparasites.

Acaripathogenic fungi have been reviewed by Chandler et al. [3] and classified as follows:
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(a) Acari-specific pathogens, important regulators of mostly phytopathogenic mites
(i.e., Hirsutella sp.). Different species within the genus Hirsutella (anamorphic status of
Ophiocordyceps) have been reported as able to infect acari or insects also [3]. However,
they exhibit a narrow range of hosts, acting very differently regarding non-specialist fungi,
such as Beauveria and Metarhizium, which have more than 700 hosts [4]. Other specialist ento-
mopathogenic fungal genera are zygomycetes, belonging to the order Entomophtorales such
as Neozygites and Conidiobolus. As the other Zygomycota, these molds develop broad hyaline
coenocytic hyphae [5], producing sporangiospores and, being homothallic, zygospores, too.

(b) Non-specific fungal species (infecting both acari and insects) are the most widely
studied. The main genera Beauveria, Metarhizium, Paecilomyces and Verticillium, although
not completely ecomorphologically adapted to the life cycle of specific arthropods [6],
contain acaripathogenic species such as Metarhizium anisopliae, Beauveria bassiana, Beauveria
brongniartii, Verticillium lecanii, Paecilomyces eriophyes, Paecilomyces farinosus, Paecilomyces
fumosoroseus and Paecilomyces terricola.

(c) Minor species, not deeply studied, rarely found as pathogens, and not studied
for biological control purposes are a range of fungi (Aspergillus fumigatus, Penicillium
insectivorum, Trichothecium roseum) occasionally isolated from tick/mite cadavers.

Entomopathogenic fungi (EPFs) have been identified by their growth onto insect
cadavers and can be commercially produced to act as biopesticides. Species of Beauveria,
Metarhizium, Lecanicillium and Isaria are relatively easy to mass produce [7]. One of the main
concerns about their extensive employ would be related to their sensitivity to temperature
as well as ultraviolet radiation [8] and to the presence of a suitable moisture degree, to allow
the conidia to germinate [9]. On the other hand, EPFs seem to have a negligible risk of
inducing resistance [10], despite their long-term persistence in the environment.

B. bassiana (common name “white muscardine fungus”, teleomorph Cordyceps bassiana)
is a cosmopolitan, soilborne ascomycete, acting as a facultative necrotrophic arthropod-
pathogenic [11], occurring as saprotroph and plant endophyte. Fungal conidia are able to
attach, produce hyphae and penetrate the arthropod body, utilizing it for their develop-
ment [12]. After invading the hosts’ body, fungal mycelium propagates in hemolymph.
After the host’s death, mold goes on with a saprophytic growth on the cadaver, producing
conidia for new dispersal and infection cycles [13]. In a view of a large-scale application
of B. bassiana for pest control, several studies about the resistance mechanism to physical
factors are ongoing [14–16].

Moreover, B. bassiana can produce beauvericin, a secondary metabolite capable of
increasing oxidative stress leading to cell apoptosis [17].

This indirect action has recently been studied against all stages of Sarcoptes scabiei [18].
M. anisopliae (common name “green muscardine fungus”) is considered as a complex

of species, morphologically quite similar of soilborne ascomycetes, widely used for the bio-
logical control of several arthropod pests. The species has been revised by Bischoff et al. [19],
while the whole genus has been recently revisited [20].

The species cited as mycoacaricide in the present study were M. anisopliae, Metarhizium
robertsii, Metarhizium brunneum (M. anisopliae complex) and Metarhizium flavoviride and
Metarhizium pemphigi (M.flavoviride complex).

3. Entomopathogenic Bacteria

Among the entomopathogenic bacteria (EPBs), Bacillus thuringiensis showed the most
relevant activity against arthropods.

B. thuringiensis is a Gram-positive, rod-shaped, spore-forming bacterium, innocuous
for humans, animals and plants. It can be isolated from different environments, such as
soil, rhizosphere, phylloplane, freshwater, and grain dusts; furthermore, it can be found in
invertebrates and insectivorous mammals [21].

Its entomopathogenic property is related to the production of highly biodegradable
proteins. Its action to the insect pest relies on insecticidal toxin and an array of virulence
factors [22]. B. thuringiensis produces, upon sporulation, insecticidal crystal inclusion
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formed by several proteins named Cry or Cyt proteins. These proteins have been proven
to be toxic to insects belonging to the orders Lepidoptera, Dipteran, Coleoptera, Hymenoptera,
Homoptera, Orthoptera and Mallophage [22].

Furthermore, the entomopathogenic activity of B. thuringiensis is related to other
virulence factors, including exotoxins and extracellular proteases. Exotoxins are heat-stable
water-soluble and low-molecular-mass compounds (701 Da), highly toxic to a wide range
of insect species by the oral route [23,24]. Different extracellular proteases, such as serine
protease, chitinase, collagenase, have been identified [22,25].

It has been observed that virulence factors are able to breach the epithelial cells of the
insect midgut and increase the insecticidal activity of Cry protein. Moreover, virulence
factors can protect B. thuringiensis from the innate immune system through the cleavage of
antimicrobial peptides, whereby the insecticidal activity of the Cry protein is enhanced [21].

B. thuringiensis, because of its known entomopathogenic activity, has been used world-
wide for biological control against several agriculture pests for a long time.

Nowadays, in fact, commercially available products based on crystals and/or spores
from environmental strains of B. thuringiensis, as well as trans-conjugant and recombinant
strains, are used for the population control of different arthropod groups, including Lepi-
doptera (mainly B. thuringiensis var. kurstaki, thuringiensis or aizawai), Diptera (B. thuringien-
sis var. israelensis), and Coleoptera (B. thuringiensis var. tenebrionis and san diego) [26].
More recently, it has been proposed as an agent against parasites of human and veterinary
concern, too.

Besides B. thuringiensis, Lysinibacillus (formely Bacillus) sphaericus is employed for
preventing and controlling pests. Both agents are the only commercial entomopathogenic
bacteria that are produced using mass production techniques and sold in sufficient com-
mercial quantities. L. sphaericus is commonly isolated from soil and aquatic habitats. At the
end of its vegetative life cycle, it produces round spores in a swollen “club-like” terminal
or subterminal sporangium. Moreover, L. sphaericus can produce an intracellular protein
toxin (SSII-1) and a parasporal crystalline toxin at the time of sporulation. Its mosquitocidal
activity has been demonstrated mainly with Culex mosquitoes, followed by Anopheles,
Mansonia, and some Aedes spp. [27,28].

Other members of the genus Bacillus have shown entomopathogenic properties.
Among them, the most commonly employed against agricultural pests is Brevibacillus
(formerly Bacillus) laterosporus.

This is an aerobic, spore-forming bacterium which was originally isolated from wa-
ter [29,30]. It produces a canoe-shaped parasporal body which cradles the spore and is
firmly attached to it. Since McCray [31] isolated B. laterosporus from diseased bees in
1917, it has been supposed that this bacterium might be an insect pathogen. However,
B. laterosporus is recognized to be a saprophyte living on the dead remains of bee larvae
and it is not always present in these insects [32,33].

Successively, B. laterosporus demonstrated pathogenic activity against black fly lar-
vae Simulium vittatum [33]. Black flies are important nuisance pests of humans and farm
animals, as well as being vectors of arboviruses and river blindness, caused by the nema-
tode Onchocerca volvulus [34]. The entomopathogenic activity of B. laterosporus was also
proven against larvae of the mosquito Culex quinquefasciatus and Aedes aegypti [33,35–37]
and houseflies Musca domestica [38].

Several studies have been carried out to verify the role of endosymbiont bacteria as
possible entomopathogenic agents. Endosymbionts are intracellular obligate bacteria that
contribute to the fitness of the tick including, nutrient provision and host defense; in some
cases, it has been supposed that they can cause phenotypic and reproductive alterations in
their arthropod hosts [39].

Several studies in fact observed anomalies of parthenogenesis [40,41], reproductive
incompatibilities between infected and uninfected individuals [42], and the disturbance of
oogenesis [40]. These reproductive alterations may cause the mortality of male embryos [43]
and give rise to populations consisting only of haploid individuals [44].
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The most encountered species belong to genera Spiroplasma, Cardinium, Schineria,
Rickettsiella, Wolbachia [39,45].

Spiroplasma sp. are bacteria responsible for sexual determination in insects. Tinsley
and Majerus [46] demonstrated that Spiroplasma sp. are male-killing bacteria causing a
female-biased offspring ratio in female ladybirds Anisosticta novemdecimpunctata. Although
Spiroplasma sp. are usually considered to be pathogens, they have also been reported to
be symbionts in some insects and the potential role of mosquito spiroplasmas as vector
control agents has been discussed [47].

Bacteria of the genus Cardinium have been associated to the parthenogenesis of para-
sitoid wasps and recognized as a symbiont of the phytophagous mite Tetranychus puerari-
cola [41,48].

Schineria sp. bacteria have been previously isolated from the larvae of Wohlfahrtia
magnifica (Diptera: Sarcophagidae), a myiasis-causing fly species for most domestic ani-
mals [49,50]. Toth and colleagues [50] suggested that Schineria has a strong chitinase activity
and may contribute to the development of fly larvae and influence the metamorphosis of
W. magnifica.

Rickettsiella spp. are Gram-negative, obligate intracellular bacteria of the family Cox-
iellaceae. Currently, the genus comprises three widely recognized entomopathogenic
species, and their pathotypes, Rickettsiella popilliae, Rickettsiella grylli, and Rickettsiella chi-
ronomi [51,52].

All species are highly fastidious intracellular pathogens and typically target the fat
body and hemolymph cells of the host. The infective cells are typically small, dense rods
ingested during feeding which traverse the midgut epithelium and enter the hemocoel,
where they gain entry to host cells through endocytosis. Once within the cell, pleiomorphic
forms develop within the cytoplasmic vacuoles, varying from bacteria-like secondary
cells to large, round rickettsogenic stroma. As the disease develops, characteristic protein
crystals form and cells revert to small rickettsia. Eventually, infected cells undergo lysis,
releasing masses of rickettsia and crystals into the hemolymph.

Concern has been raised over potential inflammation and infection induced by ento-
mopathogenic Rickettsiella in vertebrates [53], so care should be taken when working with
these organisms [54].

Wolbachia pipientis was first detected in the common household species Culex pipiens
by Hertig and Wolbach in 1924 [55]. This is the most widespread bacterial endosymbiont
infecting terrestrial arthropods, mainly insects, but some arachnids, freshwater crustaceans,
and filarial nematodes too [56]. It has been observed that Wolbachia may confer in infected
Diptera species some resistance versus insect pathogens [57].

Different mosquito trials demonstrated that Wolbachia must be carefully assessed for
use as a biological control agent; however, the effect depends on the mosquito species
investigated, as well as on the Wolbachia strain [58].

Cytoplasmic incompatibility has been reported to occur in insects and arthropods
infected with Wolbachia sp. [59–61].

This characteristic is a reproductive incompatibility between infected males and females
that are either uninfected or infected with different strains of the endosymbiont [60,62].
The symbiotic bacteria spread in an arthropod population, causing a reduction in fitness
through failed mating [63].

It has been supposed that the presence of Wolbachia may have direct consequences on
the development of other pathogens in the same arthropod vector, and also indirect effects
on the epidemiology of pathogens through impacts on the dynamics and genetic diversity
of the vector [64,65].

4. Ticks

Ticks are large-bodied bloodsucking, nonpermanent parasitic Acari, feeding exclu-
sively on vertebrates. They are divided into three families, among which Ixodidae (hard
ticks) represent an important concern for mammalian health, although some of them also
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feed on birds, and can be carried between continents. The life cycle includes eggs, one larva
and one nymphal instar, adult male and female. Life cycles are classified based on the
number of times the stages change hosts. The ticks start to feed as larvae, then as nymphs,
and finally as adults, even if, in some species, males do not ingest blood. Each generation
may be 1 or 2 years, although some species may take 3 to 6 years [66].

Most Ixodid species change three hosts, and molts of juvenile stages occur on the
ground. A few of them are referred to as one-host ticks, spending most of their life on
a unique host and dropping to the ground for oviposition (i. e. Rhipicephalus microplus).
Two-host ticks feed on the first host, molt in nymph and feed again. Engorged nymphs
fall to ground and molt into adults that feed onto the second host, mate, then females
drop and lay thousands of eggs, which are left among the decaying vegetation at protected
sites, where a high relative humidity will ensure their survival [67]. Ticks can be more
(R. microplus) or less (Ixodes ricinus) host specific, depending on their species [66].

There has been a shift of ticks to elevated latitudes and altitudes, would be due to
climate change, along with the host abundance [68–70], so the area of distribution of some
ixodid species has expanded in the last few years. Among the causes of tick introduction
and spread, the uncontrolled movements of domestic or wild animals, climate trends,
and changes in the use of land resources that allow hosts to increase have been reported.
Ticks introduced into a region where there is no competition with other species of ticks,
are, in fact, able to colonize the complete range of abiotic conditions compatible with
their biology [71]. However, the effects from human activities appear more important in
modifying biotopes, influencing the infection by pathogens, of ticks [67].

Ticks exert a direct damage, feeding on their host. Saliva and/or mouthpart pene-
tration can induce a toxic reaction in hosts, such as tick paralysis [72,73], or allergic state
in human patients [74]. Heavy tick infestation can cause severe anemia, considering that
an adult female tick can feed up to 2.0 mL of blood from the vertebrate host [75]. Con-
versely, many tick species have a role in the transmission of several pathogens, zoonotic
too, causing an indirect damage. Pathogens transmitted by ticks include the greater part of
the agents of vector-borne diseases in temperate areas, with a public health impact mostly
unquantified [76]. Tick-borne diseases affect about the 80% of the world’s cattle population,
with a strong economic impact, mostly in developing countries [71].

As obligate hematophagous ectoparasites, ticks can ingest a huge amount of blood
(up to 100-fold their body weight) [77], so they can easily transmit bacteria such as Anaplasma,
Ehrlichia, Borrelia and Coxiella. Piroplasms (Babesia and Theileria), Cytauxzoon and Hepato-
zoon spp. complete their life cycle in hard ticks. One hundred and sixty tick-borne viruses are
known, among which are tick-borne encephalitis and Crimean Congo hemorrhagic fever [70].

The current conventional acaricide treatment consists in the administration of different
chemicals. The most employed drug classes are synthetic pyrethroids, organophosphates,
amitraz, fipronil, insect growth regulators, macrocyclic lactones and isoxazoline. The com-
pounds can be administered systemically or by direct application on the coat, alone or in
mixture, with differences among the countries. Moreover, in companion animals, isox-
azoline is administered per os. Anyway, the massive administration of acaricide drugs
has made a resistant tick population [78]. To the best of our knowledge, the first report
of the acaricide (organochlorine) resistance of cattle tick dates back to the half of the past
century [79]. Acaricide resistance increased after the development of other compounds
and will take place after exposure to any new molecules.

R. microplus (cattle tick) is one of the most studied Ixodidae, regarding to its acaricide
resistance. Being a one-host tick, it spends most all its life cycle on the same host. Therefore,
it is exposed to acaricide longer and has become resistant worldwide to almost all classes
of chemicals. These ticks are reported as resistant to acaricide drugs [80–91] and multidrug
resistant strains have been reported, also [92,93].

R. sanguineus (brown dog tick), conversely, is a three-host tick, and dogs are the
primary host species, although infection of different animal species can occur in certain
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areas [94]. It can infest homes and is able to complete its life cycle indoors [95]. Acaricide
resistance largely occurs in this species, too [96–99].

The rise of acaricide resistance in ticks is a serious concern, whose real extent is
unknown [94]. However, several studies dealing with the mechanisms of resistance have
been accomplished in the last few years [100–104], indicating that such resistance is due to
genetic changes of tick populations, whose mechanisms would be linked to modifications
to the target site, metabolism of compound alterations, or a decrease in the ability of the
drug to cross the outer protective layers of the tick’s cuticle [105].

4.1. Fungi

Natural infections caused by Aspergillus flavus, A. fumigatus and P. insectivorum in all
stages (mostly adults) and eggs of examined ticks have been described since 1964 [106].
Afterwards, 17 different fungal species were reported to occur in diseased I. ricinus, Derma-
centor marginatus and D. reticulatus. Engorged females of I. ricinus appeared more prone to
fungal infection in summer seasons [107]. The most pathogenic molds were A. parasiticus,
B. bassiana, Beauveria tenella, V. lecanii and P. fumosoroseus. Similarly, B. bassiana, B. brogniarti,
P. farinosus, P. fumosoroseus, V. lecanii and Verticillium aranearum was able to colonize I. ricinus
free in the environment from Denmark [108], mostly being engorged females in autumn,
suggesting a possible activity of EPFs as regulators of these populations. A. ochraceus,
Curvularia lunata, and Rhizopus arrhizus were isolated from naturally infected R. sanguineus
and were found able to kill them [109,110]. Recently, A.parasiticus, along with Penicillium
steckii and Scopulariopsis brevicaulis, was found to contaminate a laboratory-reared colony
of I. ricinus [111].

The control of ticks by entomopathogenic fungi has been widely studied and, differ-
ently from insects, tick eggs are sensitive [112]. Tick species differ in their behavior, range of
hosts and life cycle, so also, their sensitivity in comparison to a fungal species is not the
same [113]. Furthermore, ticks are reported to be more tolerant to EPFs than other arthro-
pods, so the amount of the inocula for tick control purposes should be larger. Different
stages of ticks would exhibit differences in sensitivity versus EPFs. R. sanguineus engorged
females and unfed other stages appeared more prone to fungal infection with M. anisopliae
and M. flavoviride [114]. Nymphs were reported as less sensitive when compared with
other stages [113,115]. A slight difference of sensitivity to M. brunneum, between adults
and nymphs of I. scapularis was also reported [116,117] and larvae are considered the most
susceptible stage to EPFs [118].

Metarhizium and Beauveria, when cultured in a liquid medium, can produce yeast-like
propagules, known as blastospores. These fungal stages have also been checked for their
entomopathogenic action, being able to easily penetrate cuticles [119].

EPFs recognize their target host, then conidia adhere and germinate on its cuticle,
developing hyphae and appressoria. Such fungal structures exert a mechanical pressure
along with enzyme secretion, allowing the fungi to cross the cuticle, invade the host’s
whole body, causing the death and colonizing the cadaver with their mycelium, emerging
from the cuticle to continue the vegetative cycle.

EPFs, to start the host invasion, must overcome the epicuticle (outer layer of cuticle),
mostly composed by esterified lipids, different among the hosts’ species [120,121]. The abil-
ity to colonize more host species based on the recognition of such lipids makes the fungi
specialist or generalist. Furthermore, the adherence of conidia seems to be mediated by
several proteins and lipolytic enzymes [122]. Lipolytic enzymes secreted by EPFs also seem
to cause alterations in the lipid balance of ticks, hampering their survival and decreasing
their reproductive capacity [123,124].

The pattern of invasion of M. anisopliae in ticks is characterized by a simultaneous
internal and cuticular fungal growth, unlike insect colonization by the same mold. This can
be also due to the different composition of the cuticle between insects and ticks. The latter
have a lower proportion of chitin and differences in the binding of proteins in female
alloscutum (to allow a rapid expansion during engorgement), so this different composition
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makes ticks more prone to fungal attacks. This rapid and extensive cuticle degradations
would hasten the tick death, following the water loss [125]. Furthermore, a serious cytotoxic
impact of M. robertsii on R. microplus hemocytes has been recently reported [126,127].

M. anisopliae is the most studied fungal species. Its most prominent features on R. mi-
croplus have been recently reviewed [128]. Striking differences of entomopathogenic activity
among the isolates have been reported [129], probably due to genetic differences [128]. Fur-
thermore, a trial on cattle did not yield the same results as in-field studies [130]. The mold
acted as active, along with B. bassiana [131] as well as a blastospore suspension, together
with B. bassiana and M. robertsii [132]. R. microplus was sensitive to commercial conidial sus-
pensions in vegetable oils [133] and both in vegetal and mineral oils, applied on the grass,
killing 100% of ticks and lasting in the environment up to 60 days [134]. A similar good
efficacy against R. microplus was reported for a formulation containing both microsclerotia
and blastospores of M. robertsii [135].

M. anisopliae appeared active against Rhipicephalus variegatus, R. sanguineus and
Ixodes scapularis, but led to a limited mortality in Dermacentor variabilis, which was sen-
sitive to B. bassiana [116]. It was proven to be effective against Amblyomma parvum [136] and
Haemaphysalis qinghaiensis, such as B. bassiana [137]. In a trial on Dermacentor albipictus larvae,
a spray application of M. anisopliae was more effective and active in a shorter time, such as
M. brunneum, when compared to B. bassiana [138].

M. anisopliae appeared more active than B. bassiana against I. ricinus and to a lesser
extent against D. reticulatus [139]. Strains of M. anisopliae and B. bassiana were able to kill
engorged females of Hyalomma anatolicum, yielding better results in comparison with Pae-
cilomyces lilacinus [140], while strains of M. anisopliae and P. lilacinus were more pathogenic
than B. bassiana against R. microplus [129]. Similarly, M. anisopliae was reported to be
very pathogenic against Haemaphysalis longicornis, unlike B. bassiana [141], while this lat-
ter fungal species was reported to be very effective against the same tick in another
study [142]. These remarks would indicate huge differences among fungal populations
and the usefulness of testing fungi isolated from the same environment where selected
ticks occur. M. brunneum was successfully administrated to I. scapularis in a granular
formulation [117,143]. This fungal species showed marked differences in activity against
Rhipicephalus annulatus under field conditions [144].

B. bassiana was assayed on R. microplus in vitro and in vivo on affected cattle, with very
promising results [145,146], as well as on Hyalomma lusitanicum both in vitro and on field,
applied inside wild rabbit burrows [147,148]. The mold was active against unfed adults of
Amblyomma americanum [149], as well as against amitraz-resistant and amitraz-sensitive
Rhipicephalus decoloratus, without detecting any significant difference [150].

M. anisopliae was reported to inhibit 92% Rhipicephalus appendiculatus, while B. bassiana
inhibited 80% [151]. Furthermore, a synergistic effect of both EPFs on Rhipicephalus appen-
diculatus and Amblyomma variegatum [152,153] was referred, too. In a recent comparative
study on the efficacy of the autodispersion of commercially available strains of M. aniso-
pliae and B. bassiana against nymphal stages of R. sanguineus, the latter fungal species
was faster in killing ticks and more efficient in sporulating on cadavers, allowing a mold
dissemination [154].

However, strong differences in sensitivity to M. anisopliae and B. bassiana among
different populations of R. microplus are reported [155–160]. For these reasons, preliminary
in vitro assays of different fungal strains against the selected tick population are mandatory,
also considering the sublethal effects on reproduction, then on future population size in
the environment [161].

Isaria fumosorosea, Isaria farinosa and Purpureocillium lilacinum (formerly included within
the genus Paecylomyces) are considered as important EPFs and scored active against R. mi-
croplus, acting also in reducing the egg production from treated adult females. I. fumosorosea
was able to reduce the hatching percentage of treated eggs but was scarcely effective
on larvae [162]. I. fumosorosea induced a low mortality of larvae in R. sanguineus [114],
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in D. reticulatus and I. ricinus [136]. For these reasons, its use as mycoacaricide against ticks
is not recommended [139].

S. brevicaulis was recovered from D. variabilis [163] and, although this genus is con-
sidered as a minor EPF [164,165], it was assessed as capable of protecting this tick species
from the desiccation induced by M. anisopliae [166]. It is currently considered as a patho-
biont, transstadially transmitted in winter ticks, able to kill experimentally infected ticks,
but without significantly affecting eggs and larvae [167].

The activity of EPFs can be affected by environmental conditions (high temperature,
desiccation, strong solar radiation) [113]. For these reasons, the formulation is essential.
Oily formulations are effective in protecting conidia from solar UUVV irradiation and
from the loss of humidity [128], and calcium alginate beads with granular corn starch or
chitin powder as nutrients were able to protect M. pemphigi blastospores encapsulated from
drying [168].

To avoid a waste of inoculum, small areas are most suitable for testing. The results
of pen trials yielded variable results [161]. Liquid or solid formulations can be applied
with fertilizer spreaders [169] and the mycoacaricide can be applied on pastures by aerial
spraying [170]. EPFs can be directly applied on the host, but they must be able to overcome
several barriers such as skin temperature, pH, sebum and sweat [161].

Lastly, the effectiveness of an integrated control has been reported. The mycoacaricide
activity was enhanced, when fungal stages were added with deltamethrin to control
pyrethroid-resistant R. microplus [171,172] or with cypermethrin and chlopyriphos [173].
Similarly, I. scapularis was sensitive to fipronil, added to M. anisopliae [174,175], as well as
R. sanguineus to M. anisopliae plus cypermethrin [176]. An integrated alternative control of
R. microplus by both essential oils and entomopathogenic fungi (M. anisopliae and B. bassiana)
indicated the suitability of Pelargonium graveolens essential oil that is not able to inhibit
these EPFs and, when B. bassiana is not involved, also Lavandula hybrida [177]. Similarly,
an integrated control of I. scapularis, was achieved with a synthetic pyrethroid acaricide,
M. anisopliae strain F52 and a mixture of essential oils [178].

Other alternative methods of tick control are the use of entomopathogenic nematodes
alone [179] or in oily emulsions [180], plant-derived compounds [181–183] or vaccines.
Anti-tick vaccine Bm86 is commercially available [184], mostly active on R. annulatus
and to a lesser extent on R. microplus [185]. EPFs active against different tick species are
summarized in Table 1.
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Table 1. Entomopathogenic fungi (EPFs) active versus different tick species.

Tick Species EPFs References

Amblyomma americanum Beauveria bassiana [149]

Amblyomma parvum Metarhizium anisopliae [136]

Amblyomma variegatum Beauveria bassiana [152]

Amblyomma variegatum Metarhizium anisopliae [152]

Amblyomma variegatum M. anisopliae + B. bassiana [153]

Boophilus microplus Beauveria bassiana [186]

Boophilus microplus Metarhizium anisopliae [130,131,186–189]

Boophilus sp. Fusarium sp.
Metarhizium anisopliae [3]

Dermacentor albipictus Beauveria bassiana [138]

Dermacentor albipictus Metarhizium anisopliae [138]

Dermacentor albipictus Metarhizium brunneum [138]

Dermacentor marginatus Aspergillus fumigatus [190]

Dermacentor marginatus Trichothecium roseum [191]

Dermacentor reticulatus Isaria fumosorosea [139]

Dermacentor reticulatus Beauveria bassiana [139]

Dermacentor reticulatus Metarhizium anisopliae [139]

Dermacentor reticulatus Metarhizium robertsii [139]

Dermacentor sp. Beauveria bassiana [107]

Dermacentor variabilis Metarhizium anisopliae [116]

Dermacentor variabilis Beauveria bassiana [116]

Dermacentor variabilis Scopulariopsis brevicaulis [167]
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Table 1. Cont.

Tick Species EPFs References

Haemaphysalis longicornis Beauveria bassiana [142]

Haemaphysalis qinghaiensis Metarhizium anisopliae [137]

Haemaphysalis qinghaiensis Beauveria bassiana [137]

Hyalomma anatolicum Beauveria bassiana [140]

Hyalomma anatolicum Metarhizium anisopliae [140]

Hyalomma anatolicum Paecilomyces lilacinus [140]

Hyalomma lusitanicum Beauveria bassiana [147,148]

Hyalomma scupense Aspergillus fumigatus [190]

Ixodes dammini Aspergillus ochraceus [3]

Ixodes dammini Metarhizium anisopliae [192]

Ixodes ricinus Conidiobolus coronatus [108]

Ixodes ricinus Aspergillus flavus [106]

Ixodes ricinus Aspergillus fumigatus [106]

Ixodes ricinus Aspergillus niger [107]

Ixodes ricinus Aspergillus parasiticus [107]

Ixodes ricinus Beauveria bassiana [3,139]

Ixodes ricinus Beauveria brognardi [108]

Ixodes ricinus Paecilomyces farinosus [108]

Ixodes ricinus Paecilomyces fumosoroseus [107,108]

Ixodes ricinus Penicillium insectivorum [106]

Ixodes ricinus Trichothecium roseum [191]

Ixodes ricinus Verticillium aranearum [108]

Ixodes ricinus Verticillium lecanii [107,108]

Ixodes ricinus Metarhizium anisopliae [139]

Ixodes ricinus Metarhizium robertsii [139]

Ixodes ricinus Isaria fumosorosea [139]

Ixodes scapularis Metarhizium brunneum [116–118,143]

Ixodes scapularis Metarhizium anisopliae [116]

Ixodes scapularis Beauveria bassiana [116]

Rhipicephalus annulatus Metarhizium brunneum [144]

Rhipicephalus appendiculatus Aspergillus sp. [193]

Rhipicephalus appendiculatus Fusarium sp. [193]

Rhipicephalus appendiculatus Metarhizium anisopliae [151,152,193]

Rhipicephalus appendiculatus Beauveria bassiana [151]

Rhipicephalus appendiculatus M. anisopliae + B. bassiana [152]

Rhipicephalus decoloratus Beauveria bassiana [150]

Rhipicephalus microplus Metarhizium robertsii [126,127,132,135]

Rhipicephalus microplus Beauveria bassiana [129,132,145,146,155,158–160]

Rhipicephalus microplus Metarhizium anisopliae [129,132,133,155,158–160]

Rhipicephalus microplus Paecilomyces lilacinus [129]

Rhipicephalus microplus Isaria fumosorosea [162]
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Table 1. Cont.

Rhipicephalus microplus Isaria farinosa [162]

Rhipicephalus microplus Purpurocillium lilacinus [162]

Rhipicephalus sanguineus Aspergillus ochraceus [109]

Rhipicephalus sanguineus Fusarium sp. [194]

Rhipicephalus sanguineus Curvularia lunata [110]

Rhipicephalus sanguineus Rhizopus thailandensis [110]

Rhipicephalus sanguineus Rhizopus arrhizus [110]

Rhipicephalus sanguineus Metarhizium anisopliae [113–116]

Rhipicephalus sanguineus Metarhizium flavoviride [114]

Rhipicephalus sanguineus Isaria fumosorosea [114]

Rhipicephalus sanguineus Beauveria bassiana [116]

4.2. Bacteria

Some bacterial species have been demonstrated to be pathogenic for ticks; thus,
they are considered useful for biological control. Among EPBs, B. thuringiensis is the most
studied agent with activity against ticks [195] and is largely employed in commercial
insecticide formulations. The pathogenic action of B. thuringiensis normally occurs after
the ingestion of spores by ticks, and the crystalline inclusions containing insecticidal
δ-endotoxins specifically interact with receptors in the insect midgut epithelial cells [196].

Studies about the effectiveness of B. thuringiensis against ticks showed that this prop-
erty is strongly related to tick species and different tick developmental stages [195,197,198].
In vitro investigations reported the activity of B. thuringiensis against Hyalomma dromedarii,
Argas (persicargas) persicus, and R. microplus, I. scapularis, I. ricinus, D. reticulatus [199].

Szcsepanska and coworkers [199] tested four environmental strains of B. thuringiensis
and one commercially available product (Vectobac) containing B. thuringienis against
ticks of the species I. ricinus and D. reticulatus. Vectobac was not active against both tick
species, whereas two environmental B. thuringiensis strains proved to be efficient against
I. ricinus and D. reticulatus, with the mortality rate for ticks assessed as being up to 80%.
Moreover, D. reticulatus males were the most sensitive ticks to bacteria. The authors found
similarity between the most and least efficient B. thuringiensis strains in enzymatic profiles
(lipases, phosphatases, proteases, and chitinases), and for this reason they supposed that
the detected enzymes have a limited role in the pathogenicity profile of the bacterial strains
against ticks.

The effectiveness of B. thuringiensis against other tick species was also observed in
further investigations. The pathogenicity of B. thuringiensis variety kurstaki was tested
against the black-legged tick I. scapularis. B. thuringiensis was active against engorged
larvae with LC50 of 107 spores/mL [198].

The sensitivity of the soft ticks A. persicus and the hard ticks H. dromedarii versus the
commercial product Vectobac was assayed by Hassanain et al. [197] and mortality rates
over 70% were observed. These results are not fully in accordance with those found by
Habeeb and El-Hag [200] that did not record mortality rates after dipping H. dromedarii
in Vectobac, but when they injected this commercial insecticide to H. dromedarii hemocoel,
increased mortality rates in the next 48 h were observed.

In Mexico, four strains of B. thuringiensis, among 60 tested native strains, caused
mortality rates exceeding 90% of adult R. microplus on the 20th day of the immersion test
assay [195].

To the best of our knowledge, studies about the sensitivity of R. sanguineus to
B. thuringiensis are not present in the literature. However, Renè-Martellet et al. [201] studied
the microbiota composition of R. sanguineus ticks collected in different geographical areas
(Senegal, France, Arizona) and found that each bacterial microbiota was dominated by
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three genera: Coxiella, Rickettsia and Bacillus. In particular, Rickettsia and Coxiella were the
two main genera detected in females, whereas males had a higher proportion of Bacillus;
however, the nature of the association between male R. sanguineus ticks and Bacillus spp.
was not characterized.

The tick pathogenic property of Proteus mirabilis has been observed by Brown et al. [202]
in a laboratory population of D. andersoni. In fact, a high rate of mortality was observed
among all developmental stages of engorged ticks from which P. mirabilis was cultured.
Mortality was preceded by disease in ticks, that had discoloration caused by the release of
black decayed blood into the hemocoel, when the gut decomposed. At death, the cuticle
was badly decomposed and was easily ruptured. Furthermore, the viscous fluid in the
body cavity had a characteristic putrefactive odor.

Even though these findings suggest a relevant activity of P. mirabilis as entomopathogen,
its use against ticks is not recommended because this is an opportunistic bacterium able to
cause infections in humans and animals [203].

Among endosymbiont bacteria, W. pipientis is the species most frequently found in ticks.
It has been detected in a range of tick species of the genera Ixodes, Rhipicephalus, Hyalomma,
Amblyomma, Haemaphysalis [204].

The presence of Wolbachia in R. sanguineus ticks that mainly parasitize dogs has raised
a concern as to whether the endosymbionts within the ticks can be transmitted into these
animals. Currently, Wolbachia is being utilized as a method for vector control in Aedes
mosquitoes [205,206]. Previous studies on sera of human participants exposed to multiple
bites of Wolbachia-infected Aedes mosquitoes, showed Wolbachia-free residues indicating
no transmission to humans [207]. On the other hand, an investigation conducted on
blood collected from dogs in Haiti found approximately 22% of dogs PCR-positive for
Wolbachia [208]. Furthermore, Wolbachia was detected in blood specimens of dogs and
was determined from the filarial nematode Dirofilaria repens [209]. Wolbachia has also
been detected in the blood of cats and it is supposed to be related to the heartworm
Dirofilaria immitis, which harbors this endosymbiont [210]. Based on these findings, further
investigations are required to assess the possibility of Wolbachia being transmitted to
mammals, including humans, through the feeding of ticks.

5. Dermanyssus Gallinae

The genus Dermanyssus comprises hematophagous mite species, parasites of birds.
The taxonomy of species within the genus was not clearly defined, until now [211]. Der-
manyssus gallinae (poultry red mite) is very common in layer houses and is considered as the
most damaging to laying hens worldwide [212]. The mite belongs to order Mesostigmata
and mainly live at all stages in the environment, in cracks or crevices near the hosts’ resting
sites, feeding intermittently (every 2–4 days) for short periods (up to 1 h) on the birds
during the dark hours [213–215]. Its life cycle (from egg to adult) is completed in one to two
weeks and takes place through eggs, larvae, two nymphal stages and adults. Especially
females of adult and nymphal stages exert hematophagy. This short life cycle, the wide
range of optimum temperatures (10–35 ◦C) and high relative humidity (>70%), usually
occurring in egg-laying facilities, contribute to make the mite a pest [216]. Parasite densities
can, in fact, reach 50.000–500.000 mites per bird in caged systems [217]. A relationship
between the occurrence of mites and hen mortality has been recorded [218].

Although birds are first choice hosts, D. gallinae feed on humans and other mammals,
too [219], and can act as a vector for several pathogens of poultry [220], as well as zoonotic
agents [221]. D. gallinae, in fact, feeds on humans too, showing opportunistic feeding habits,
in respect to other species within the genus. Immunocompromised people seem to be
prone to mites’ attacks and to following pathogens transmission, occurring in more than a
third of cases [222].

Poultry red mites spend most of their life in environmental refugia and can survive up
to 9 months without feeding [216], so the control should be performed in the environment.
The control of D. gallinae has been made up by using silicas (in dusts and liquid formu-
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lations), exerting a physical action [223,224], yielding satisfying results, when associated
with the mechanical cleaning of henhouses.

Chemical acaricides in the environment have been widely applied [215,218,225].
However, a widespread resistance to such molecules has been recorded in the last few
decades [218,226–230]; moreover, many acaricides have been withdrawn from the Euro-
pean market [218]. These drugs, in fact, would have a public health impact, occurring as
residues in eggs and meat [231,232].

Alternative methods of control have been revised by many authors, encompassing
the use of vaccines, pheromones, botanical extracts, natural enemies, acaripathogenic
fungi and bacteria, as well as identifying different biological targets for new chemi-
cals [214,215,218,225,233].

5.1. Fungi

Entomopathogenic fungi have been assayed to control the mite population. B. bassiana,
M. anisopliae, Trichoderma album, and P. fumosoroseus are the most studied fungal species.
The use of fungal entomopathogens to control arthropod pests as biological agents would be
suggested considering their easy direct penetration through arthropod tegument, the lack
of induction of host resistance, the ability to horizontally transmit from fungus-infected
to uninfected arthropods, mostly in moist environments [234] and potential damage to
flies, lice, and other pests [235,236]. Among the different stages, nymphs show a lower
sensitivity to EPFs [237].

B. bassiana, P. fumosoroseus and M. anisopliae were proven to kill several red mites,
when administered in high doses, with a variability depending on the isolate [237–240],
being able to cause high mortality within 5 days [238]. The efficacy of B. bassiana appeared
enhanced, when administered in mixture with T. album. These fungi killed up to 80% of
treated mites within 10 days [241]. In a more integrated approach, B. bassiana showed a syn-
ergistic interaction with desiccant dusts (up to 38% higher), maintaining the effectiveness
up to 4 weeks [242], with a marked repellent effect [243], and with some essential oils [244].
Problems with the administration of conidia have recently been overcome using corrugated
cardboard, infected with high doses of B. bassiana spores, acting as an autoinoculation
device [245].

Different strains of M. anisopliae have been successfully applied to control the mites,
under laboratory conditions, demonstrating differences in pathogenicity with a dose- and time-
dependent effect [246]. A spray of conidia in sunflower oil applied on field in a poultry farm
demonstrated that the amount of conidia should be greater than in laboratory, being difficult
to maintain temperature and humidity under control [247], as observed for M. brunneum [248].
High temperatures together with low relative humidity negatively affect the efficacy of EPFs,
as demonstrated in ticks colonized by M. anisopliae [121]. Anyway, M. anisopliae was able to
reduce the mite population after a week which lasted up 3 weeks [247].

Recently, a native isolate of Aspergillus oryzae, previously cultured by a dead D. gallinae,
was checked for its activity against poultry red mite, showing a lethal activity by the sixth
day after the administration of conidial suspension [249].

The main drawbacks for the use of EPFs in the control of D. gallinae are related to
rapid mite regrowth, the time necessary to allow fungi to grow and low persistence in the
environment [250,251], along with the stability of selected strains [252]. For these reasons,
genetically modified fungi should be selected.

In conclusion, these entomopathogenic microorganisms seem to show an interesting
anti-mite effect against D. gallinae. Anyway, considering the complexity of the epidemiology
of poultry infection, a multidisciplinary approach would be very advisable [253].

5.2. Bacteria

The use of B. thuringiensis has been proposed as an alternative control method to
chemical acaricides against D. gallinae in integrated management programs. It has been
observed that B. thuringiensis var. kurstaki is able to damage the cuticle of D. galllinae and
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cause the loss of mobility of this mite in a period of 24 h [252]. Moreover, Torres and
Hernandez [254] observed a moderate mortality of D. gallinae from day 2 of application
(66%), which increased up to 78% at 7 days at a concentration of 35 mg/mL. Similarly,
a previous study by Mullens et al. [255] on the fowl mite Ornithonyssus sylviarum, revealed
that this mite was susceptible to B. thuringiensis, and the authors concluded that the
entomopathogen had potential for the development of a control preparation for direct
application to poultry.

Microbiota present in D. gallinae mites has been studied and four categories of bacteria
have been identified: saprophytes, opportunistic pathogens, strict pathogens, and en-
dosymbionts. The last ones are intracellular obligate bacteria able to cause phenotypic
and reproductive alterations in their arthropod hosts; they belong to genera Spiroplasma,
Cardinium, Schineria, Rickettsiella [39,45].

Studies about the presence of Wolbachia sp. in D. gallinae did not find these bac-
teria, that are frequently present in other arthropods in which they cause reproductive
anomalies [39].

Even though endosymbiotic bacteria living inside D. gallinae were found, the effect of
these infections on the poultry red mite is not known.

Some studies have been carried out to verify the role of endosymbiotic bacteria living
inside D. gallinae. Bacteria of the genera Cardinium, Spiroplasma, Rickettsiella, Schineira were
found in D. gallinae sampled from poultry farms located in France and UK [45]. De Luna
et al. [45] investigated the endosymbiotic bacteria living inside D. gallinae collected from
one commercial farm in the UK and different farms in France. Specimens collected in the
UK were positive for bacteria of the genera Cardinium sp. and Spiroplasma sp. From France,
seven farms were positive for Cardinium sp., one farm was positive for Spiroplasma sp.,
one farm was positive for Rickettsiella sp. and two farms were positive for Schineria sp.
These findings demonstrated that different endosymbionts may be present in D. gallinae
and the authors supposed that endosymbionts could cause biological modifications to the
poultry red mite [43], similarly to what has been observed in other hosts [63].

Based on these observations, it seems that biological control using endosymbiotic
bacteria-derived substances that may induce changes to the reproduction of arthropods
may be a viable alternative to traditional methods of control of the poultry red mite [45].

6. Psoroptes sp.

Psoroptes mites are non-burrowing Acharina, responsible for ear and body mange
of herbivores. Psoroptes ovis severely impacts on animal health. It induces an exudative
dermatitis in beef cattle and sheep which, when not treated, can lead affected animals to
lose condition and, sometimes, to death [256,257]. The parasite of rabbits Psoroptes cuniculi
(syn P. ovis var. cuniculi) [258], considered conspecific with P. ovis [259], primarily lives on
the inner surface of the pinna [260] and is responsible for otoacariasis.

The life cycle of P. ovis (egg, larva, two nymphal stages and adults) completely occurs
on the host. All parasite stages can pierce the surfaces and feed on tissue fluids. Moreover,
the host’s skin produces serous exudate because of a delayed hypersensitivity response
induced by allergens from mites’ fecal pellets [256,261].

Psoroptic mange in ovine (sheep scab) and in rabbit hosts (ear cancer) are the most
frequently reported clinical forms characterized by severe pruritus. The consequent itching
usually distracts the animals from eating, leading to weight loss, and, in sheep, fleece
deterioration and reduction in milk and meat production. In rabbit, otherwise, the disease
mainly presents as erythema, extreme pruritus, and crusted lesions in the external ear.
Sometimes, the mites can spread to other parts of the host’s body, causing generalized scabs
in the head, neck, ventral abdomen, and urogenital area [260]. The infections are highly
contagious and quickly spread among the animals. Psoroptes can survive and maintain
their infectivity after 15 days off the host, while mite eggs were able to hatch for up to
7 days in the same conditions [262].
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The control of affection and conventional treatment rely on topical organophosphates
or injectable formulations of macrocyclic lactones. However, scab mites have developed
resistance to conventional acaricide drugs. Psoroptes mites have quickly developed resis-
tance to all the synthetic pyrethroids and to propetamphos, without side-resistance to diazi-
non [263], that nowadays would protect sheep against mites for 8–10 weeks [264]. Injectable
macrocyclic lactone formulations are more operator friendly, but, recently, a multiple re-
sistance has been reported [265,266] and the selective pressure of long acting moxidectine
would enhance helminthic resistance, too. The use of remedies alternative to ivermectin
are welcome, because of several negative aspects relative to this drug. First, ivermectin can
induce drug resistance, with the consequent loss of its effectiveness. Moreover, it can be
neurotoxic and induce central nervous system depression in treated animals. Subcutaneous
treatment is painful for animals and in rabbits it is unsuitable because of their natural
behavior; in fact, rabbits usually lick each other in the ears as part of their hygiene, and this
aspect may affect the pharmacokinetics of ivermectin, and prolonged treatment could cause
intoxication [267,268]. Furthermore, it was demonstrated that the repeated administration
of ivermectin subcutaneously in male rabbits causes a decrease in the weight of the sexual
organs, which is a negative consequence in the animal production [269]. Finally, the use of
ivermectin can represent a threat for people, too, because of the residues in rabbits’ meat
for human consumption [270]. Furthermore, acaricide drugs can pass in the environment
and in the food chain, occurring as toxic residues in milk and meat, and are banned in
organic farms [264].

Alternative biological control can be achieved by using entomopathogenic microor-
ganisms, such as bacteria and molds, or by administering natural compounds [271].

6.1. Fungi

Astigmata mites are soft-bodied and have an unsclerotized tegument. This feature
would facilitate fungal colonization [272]. Moreover, in diseased animals, the microenvi-
ronment of lesions acts as a favorable microclimate for fungal growth. With Psoroptes not
being a burrowing mite, the parasites live in groups, in strict contact, that allows the direct
transmission of mycelia [273].

The rate of parasite killing and thermotolerance are of capital importance to allow the
molds to carry out their entomopathogenic activity. These features depend on the selected
fungal isolate [274]; B. bassiana was reported to show the optimal growth temperature
between 25 ◦C and 28 ◦C [275], even if some isolates can grow at about 30 ◦C, with highly
reduced activity and may not survive at 34 ◦C [276].

The first in vitro study on the effects of B. bassiana on Psoroptes recovered from rab-
bits [273] stressed a strong lethal activity on both infected adults and on the life span of
larvae hatched from infected eggs. Then, an in vitro and in vivo study was performed,
demonstrating that Psoroptes mites can become infected by entomopathogenic fungi on the
skin of sheep, also. These findings showed the feasibility of a direct application of fungal
conidia onto the sheep body [277].

In a comparative in vitro study with Hirsutella thompsonii, M. anisopliae was highly
pathogenic and suitable for the control of P. ovis [272]. These features were furtherly
corroborated by observing the efficiency of the mold in producing fatal infections, as well
as the infectiveness of 5-day-old cadavers of mites [278]. M. anisopliae shows a higher
thermotolerance, when compared with B. bassiana, with an optimum 30 ◦C, but growing at
37.5 ◦C, also, while no infections were observed at 40 ◦C [279], confirming the statement
“B. bassiana and M. anisopliae are known to have their optimum of growth at 25 and 30 ◦C,
respectively” [280].

Anyway, although the thermotolerance and virulence of EPFs would depend on the
strain, M. anisopliae is able to grow up to 35 ◦C, sharing this feature with P. farinosus [274].

The higher infectivity of M. anisopliae in comparison with B. bassiana was assessed
in vivo, too [277]. The strong parasite killing of M. anisopliae seems to be related to its
ability to induce the oxidative damage of mites [281].
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Scopulariopsis brevicaulis (teleomorph Microascus brevicaulis) is a soilborne ascomycete,
occasionally involved as an EPF. The genus has been revised by Sandoval-Denis et al. [282].
The mold showed a dose-dependent pathogenicity for P.cuniculi in an in vitro study, be-
ing able to colonize the mites, leading them to death. The infected parasites appeared
debilitated, lost mobility and quickly died [164]. However, in the same paper, the occur-
rence and the following cultivation of Scopulariopsis sp. from bodies of healthy mites from
ear crusts was recorded. This finding would suggest an opportunistic role of this mold
versus the tested parasite species. EBFs active versus D. gallinae, as well as Psoroptes sp.
are reported in Table 2.

Table 2. Entomopathogenic fungi (EPFs) active versus different mite species.

Mite Species EPFs References

Dermanyssus gallinae Beauveria bassiana [237,240,243,245]

Dermanyssus gallinae B. bassiana + Trichoderma album [241]

Dermanyssus gallinae Metarhizium anisopliae [246,247]

Dermanyssus gallinae Metarhizium brunneum [248]

Dermanyssus gallinae Aspergillus oryzae [249]

Psoroptes ovis Beauveria bassiana [269,277]

Psoroptes ovis Hirsutella thompsonii [272]

Psoroptes ovis Metarhizium anisopliae [272,277]

Psoroptes cuniculi Scopulariopsis sp. [164]

6.2. Bacteria

The in vitro acaricidal effect of B. thuringiensis on P. cuniculi has been demonstrated.
The bacterium can induce histological alterations of this mite, such as the presence of dilated
intercellular spaces in the basal membrane, membrane detachment of the peritrophic matrix
and morphological alterations in columnar cells of the intestine [283].

The use of mixtures of B. thuringiensis with other acaricidal compounds has been
proposed. For example, it has been proven that a combination of chitinase and soybean
trypsin protease inhibitor effectively suppresses population growth in the flour mite
Acarus siro [284], and many B. thuringiensis strains have chitinolytic activities [285] that
could enhance the efficacy in mite control. Lee and coworkers [286] observed that the
combination with other natural products such as naphthoquinones induces a decrease in
the induction of long-term resistance, with short-term efficacy, and at a low cost.

Similarly, the combined use of B. thuringiensis and ivermectin has been proposed by
some authors to combat Psoroptes sp., in view of a potential synergistic or additive effect
with the possibility of lowering the dose of ivermectin [283].

Besides B. thuringiensis, that directly acts against Psoroptes sp., other bacteria may be
involved in the survival of mites. Some studies have been carried out to verify the role of
some bacterial strains isolated from mites. Serratia marcescens is a Gram-negative bacterium
of the family Enterobacteriaceae responsible for infections, including septicemia, in several
animal species. It has been proven that this bacterium is pathogenic to several insects, too,
including flies and mosquitos with different mechanisms of action [287].

S. marcescens has been frequently cultured from Psoroptes sp. mites, but it is not clear if
the bacterium acts as endosymbiont or has anti-mite activity. Perrucci and coworkers [288]
observed that P. cuniculi does not need S. marcescens to live and infect healthy rabbits.
However, the authors found that only rabbits infested with S. marcescens-free P. cuniculi
mites presented crusts in their ears, whereas mites and/or eggs were only detected in the
ear cerumen of all rabbits infested with S. marcescens-infected mites.

Table 3 summarizes EPBs active against Psoroptes sp, D. gallinae and some tick species.
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Table 3. Entomopathogenic bacteria (EPBs) active against different arthropod species.

Arthropod Species EPBs References

Argas persicus Bacillus thuringiensis [197]

Dermacentor andersoni Proteus mirabilis [201]

Dermacentor reticulatus Bacillus thuringiensis [199]

Hyalomma dromedarii Bacillus thuringiensis [197,200]

Ixodes ricinus Bacillus thuringiensis [199]

Ixodes scapularis Bacillus thuringiensis [198]

Rhipicephalus microplus Bacillus thuringiensis [195]

Dermanyssus gallinae Bacillus thuringiensis [254]

Ornithonyssus sylviarum Bacillus thuringiensis [255]

Psoroptes sp. Bacillus thuringiensis [283]

7. Varroa destructor

Varroa destructor is a parasite Mesostigmata mite, exerting a huge impact on beekeep-
ing. It has become a global parasite, switching host onto Apis mellifera from Apis cerana.
Varroasis is often a threat for colonies, when nearby colonies collapse [289]. Without
a treatment, an infected colony dies within 2 years post infection [290]. The life cycle
consists of a phoretic phase when adult hosts carry mites within and between colonies
and a reproductive phase, when Varroa lays eggs inside the bee brood cells [291]. Mature
female daughters are produced in worker brood cells and daughters in drone cells and
remain immobile until prepupae are present. Then they climb on them and create a feed-
ing site by puncturing the host’s cuticle and feed on the larval fat body, parthenogenic
mites develop, then oviposition starts. When bees emerge from the cells, they have mites
feeding on them [292]. The affected hosts show weight loss, with a deficit in reproductive
fitness. The mites would prefer nurse bees [293], and modify bees’ behavior, are able to
mimic a host’s cuticular hydrocarbons to escape the hygienic behavior of the host [294]
and quickly shift to acaricide resistance. Varroa can transmit deformed wing virus and
acute bee paralysis virus. Noel et al. [291] have recently reviewed the main control options.
Chemical control is based on conventional miticide products acting on Varroa on adult
bees or, when administered in strips, acting on mites emerging from the brood cells. How-
ever, these drugs leave residues in hive products, and resistance to acaricide is increasing.
Organic acids or terpenes such as thymol are used in organic control, but they would de-
crease worker population, increasing capping brood removal or decreasing sperm quality.
Lithium chloride appears as a selective inhibitor of Varroa acetylcholinesterase, such as the
use of predators (with interesting laboratory results, but not on colony). Promising is the
use of RNA interference to knock down specific genes of Varroa, although still experimental.
V. destructor has been reported to be susceptible to the entomopathogenic fungi, M. aniso-
pliae, B. bassiana, Verticillium lecanii, Hirsutella spp. [3,295], Hirsutella thompsonii [296,297],
B. bassiana [298] and M. anisopliae [299,300]. Clonostachys rosea (formerly Gliocladium roseum)
is an Ascomycete, belonging to Hypocreales, widely distributed in soil, and provided
by an endophytic ability in tissues from several plants. The mold produces conidia and
chlamydospores. Colonies on potato dextrose agar are greyish white when grown in the
dark, while appearing yellow to orange under lighter conditions [301]. C. rosea was able to
kill 60% of mites, in comparison with B. bassiana and M. anisopliae, which caused the death
of 90% of mites. All the acaripathogenic molds were reported to be able to control V. destruc-
tor by preventing the gene suppression of bee immunity, induced by the mite, too [302].
However, the main shortcoming for the use of acaripathogenic fungi in beekeeping is due
to the potential pathogenicity of these fungi for insects, too.

Alquisira-Ramirez et al. [303] observed that B. thuringiensis could be an effective
alternative to control V. destructor, because the bacterium is virulent to the mite but does
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not cause mortality in bees. In fact, no toxic effects of the proteins of B. thuringiensis have
been demonstrated for the larvae and adults of A. mellifera, maybe because the pH of the
bee intestine is usually acidic, whereas B. thuringiensis toxins are activated at alkaline pH
values [304].

8. Zoonotic Potential of EPFs

A potential zoonotic activity of EPFs has been reported. M. robertsii, M. guizhouense,
M. brunneum and M. pingshaense (specie complex M. anisopliae) were referred as the species
involved with human infection, mostly keratitis [305], although two cases of keratitis due to
M. anisopliae have been reported in soft contact lens wearers [306]. However, considering a
last further recent taxonomic study, comprising the description on new species [20], within the
known complexes, it is very hard to state the lack of zoonotic ability of Metarhizium species,
used as mycoacaricide. On the other hand, B. bassiana was identified as responsible for
mycotic keratitis in a patient involved in occasional agriculture work [307] and, interestingly,
in the same study, 14 clinical cases of B. bassiana keratitis were revised. Five out of the twelve
patients with anamnestic data were working in agriculture.

Bacillus thuringiensis has been associated to different human infections; it has been
cultured from marginal and apical periodontitis, wounds, corneal ulcera and gastrointesti-
nal infections in humans [308]. Even though this EPB is not considered as a traditional
zoonotic agent, its presence in different forms of human infections suggests that, at least
in immunocompromised patients, it could represent a risk. B. thuringiensis, similarly to
B. cereus, produces several virulence factors potentially acting against mammalian cells,
such as hemolysins and enterotoxins [309].

For these reasons, the use of B. thuringiensis in pest control should be carried out with
attention to avoid possible infections, mainly in operators.

Bacillus cereus has been involved in human periodontitis, too [308], as well as in other
human infections, mainly of the gastrointestinal tract [310]. B. cereus is thus a well-known
pathogen for humans and animals and for this reason, its use is not recommended in pest control.

9. Conclusions

The control of ectoparasites requests the development of novel strategies and, among them,
the use of entomopathogenic microorganisms appears as a promising tool to achieve an eco-
friendly approach. Several studies have been accomplished, both in crops’ defense and in
sanitary entomology, mostly in fighting mosquitoes. The present study has revised the literature
dealing with the application of these organisms to manage some veterinary parasitosis, caused
by Acari.

Most of data refer to ticks’ control, showing the feasibility of the environmental
application of this strategy, as well as important differences in the sensitivity of ticks and
pathogenicity of EPFs, that make a preliminary laboratory assay mandatory.

Entomopathogenic microorganisms appear as important for their environmental
sustainability, for the lack of resistance induction in parasites and, in general, for their
safety towards hosts, proving the ability to break the life cycle of both these pests and of
several vector-borne agents, zoonotic, also, in a One Health perspective.

These tools appear promising in an integrate approach, too, and their administration
with conventional acaricide drugs or, in a green approach, with different plant extracts
is advisable. Finally, the management of D. gallinae should be considered as an ideal
candidate for an in-field application of this strategy, considering the withdrawal of several
conventional acaricide from the market. Further study and in-field research are needed to
improve a large-scale application, considering the possible impact on non-target species, too.
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