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Abstract: Taxol, a type of antimitotic agent, could modulate local inflammatory conditions in
peripheral nerves, which may impair their regeneration and recovery when injured. This study
provided in vivo trials of silicone rubber chambers to bridge a long 10 mm sciatic nerve defect in
taxol-treated rats. It was aimed to determine the effects of electrical stimulation at various frequencies
on regeneration of the sciatic nerves in the bridging conduits. Taxol-treated rats were divided into
four groups (n = 10/group): sham control (no current delivered from the stimulator); and electrical
stimulation (3 times/week for 3 weeks at 2, 20, and 200 Hz with 1 mA current intensity). Neuronal
electrophysiology, animal behavior, neuronal connectivity, macrophage infiltration, calcitonin
gene-related peptide (CGRP) expression levels, and morphological observations were evaluated.
At the end of 4 weeks, animals in the low- (2 Hz) and medium-frequency (20 Hz) groups had dramatic
higher rates of successful regeneration (90% and 80%) across the wide gap as compared to the groups
of sham and high-frequency (200 Hz) (60% and 50%). In addition, the 2 Hz group had significantly
larger amplitudes and evoked muscle action potentials compared to the sham and the 200 Hz
group, respectively (P < 0.05). Heat, cold plate licking latencies, motor coordination, and neuronal
connectivity were unaffected by the electrical stimulation. Macrophage density, CGRP expression
level, and axon number were all significantly increased in the 20 Hz group compared to the sham
group (P < 0.05). This study suggested that low- (2 Hz) to medium-frequency (20 Hz) electrical
stimulation could ameliorate local inflammatory conditions to augment recovery of regenerating
nerves by accelerating their regrowth and improving electrophysiological function in taxol-treated
peripheral nerve injury repaired with the silicone rubber conduit.
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1. Introduction

Chemotherapy induces peripheral neuropathy [1,2]. Taxol (paclitaxel) is a common microtubule-binding
antineoplastic drug used to treat solid tumors. It binds to and stabilizes the length of microtubules,
which results in microtubule dynamics suppression, leading to mitotic arrest and dividing cancer
cell apoptosis [3]. In addition, exposure to taxol may cause neurodegeneration, resulting in serious
side effects including myelosuppression and peripheral neurotoxicity [4]. Taxol could also induce
clinical sensory neuropathy with symptoms of tingling, numbness, or burning pain. Although those
symptoms in most patients could resolve within months after treatment, sensory pain may occasionally
become a chronic problem [5].

It has been reported in the literature that taxol is also a potent microtubule-stabilizing drug,
which can promote regeneration of injured adult central nervous system (CNS) axons [6,7]. Compared to
the axons in the CNS, those in the peripheral nervous system regenerate better since their microtubules
in the damaged region of the axon become less acetylated [8]. Taxol treatment has been found to
notably increases microtubule acetylation [9]. My group found that excessive taxol injected in rats
may hinder peripheral nerve regeneration by decreasing expression of immunoregulatory factors,
macrophage invasion, and calcitonin gene-related peptide (CGRP) expression in the spine [10].

In the present study, we used silicone rubber conduits to assist in the regeneration of taxol-injured
peripheral nerves. Because the properties of the silicone rubber are highly stable and nondegradable,
it can provide a suitable and sustainable environment in the bridging conduit for regeneration of
injured nerves [11,12]. In the literature, it has been reported that a weak electric field may enhance
neurite outgrowth both in vitro [13,14] and in vivo [15,16]. Additionally, electrical stimulation could
improve circulation to accelerate regenerative processes and ameliorate nerve functions [17]. Our group
has also successfully demonstrated the beneficial effects of percutaneous electrical stimulation on long
sciatic nerve defects in normal as well as diabetic rats [17–20]. However, the opposite results of electric
fields on regenerating nerves have been reported, too [21,22]. Discrepant results across studies are
likely due to the different frequencies of electrical stimulation used [23,24]. Furthermore, most studies
have investigated the effects of electrical stimulation on nerve regeneration using only a short nerve
gap less than 10 mm wide.

So far, there is still no information available in the literature addressing the effect of electrical
stimulation on regeneration of dissected taxol-treated peripheral nerves repaired with a bridging
conduit. Therefore, we further designed this experiment to assess whether electrical stimulation at
various frequencies can assist growth of peripheral nerves in taxol-treated rats across a 10-mm gap
in silicone rubber conduits. After a recovery period, the overall effects of the electrical stimulation
on growing nerves were then confirmed by electrophysiological examinations, animal behavior
patterns including thermal hyperalgesia, and motor coordination tests, as well as morphological
observations of CGRP expression in the spine, retrograde fluorogold-labelling dorsal root ganglions
(DRGs), and macrophage infiltration in regenerated nerves. These experiments were aimed to
elucidate mechanisms underlying the observed effects of electrical stimulation on taxol-treated
neuronal regeneration.

2. Materials and Methods

2.1. Ethical Statement

The study was conducted in accordance with the use of Laboratory Animals (National Academy
Press). All protocols were approved by the Ethics Committee of the China Medical University, Taiwan
(Project identification code: CMUIACUC-2018-242).

2.2. Experimental Design and Surgical Protocols

Right sciatic nerves of anesthetized female Sprague-Dawley rats were severed into proximal and
distal segments. Both of the stumps were fixed in a silicone rubber chamber (Helix Medical, Inc.,
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Carpinteria, CA, USA) with a 10-mm gap apart [25,26]. The inner diameter of the tube is 1.47 mm;
outer diameter is 1.96 mm; and length is 12 mm. The diagrams to scale of the implanted material
was shown in Figure 1A. Taxol (6 mg/kg) dissolved in Cremophor EL solution (Sigma Chemicals, St.
Louis, MO, USA) was then injected intraperitoneally (i.p.) in the animals on days 0, 2, 4, and 6 [27].
The taxol-administered animals were divided into four groups (10 for each group): the sham controls
(no electrical stimulation); groups received electrical stimulation (3 times/week for 3 weeks) at 2, 20,
and 200 Hz, respectively, at the current intensity of 1 mA. The form of the electrical stimulation was
constant square wave.

2.3. Electrical Stimulation

One week after nerve injury, a needle electrode (stainless steel, 0.35 mm OD, 12 mm length)
connected to the cathode of a stimulator (Trio 300; Ito, Tokyo, Japan) was inserted aseptically into the
lateral aspect of the knee and the anode at the hip joint [19,28]. The diagrams to scale of the implanted
material in the animal and electrode positions is shown in Figure 1B.
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Columbus Instruments, Columbus, OH, USA). Accelerating rota-rod testing was performed with 
initial setting at 6 rpm and accelerated by 2.5 rpm every 10 s [32].  

2.6. Electrophysiological Techniques 

After the behavior test, electrophysiological examinations were performed, including nerve 
conduction velocity (NCV), amplitude, latency, and evoked muscle action potentials (MAPs) of the 
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2.4. Thermal Hyperalgesia

A hot/cold plate (Panlab, Harvard Apparatus, Holliston, MA, USA) was used to measure both
hot/cold-induced pains [29]. Animal behavior was recorded for five minutes and licking latency
measured [29–31]. The source of radiant heat (40 ◦C) was beneath a glass floor at the hind paw plantar
region. Similarly, the rats were placed onto a cold plate apparatus at 4 ◦C.

2.5. Motor Coordination Test

Motor coordination was evaluated using Rotamex Columbus instruments (Rotamex rotarod,
Columbus Instruments, Columbus, OH, USA). Accelerating rota-rod testing was performed with initial
setting at 6 rpm and accelerated by 2.5 rpm every 10 s [32].

2.6. Electrophysiological Techniques

After the behavior test, electrophysiological examinations were performed, including nerve
conduction velocity (NCV), amplitude, latency, and evoked muscle action potentials (MAPs) of the
gastrocnemius muscles using BIOPAC Systems, Inc. (Goleta, CA, USA) [10].
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2.7. Fluorogold Retrograde Labelling

Fluorogold (Fluorochrome, Denver, CO, USA) solution was injected using Hamilton micro-syringe
into the common peroneal and posterior tibial nerves. Five days later, the animals were perfused
transcardially with saline and paraformaldehyde and the L4 and L5 DRGs ipsilateral to the injury
were removed. Frozen sections of the spinal cord and DRGs were then examined using a fluorescence
microscope (Olympus ckx41, Center Valley, PA, USA).

2.8. Histological Analyses and Image Assay

The regenerated nerves were retrieved after 4 weeks of recovery from the silicone rubber conduits
and the middle regions of the nerves were cut and placed in a 10% formalin solution for 24 hours
of fixation. Then, 70-nm ultra-thin nerve sections were prepared and examined by transmission
electron microscopy (TEM) at 100 kV (Leica, Wetzlar, Germany). The L4 spinal cord was removed,
post-fixed, and treated serially with anti-CGRP antibody 1:1000 (Calbiochem, San Diego, CA, USA)
and secondary antibody (Novolink Polymer RE7112). Macrophages (CD68+) in the distal regions
of the regenerated nerves were studied in immunostaining images under an SP2/SP8X microscope
(Leica, Wetzlar, Germany). An image analyzer system (Image-Pro Lite, Media Cybernetics, Rockville,
MD, USA) was used to measure the ratio of positive CGRP-immunoreactive areas in the dorsal horn
ipsilateral to the injury and the number of neural components [20].

2.9. Statistical Analyses

The statistical analyses of the continuous variables, category variables, and groups comparison of
proportion were using Chi-square analysis of variance from SAS Enterprise Guide 7.1/JMP 14 pro (SAS
Institute, Inc., Cary, NC, USA) at significance level of P < 0.05.

3. Results

3.1. Regeneration Across Gaps

After 4-week implantation, the silicone rubber conduits with the regenerated cables inside
were studied. Only a thin fibrous tissue encapsulation was seen covering the bridging implants.
After removing these tissues, the inner regenerated cable could be seen through the transparent
tube wall (Figure 2). The overall success rate of the regenerated cable connecting the two severed
nerve stumps in the sham control (no current delivered by stimulator), low- (2 Hz), mid- (20 Hz),
and high-frequency (200 Hz) groups, was 60%, 90%, 80%, and 50%, respectively. The data demonstrated
that cable formation within the bridging conduits was most significantly increased in the taxol-treated
animals receiving low- and mid-frequency electrical stimulation.
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Figure 2. The nerve cable in the silicone rubber conduit after removal from the rat. The boxed area is
where the specimens were taken for histological analysis. Scale bar = 10 mm.

3.2. Electrophysiological Measurements

In the electrophysiological study, evident nerve conduction proved that regenerated nerves had
successfully re-innervated the gastrocnemius muscle. Quantitative data (Figure 3A–D) showed that
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taxol-impaired nerve functions, including nerve conduction velocity and latency, were not influenced by
electrical stimulation. However, amplitude of the regenerated nerves was significantly increased in the
low-frequency (2 Hz) electrical stimulation group compared with the sham control, 20 Hz, and 200 Hz
group; MAP area of the regenerated nerves was also significantly increased in the low-frequency (2 Hz)
electrical stimulation group compared with the 200 Hz group.
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3.3. Thermal Hyperalgesia and Motor Coordination Tests

For the thermal hyperalgesia and motor coordination tests, there were no significant differences
among the groups on the radiant heat, cold plate, and motor coordination (time on the rod) (Figure 3E–G).

Inspection through an optical microscope, morphological changes of gastrocnemius muscle are
shown in Figure 4. Compared with normal muscle fibers, those from taxol-treated rats with or
without electrical stimulation all showed a very severe atrophy with smaller muscle fibers and evident
fatty infiltration.
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3.4. Fluorogold Retrograde Labelling

Fluorogold-labelled cells in cryostat sections implied that regenerated axons had grown across
the nerve gap and the fluorescent micrographs showed the fluorogold retrograde tracing in the DRGs,
indicating successful neuronal connectivity. There were no statistically significant differences in the
density of fluorogold-labelling in the DRG among the four groups (Figure 5).
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3.5. Ultrastructural Analysis and Maturation of Regenerated Nerves

TEM showed that endoneurial macrophages were very close to Schwann cells wrapping the
myelinated axon (Figure 6A). Figure 6B shows a representative longitudinal view of regenerated nerves
with a bundle of newly-developed nerve fibers.
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Using the light microscopy, the nerves in the control group exhibited an immature structure with
numerous Schwann cells accompanied with dispersed myelinated axons and blood vessels. In all
electrical stimulation groups, the successfully regenerated nerves exhibited a relatively mature structure
with more myelinated axons. Morphometric data revealed that the axon number was significantly
increased in the mid-frequency (20 Hz) electrical stimulation group compared with the control group.
However, no statistically significant differences were found in total area and axon density in the
successfully regenerated nerve cables among groups (Figure 7).
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Figure 7. Effects of electrical stimulation on axon regeneration in taxol-treated rats. (A) Representative
micrographs of nerve tissues including myelinated axon (M), blood vessel (B), and Schwann cell (S).
(B) Morphometric comparisons of regenerated nerves. * Significant differences between conditions,
P < 0.05. Scale bar = 20 µm.

3.6. Recruited Macrophages in the Distal Nerve Ends

Figure 8 depicts the expression of macrophage CD68 in regenerated nerves. Quantitative
immunostaining data for CD68 reflected that mid-frequency (20 Hz) electrical stimulation could
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significantly increase macrophage infiltration into the injured sites compared with the sham control,
2 Hz, and 200 Hz groups.
Materials 2020, 13, 1063 8 of 13 

 

 

Figure 8. Effects of electrical stimulation on macrophage infiltration in taxol-treated rats. 
Representative images of the macrophages (arrows) and quantitation of macrophage infiltration. 
*Significant differences between conditions, P < 0.05. Scale bar = 2 μm. 

3.7. CGRP Immunoreactivity in the Dorsal Horn 

Immunohistochemical staining demonstrated the presence of CGRP-labelled fibers in the area 
of lamina of the dorsal horn in all of the rats. Quantitative data revealed that CGRP expression was 
significantly increased in the mid-frequency (20 Hz) stimulation group compared with the sham 
control, 2 Hz, and 200 Hz groups (Figure 9). 

Figure 8. Effects of electrical stimulation on macrophage infiltration in taxol-treated rats. Representative
images of the macrophages (arrows) and quantitation of macrophage infiltration. * Significant differences
between conditions, P < 0.05. Scale bar = 2 µm.

3.7. CGRP Immunoreactivity in the Dorsal Horn

Immunohistochemical staining demonstrated the presence of CGRP-labelled fibers in the area
of lamina of the dorsal horn in all of the rats. Quantitative data revealed that CGRP expression was
significantly increased in the mid-frequency (20 Hz) stimulation group compared with the sham
control, 2 Hz, and 200 Hz groups (Figure 9).
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4. Discussion

Taxol is an antineoplastic agent that promotes microtubule assembly which could lead to peripheral
neuropathy. A variety of neuroprotective drugs have been developed to reduce the occurrence of
neurotoxicity due to taxol [33]. Our previous study demonstrated that taxol could cause worsening of
local inflammation and hinder peripheral nerve regeneration [10]. In our other study, we found that
regenerated nerves in normal rats receiving electrical treatment, especially at 2 Hz, had a more mature
structure with increased myelinated fibers and blood vessels compared with the controls receiving
no electrical stimulation [28]. In the present study, we further assessed the influence of electrical
stimulation at different frequencies on regenerating sciatic nerves across a large defect repaired using a
silicone rubber conduit in a taxol-treated rat model.

Previous studies have studied the effects of electrical stimulation on peripheral nerve regeneration
in animals. It has been reported that electrical stimulation could accelerate recovery from facial paralysis
after a crush injury in rats [34]. It has also been shown that high-voltage (intensity) electrical stimulation
can improve functional recovery with more matured regenerated axons by suppressing macrophage
levels after sciatic nerve crush in animals [35,36]. In these nerve crush studies, the basal lamina
in the nerve trunks could still be intact. It is absolutely impossible to exist in a nerve transection
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model [37]. Some other studies have demonstrated that electrical stimulation may accelerate peripheral
nerve regeneration through expression of nerve injury/regeneration-associated genes [38,39]. Variables
include the types of electrical stimulation (constant/pulse of direct/alternating current), stimulation
parameters (frequency and intensity), and the sites of placement of electrodes have also been studied [23].
In the research of nerve conduits, numerous materials have been developed to repair peripheral
nerve injury, such as silicone rubber [23,40], gelatin [41], polyglycolic acid [42], polyurethane [41],
poly(l-lactide-co-caprolactone) [43], and so on. These nerve conduits are usually designed as a tubular
structure, which could provide mechanical orientation and confinement to aid growing nerve fibers.
In this study, nondegradable silicone rubber was used to make the bridging conduit for its stable
properties, which could provide a continuous support for the regenerating nerves. Thus, some
unexpected factors, such as the situation that affects nerve growth after material disintegration, can be
ruled out. However, much clinical evidence reports issues including pain, nerve compression, tension
at the suture site, and the need of a second surgery for removal after regeneration has occurred [44–46].

In the present study, histomorphometric results demonstrated that electrical stimulation at a low-
(2 Hz) to mid-frequency (20 Hz) may increase the regenerated nerve maturation that successfully
crosses the gap in the taxol-treated rats. In addition, regenerating nerves stimulated at 2 Hz exhibited
a significantly higher amplitude and MAP area. The mechanism in which frequency ameliorates
neuronal regeneration is still unclear. However, it has been found that the electrical stimulation
could cause muscle contractions to accelerate blood flow in regenerated nerves [47], which may be
caused by the reflex arc [48]. As we know, providing enough blood is critical for the success of nerve
regeneration. Therefore, it is conceivable that applying external electrical stimulation in taxol-treated
rats could increase their peripheral perfusion to provide more nutrients for regenerating nerves, thus
acquiring a higher chance of successful nerve regeneration. In addition, we found that electrical
stimulation at mid-frequency (20 Hz) enhanced CGRP expression in the dorsal horn. Since CGRP is a
nerve regeneration-promoting peptide [48], the increased CGRP expression was also beneficial to the
regenerating nerves. Third, we found that electrical stimulation at mid-frequency could promote the
macrophage infiltration into the endoneurium following nerve injury in taxol-treated rats. It has been
reported in the literature that the macrophages not only can remove myelin debris from the degenerative
process, but also secrete nerve-growth factors [49,50]. This could be another reason that electrical
stimulation treatment could lead to the nerve regenerative response enhancement. By comparison, it
was found that high-frequency electrical stimulation at 200 Hz used in the present study could not
enhance formation of a nerve fiber cable across the nerve gap. One possible explanation is that the
taxol-treated rats in the high-frequency electrical stimulation group had relatively fewer macrophages
in the distal sciatic nerve, delaying Wallerian degeneration with less secretion of nerve-growth factors.
Similar results have been reported; that high-frequency electrical stimulation could induce early
axonal degeneration and neural injury, slowing the rate of axon growth and remyelination [24,28].
However, electrical stimulation also appears to exert nerve growth-promoting effects as shown in the
abovementioned results. Thus, it is conceivable that electrical stimulation may possibly have a dual
effect on regenerating nerves, depending on its stimulation parameters.

There were limitations to this study that should be addressed. It is known that significant
species variability exists in nerve regeneration processes and, as such, caution must be exercised when
attempting to extrapolate the results of animal studies. Moreover, single methods of peripheral nerve
regeneration measurement yield only limited data; therefore, a better understanding of peripheral
nerve regeneration is possible by combining more evaluation methods, such as immunohistochemical
observations, electrophysiological analyses, and morphometric comparisons.

5. Conclusions

To the best of our knowledge, this is the first study to investigate the effects of electrical stimulation
at different frequencies on regeneration of taxol-treated rat peripheral nerve in silicone rubber conduits.
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Results of this study may provide a basis for considering electrical stimulation at low- to mid-frequencies
as a complementary treatment in patients who experience taxol-related neuropathy.
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