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Abstract: The androgen receptor (AR) is a member of the ligand-activated nuclear receptor family of
transcription factors. AR’s transactivation activity is turned on by the binding of androgens, the male
sex steroid hormones. AR is critical for the development and maintenance of the male phenotype
but has been recognized to also play an important role in human diseases. Most notably, AR is a
major driver of prostate cancer (CaP) progression, which remains the second leading cause of cancer
deaths in American men. Androgen deprivation therapies (ADTs) that interfere with interactions
between AR and its activating androgen ligands have been the mainstay for treatment of metastatic
CaP. Although ADTs are effective and induce remissions, eventually they fail, while the growth of
the majority of ADT-resistant CaPs remains under AR’s control. Alternative approaches to inhibit AR
activity and bypass resistance to ADT are being sought, such as preventing the interaction between
AR and its cofactors and coregulators that is needed to execute AR-dependent transcription. For such
strategies to be efficient, the 3D conformation of AR complexes needs to be well-understood and
AR-regulator interaction sites resolved. Here, we review current insights into these 3D structures and
the protein interaction sites in AR transcriptional complexes. We focus on methods and technological
approaches used to identify AR interactors and discuss challenges and limitations that need to be
overcome for efficient therapeutic AR complex disruption.

Keywords: androgen deprivation therapy; hormonal therapy; transcription; coactivators; corepressors;
proteomics

1. AR Structure and Function

AR is a ligand-activated transcription factor that belongs to the nuclear receptor (NR)
family [1,2]. Its modular structure resembles that of other NRs and consists of an N-terminal
domain (NTD) which contains a ligand-independent transcriptional function (AF) AF-1, a
central DNA binding domain (DBD) and a C-terminal ligand-binding domain (LBD) which
harbors the ligand-activated AF-2. DBD and LBD are connected through a short hinge
domain (Figure 1).

The manner in which AR is activated has been reviewed extensively in the past. To
summarize, androgen binding to the AR LBD induces a conformational change, cytoplasmic
to nuclear re-localization, and, following dimerization via intra- and intermolecular NTD-
LBD interactions, binding of AR through its DBDs to Androgen Response Elements (AREs),
the canonical AR binding site in target genes. ARE-bound AR then recruits transcriptional
regulators to modulate the expression of target genes [3–6] (Figure 2).
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Figure 1. AR domain and motif organization. AR consist of an N-terminal domain (NTD) which
contains a ligand-independent transcriptional function (AF) AF-1, a central DNA binding domain
(DBD) and a C-terminal ligand-binding domain (LBD) which harbors the ligand-activated AF-2.
DBD and LBD are connected by a hinge (H) region. FxxLF, WxxLF and LxxLF motifs represent
short amino acid sequences relevant for AR domain interactions, AR transcriptional activity and
AR-coregulator interaction, as discussed in the text. Numbers represent amino acids in AR protein,
for which numbering is based on NM_000044.2. * and ** indicates a short 14 amino acid stretch and
a proline rich region that has been used as bait in 2 hybrid screening or phage display assays in
references He et al., 2004 and Blessing et al., 2015 respectively.

Figure 2. Basic mechanism of AR transcriptional activation. Testosterone or precursor androgens
enter CaP cells and are converted into the most bioactive androgen dihydrotestosterone (DHT). DHT
binding activates AR, which results in cytoplasmic to nuclear AR re-localization and AR dimerization.
AR binds as a dimer to Androgen Response Elements (AREs) in AR target genes, where it associates
with 3 classes of transcriptional regulators to mediate AR target gene transcription. These regulators
consist of pioneer transcription factors (PFs), coregulators, and secondary transcription factors (TFs).
TFBS, transcription factor binding site.

Until recently, the structure of full-length DNA-bound AR has remained elusive. In-
formation on AR’s putative overall 3D conformation, and the contribution of AR’s domain
interactions, homodimerization, and DNA-binding to the overall conformation of AR tran-
scriptional complexes was derived from in vitro X-ray crystallography or computational
modeling of individual LBD or DBD domains, either associated with small DNA fragments
or small peptides from AR-associated proteins in the presence of a few ligands (e.g., [5,7]).
The structure of the NTD, a highly disordered region which contributes considerably to AR
action in ADT-resistant CaP [8–10], was completely unknown. In combination, these studies
supported a working model, consistent with that for other NRs, in which ligand-induced
AR dimerization is associated with repositioning of helix 12 in the LBD, which closes
off the ligand binding pocket and forms a coactivator-binding surface [5]. Independent
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studies confirmed that NTD and DBD can also recruit transcriptional regulators [4]. A
recent cryoEM study has revealed the first structure of full-length recombinant AR bound
to in vitro ARE-containing DNA fragments [11]. In the latter study, the agonist-bound
full-length ARE-DNA/AR structure showed the 2 LBDs and DBDs in the center of the
dimer, with the 2 NTDs wrapping around the LBDs in close contact with each other. All
AR domains contributed to the dimerization interface, and the NTDs also surrounded the
LBDs to make both intra- and inter-molecular N/C interactions (Figure 3). The authors
concluded that N/C AR interactions facilitate a tail-to-tail and head-to-head AR dimer
formation. Two representative coregulators, SRC-3 and p300, interacted most strongly with
the NTD at a ratio of 1 coregulator per AR dimer [11].

Figure 3. Contribution of AR domain interactions to AR dimerization, AR DNA binding and
coregulator recruitment. (A) Current working model supports that AR dimerization occurs via
intermolecular NTD-NTD, DBD-DBD and LBD-LBD interactions. Inter-and intramolecular NTD-
LBD interactions further contribute to active AR conformation and dimerization. (B) Schematic
representation of 3D AR domain interactions and interactions between AR domains and the AR-
associated coregulators p300 and SRC-3. Black arrows, strongest interactions; dashed grey arrows,
weak interactions. Data adapted from information provided in reference [11].

2. AR Action Drives CaP Progression

AR is widely expressed [12]. Because of its dependence on androgens, the main
male sex steroids, it has been studied extensively in the context of the development and
maintenance of the male phenotype [7,13]. None-the-less, AR activity demonstrates tissue-
specificity and has been linked also to several conditions and diseases, such as alopecia [14]
and spinal-bulbar muscular atrophy [15]. Most notably, AR has been recognized as a critical
determinant of CaP progression. For 8 decades, AR has served as the major therapeu-
tic target for the systemic treatment of metastatic CaP [16–18], which causes more than
30,000 cancer deaths in American men each year [19]. AR-targeting therapies, commonly
referred to as androgen deprivation therapies (ADTs), were spurred by the landmark study
by Huggins and Hodges, in which alleviation of CaP symptoms was reported after low-
ering circulating androgen levels derived from testes by surgical castration or high dose
estrogens [20,21]. At that time, it was recognized that such therapy induced remissions but
did not cure CaP. The recurrence of CaP during ADT is now known to result, at least in part,
from diverse mechanisms of aberrant AR reactivation which cause CaP growth to remain
driven by AR [9,18,22,23]. To overcome AR-mediated treatment resistance, subsequent
and ongoing refinements to ADT have targeted the extra-testicular sources of androgen
(precursor) production and maturation such as the adrenals and CaP cells [18]. As an
alternative and sometimes complementary approach for androgen synthesis inhibition,
so-called anti-androgens that prevent AR-androgen interaction are administered, with the
potency of next generation AR inhibitors also increasing [18,22,24]. Resistance occurs to
these novel generation AR inhibiting therapies. In a minority of cases, ADT-resistance
can lead to development of neuroendocrine CaP (NEPC) that has become AR-indifferent,
AR-negative or AR-independent [25,26]. The majority of recurrent cases, however, continue
to depend on AR activity that is restored via numerous and ever expanding molecular
mechanisms, which broadly encompass diverse ways of AR overexpression or amplifica-
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tion [23,27], mutations that render AR less sensitive to ADT [28], AR gene rearrangements
or splicing events that result in loss of functional LBD [9,27] (and thus, a constitutively
active AR), or expression of the related NR glucocorticoid receptor that in a subset of cases
can take over part of AR’s function in CaP [29,30].

3. Novel Strategies to Target AR for CaP Treatment

In view of AR’s central role in bypassing CaP’s response to the selective pressure of
ADT, therapeutic strategies to inhibit AR’s activity other than impeding its ligand activation
are being sought. Some of these approaches, which have not (yet) transitioned into the
clinic, are directly targeting AR, such as AR degraders (ACS-J9 [31], AR PROTAC [32]) or
are aimed at inactivating its ligand-independent transactivation function at the NTD (EPI
compounds [33,34]). Alternative AR-inhibition approaches have been proposed that do not
directly target AR (domains) or its stability, but instead prevent its association with proteins
on which AR relies to execute its transcriptional program, which is how AR ultimately
impacts CaP cell behavior [6,35,36].

Transactivation by ARE-bound AR is the result of the functional interplay between
AR and proteins that belong to 3 major classes of transcriptional regulators [6]. The first
class consists of pioneering transcription factors that directly bind condensed chromatin
that is inaccessible to AR and then facilitate chromatin access so AR can form a complex
to execute transcription of its target genes. The second group of proteins encompasses
coregulators, which are generally non-DNA binding and harbor diverse functions (e.g.,
execute histone modifications, AR stabilization . . . ) that assist AR in its transcriptional
control over its target genes. Coregulators can either upregulate (act as a coactivator)
or repress (act as a corepressor) transcription of AR target genes. The third class of AR
transcriptional regulators, secondary transcription factors, further cooperate with AR to
fine-tune ARE-driven transcription and either bind their own DNA recognition motif close
to AREs or tether to DNA-bound AR (reviewed in [6], Figure 3).

Hundreds of AR-associated proteins belonging to these 3 classes have been isolated to
date [4,37,38]. The interest in preventing their physical interaction with AR transcriptional
complexes for therapeutic development was fueled also by observations that several of
these proteins were differentially expressed between benign prostate and treatment-naïve
primary CaP and between primary CaP and treatment-resistant CaP [6,39]. At least for a
subset of these proteins, deregulated expression can be linked with poor outcome, treatment
resistance and CaP recurrence. The appeal of targeting the action of these AR interactors
has increased because some have been suggested to contribute to context-dependent
transcription of AR target genes [40,41], and may thus differentially impact CaP progression.
Moreover, a subset (e.g., p300, BRD4) possesses enzymatic properties that are relevant to
AR function and are druggable [42,43]. However, these AR interactors are generally not
AR-specific but also modulate the activity of other transcription factors. Preventing their
action may thus lead to off-target effects. Specific disruption of their interactions with AR
using peptides, peptidomimetics or small molecules that target these sites or compete for
interaction with the same AR-regulator binding sites is an appealing alternative [35,44].
The overall success of such strategies has been limited to date, at least in part by a lack
of insights in the specific domains, sites and 3D conformations of interfaces by which
interaction between AR and its transcriptional regulators occurs at the molecular level. A
better understanding may lead to more effective and specific drugs.

Here, we review such knowledge, especially as it relates to technological approaches
and methods used to identify AR interactors in CaP cells, and their AR interacting sites
or domains. We discuss potential ways to alleviate challenges to such approaches and
improve upon this knowledge, which is critical to achieve the proposed therapeutic strategy
for alternative AR inhibition.
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4. Screening for Novel AR Interactors
4.1. 2 Hybrid Assays

Since their conception in 1989 [45], 2 hybrid assays have been performed extensively
to define novel protein–protein interactions. A significant portion of the AR protein
interactome has been isolated using this technique. The basis for 2 hybrid systems is
that protein–protein interactions between a “bait” protein (here: AR) and its prey(s) (here:
AR interactors) result in reconstitution of the DNA binding and activating portion of a
transcription factor (TF) (e.g., Gal4), which yields an active TF that controls expression of a
gene encoding a critical nutrient or reporter gene that is easy to detect. Restoration of TF
function is achieved by ectopic expression of a gene fusion that combines the DNA binding
domain of the TF with the bait and a gene fusion that joins the TF’s activating domain
with a prey protein. The prey is quite often expressed from a cDNA library, allowing for
screening for novel bait interacting proteins. If bait and prey interact, cells either generate
essential nutrients and survive, or induce a specific reporter signal or phenotype. These
gene fusions are most commonly overexpressed in yeast, although bacterial, plant, insect,
and mammalian cells can also be manipulated to facilitate 2 hybrid assays. The majority of
2 hybrid studies to isolate AR interactors have been done on yeast cells and have involved
library screening approaches. The source for the latter cDNA libraries has been diverse
and has consisted of normal human prostate cells and prostate cancer cells, but also, for
instance, genital tubercle tissues of male mice, human fetal brain, human testis and human
male monocytes [46–56].

The advantages of the 2 hybrid assays are many, including its cost effectiveness, scala-
bility, potential for automation and its relatively low technological requirements which can
be easily implemented in most laboratories. Yet, because the assay relies on overexpression
of protein (fragments) in the cell nucleus that may either not be expressed endogenously or
not expressed at the same level or in the same cell compartment in human prostate cancer
cells, it is prone to false-positive results. The absence of post-translational modifications in
yeast that do occur in mammalian cells adds to this problem, as does the observation that
traditional yeast 2 hybrid assays do not perform optimally when the bait protein possesses
intrinsic transactivation activity, such as the AR NTD. Some of these issues can be overcome,
for instance, by co-expression of a kinase in yeast cells to ensure the presence of relevant
phosphorylation marks [57] or the use of a split-ubiquitin system which facilitates isolation
of interactors for integral membrane proteins [58]. Similarly, modifications to the traditional
2 hybrid assays have been developed, such a repressed trans-activator system, which has
allowed identification of several novel AR NTD interaction proteins (e.g., DDC, TAF1 and
GAK) [54,56,59]. Internal controls, e.g., site-directed mutagenesis in the putative interaction
sites, can be incorporated in the 2-hybrid assay. Moreover, independent technical validation
of 2 hybrid assay results have routinely included GST pull-down or co-IP studies, while
functional validation of the putative AR interactor on AR transcriptional function typically
involves AR-driven promoter-reporter assays, qRT-PCR on endogenously expressed AR
target genes or gene-wide transcriptomics analyses for AR/androgen-dependent events.

Structural and/or conformational information on the AR transcriptional complex that
can be derived from 2 hybrid assays, however, appears very limited. The focus on different
AR domains, regions, and even short AR amino acid sequences that are conserved in AR
among species (overview in Table 1) in an in vitro setting does limit considering the full
implications on AR complex formation. Nonetheless, despite these limitations, several
AR-associated coregulators and transcription factors, including, for instance, ARA-70 [60]
that are now well-recognized as critical determinants of AR function have been derived
from 2 hybrid assays. Table 1 provides an overview of representative AR domains and
motifs used as bait, source of libraries for prey, and validation approaches for representative
examples of AR interactors isolated via 2 hybrid assays.
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Table 1. Representative sample of AR interactors identified via 2 hybrid screening. For each AR
interactor, the table shows the AR fragment or domain used as bait, the AR domain the prey
preferentially interacts with, the cDNA library used in the assay, the assays used to validate interaction
with AR and impact on AR function and the relevant literature report. Please note that numbering of
amino acids (aa) reflects the numbers that were included in the original research reports.

AR Interactor Bait AR Interacting
Domain Library Validation Assays Reference

ARA267-α aa 595-918 DBD + LBD human brain in vitro coIP, transient
tranfection [48]

CHIP aa 220-270 NTD human testis

in vitro coIP, mammalian
2 hybrid,

immunocytochemistry,
transient transfection

[47]

DDC aa 1-559, aa
233-559, aa 1-646 NTD, LBD LNCaP cells in vitro and in vivo coIP,

transient transfection [54]

FOXG1 aa 325-919 DBD + hinge +
LBD human fetal brain

1 and 2 hybrid, in vitro
and in vivo coIP, transient

transfection
[51]

HBO1 aa 505-919 DBD + LBD human prostate in vitro and in vitro coIP,
transient transfection [49]

p68 DBD + LBD human prostate

in vivo coIP,
immunofluorescence,

ChIP, transient
transfection

[52]

PRMT10 aa 1-98 NTD universal human

in vitro and in vivo coIP,
mammalian 2 hybrid,

AR-dependent cell
proliferation

[53]

RanBPM aa 1-232 NTD, DBD human prostate in vitro and in vivo coIP,
transient transfection [46]

RWDD1 aa 555-920 LBD genital tubercle of
male mice

in vitro and in vivo coIP,
transient transfection [50]

Sertad1 LBD LBD male peripheral
blood monocytes

in vitro and in vivo CoIP,
immunocytochemistry [55]

TAF1 aa 1-559, aa
233-559, aa 1-646 NTD LNCaP cells

in vitro and in vivo coIP,
ChIP, transient

transfection
[56]

4.2. Phage Display Assays

The phage display assay represents another method that is commonly used to screen
for novel protein-protein interactions [61,62], and has also led to the isolation of AR interac-
tors. The principle of this assay is that an immobilized bait protein (here: AR (domain)) is
exposed to bacteriophages that have been engineered to express prey proteins as inserts
in their phage coat proteins. The phage displays the prey protein on its outside, which
allows the interaction with the bait. Phages expressing prey proteins that bind the bait at
high affinity are retrieved and used to infect bacteria to produce more phage. Multiple
rounds of selection and amplification are performed to enrich for higher affinity binding
phages compared to the previous round, until the DNA sequence for the prey from the
highest affinity binding phage is isolated, sequenced and the interacting protein is identi-
fied. Several phage systems are available, such as T7 and filamentous phages, which have
both been applied successfully to identify novel AR interactors. These phage systems differ
in the size of the proteins they can accommodate (with filamentous phages facilitating the
expression of larger proteins) and the type of protein they can express on their surface
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(with T7 phages facilitating expression of proteins that cannot be translocated across the
bacterial inner membrane before they are assembled into the filamentous phage) [63,64].

As bait protein, full length AR has been used, as well as AR domains (e.g., LBD) and
short AR motifs (e.g., proline-rich region in the AR NTD (see Figure 1)). Prey fusions can be
expressed from a cDNA library from prostate (cancer) or other cells or can be derived from
a library of peptides. While both approaches have yielded novel AR interactors (e.g., FHL2
from a cDNA library strategy [65]), the peptide library-based screens especially gained a lot
of traction. Interest in the latter was fueled by a previous body of work linking short peptide
sequences in coregulators or in AR with NR interaction or AR activation, respectively
(marked in Figure 1). Indeed, an LxxLL motif present in several coregulators preferentially
mediates their interaction with the LBD and AF2 groove in other NRs [66–68], suggesting
that such motifs could be exploited to isolate pivotal AR interactors. In addition, the
well-recognized NTD-LBD terminal interaction that is important for AR’s transcriptional
activity is mediated at least in part by a FxxLF motif in the AR NTD [69]. Yet another
AR NTD motif, WxxLF, has also been shown as critical to execute AR’s transcriptional
activity (Figure 1) [69,70]. In view of the importance of these peptide sequences for AR
function, several studies have screened libraries of hundreds of millions of short peptides
that included extensive variations of the LxxLL, FxxLF and WxxLF sequences [71–75]. In
addition to deriving novel AR-interacting motifs, these efforts revealed that the majority
of peptides that bind AR with high affinity are more aromatic than the LxxLL motif
that strongly binds other NRs—the motif that consistently bound AR more effectively
across multiple studies was FxxLF [71,73,74]. Even though the prey peptides used in
these screens could be short, around 12 amino acids, via in silico analyses the presence
of high affinity binding peptides was verified in endogenously expressed full length
proteins. For instance, BUD31 and SH3YL1 were identified as novel coregulators using such
approaches [74–76]. Assay controls routinely include the modification of peptides present
in the screen, which allows for enrichment of highest affinity binders, or site-directed
mutagenesis, e.g., mutation/deletion of proline residues in the above-mentioned AR bait
region. Technical validation is achieved in a variety of manners including mammalian
2 hybrid assays, FRET, GST pulldown, and Co-IP studies. The impact of the interaction
on AR function is validated by overexpression, silencing or site-directed mutagenesis of
the identified proteins or peptides on AR target gene expression and AR-driven promoter-
reporter genes.

Phage display assays do suffer for some of the limitations mentioned above for 2 hybrid
assays; they also rely on (over)expression of protein domains or peptides that may not
fully represent endogenous post-translational modifications and localization. Limitation in
terms of size of library or type of protein that can be expressed is mentioned already above.
On the other hand, phage displays tend to be easy to perform, relatively cheap, adaptable
and amenable to high throughput approaches. They are able to select peptides and proteins
with high affinity and specificity that may be developed further and moved forward as
preclinical AR-inhibitory therapeutics. As proof-of-principle, an FxxLF-containing AR-
interacting peptide functioned as peptide antagonist of AR-dependent transcription [73].
Phage display allows for more detailed characterization of newly isolated AR interactions
than 2 hybrid assays as the peptide binding affinity for observed interactions can be
calculated easily. For instance, surface plasmon resonance (SPR) or FRET assays can inform
on the equilibrium constants between AR and the peptides it interacts with.

From a conformational and structural perspective, important novel information en-
sued from phage display assay findings. Apart from fine-tuning the protein/peptide
sequences that most stringently interact with AR, deeper insights in AR structure-function
relationships and its allosteric regulation have been obtained. First, AR-binding peptides
that reflect variations on the LxxLL, FxxLF, and WxxLF motif theme have been combined
with the AR LBD in X-ray crystallography studies [71]. These efforts revealed binding of
all peptide subtypes to the same overall binding surface, the AF-2 groove, with changes
in the surface occurring based on specific peptide-AR interactions [71]. Such an induced
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fit model is consistent with allosteric regulation of AR function [77]. Additional studies
took into consideration the effect of AR agonists, antagonists and SARMs on AR-interactor
binding identified in phage display assays. Phage display in which preys were expressed
from a cDNA library and full-length AR used as bait recognized 8 subclasses of AR binding
patterns based on differential presentation of protein interaction surfaces on the AR that
were each impacted variably by different AR ligands [78]. Such studies illustrate the poten-
tial of phage display to help define the pharmacological properties of bound ligands, and
to isolate novel AR inhibitors [36,73]. They again support context-dependent activation
and conformation of AR that is dictated by specific protein and ligand interactions [77].
Finally, from a therapeutic perspective, overexpression of peptides that bind AR and are
derived from phage display studies, e.g., the AR-interacting motif in BUD31, inhibited
transcriptional activity of AR and CaP cell viability and proliferation [74]. The latter find-
ings indicate that results from phage display studies can provide a first glimpse into the
therapeutic potential of AR-regulator interactions and serve as proof of principle that
disrupting AR transcriptional complex may be a viable therapeutic strategy in late-stage
CaP. An important caveat remains that these preclinical findings have not yet been carried
forward in clinically relevant models or clinical trials. The extent to which point mutations
in AR that occur under ADT impact these interactions and their therapeutic potential is
also not yet clear, as some studies reported alterations in binding affinity between wild
type AR, present in treatment-naïve CaP, and mutated versions of AR (e.g., AR T877A) that
are found at increasing frequency in CRPC [75].

Other approaches that have the potential to screen for novel AR interactors have, to
our knowledge, not yet been used (extensively) for this purpose and are mentioned here
for completeness. For instance, protein arrays have a similar set up as DNA (oligo) arrays
but involve spotting proteins instead of DNA on a slide to screen for interactors from cell
or tissue lysates. The commercial Marconi peptide array uses NR-coregulator derived
peptides to screen for NR interactors and showed interaction between an LxxLL motif in
the coregulator TRIM24 and the AR LBD [79]. It should be noted also that AR interactors
have been derived also from reversed order 2 hybrid and phage display experiments in
which AR was isolated a prey for baits with a coregulator role, e.g., KLF8 [80].

5. Characterizing the Composition of AR Transcriptional Complexes

The assays discussed above represent screens for novel AR interactors that were
performed in non-CaP model systems. Alternative strategies to identify AR-associated
cofactors and coregulators have focused on better defining the composition of the endoge-
nous AR transcriptional complexes in CaP cells. A number of approaches that vary in bait
protein purification steps, stabilization and/or labelling of protein-protein interactions and
are coupled to mass spectrometry (MS)-based identification of AR interactors have been
applied to this end.

5.1. Affinity Purification Mass Spectrometry

In this first approach, various antibody- or tag-based methods are used to affinity-
purify (AP) the bait protein (here: AR) and its interactors from CaP cells or tissues. The
purified bait and its associated complex are then washed extensively to eliminate non-
specific interactions and subjected to a MS approach for characterization The whole protein
eluate can be subjected to MS, which allows for a more unbiased characterization of AR
associated proteins. Alternatively, a more selective approach, which narrows down the
search for interactors based on size and concentrates samples, involves running the pulled-
down proteins on an SDS-PAGE gel, excising the gel fragment of interest and enzymatic
digestion of this fragment prior to MS data acquisition. Further refinements to AP-MS
are possible. For instance, IPs can be done from a specific cell compartment, such as the
nucleus to enrich for proteins with a transcriptionally relevant function. Enrichment for
activators or repressors of AR action can be achieved by first treating cells with AR agonists
or antagonists.
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To better understand AR complex composition, several studies used GST-tagged AR
that was immobilized on beads or columns as bait and isolated interactors from CaP cell
lysates were identified via MS analysis. A study that screened for interactors of GST-
labelled AR N- and C-terminal domains purified Ku70 and Ku80 as AR coactivators [81].
In others, AP-MS assays used AR-targeting antibodies to pull down AR at its endogenous
expression levels and its regular cellular location. Such studies have been instrumental
in clarifying the composition of endogenous AR complexes and have revealed novel AR
interactors and/or confirmed interactors derived from above mentioned screening efforts
(e.g., USP7, ref. [82]). An advantage of such strategies is that they could be applied on cell
line models as well as on CaP tissues, either from animal models or patient specimens.
Provided that enough starting material of sufficient quality is available, AP-MS could detect
also post-translational modifications on AR (interactors), which are known to be relevant
e.g., for protein-protein interactions or activity status of AR. As an example, a modification
such as phosphorylation can be deduced from MS data analysis from assays starting
from bait-targeting antibodies or following IPs with phospho-Ser/Thr/Tyr-motif-specific
antibodies. The latter approach may be amenable to analyze clinical specimens, as similar
motif specific-antibodies and phospho-proteomics have been applied to deduce kinome
pathway activity in treatment-resistant CaP [83,84]. The overall procedure can be adjusted
also to include a phospho-enrichment step, using for instance TiO beads following AP and
prior to MS, which allows to enrich further for phosphorylated proteins/peptides. The MS
assay analysis following AP has been done in various ways that can be based on size, charge,
or predictions or a combination thereof. Validation of results from AP-MS approaches,
which are prone to yield false-positives, generally include co-immunoprecipitation (coIP),
immunofluorescence or proximity ligation assays to verify protein-protein interactions and
colocalization. ChIP and gene expression studies are done to verify recruitment to AREs
and AR target gene levels.

An important limitation to these assays, however, is that they rely on the availability of
a specific antibody that is suitable for efficient immunoprecipitation (IP). This problem can
be overcome by using tagged versions of the bait protein, in which for instance a FLAG, His,
GFP, Myc or HA tag is fused in frame that can be readily IP’ed with a commercial antibody.
The tagged bait is then overexpressed in cells prior to IP with a tag-targeting antibody, more
effectively IP’ed and its interactome defined. Since this method does lead to artificially
high cellular levels of proteins, it may skew the ratios with interactors, protein interfaces
and access to epitopes. This may be overcome by careful titrating overexpressed proteins
or combining their ectopic expression with depletion of the endogenously expressed bait
protein. The addition of a tag and the site to which it is added (N- or C-terminal) may
influence the normal bait expression levels of folding patterns and thereby its function and
interactome. None-the-less, using tagged versions of AR in AP-MS has expanded the AR
interactome, for instance ChREBP [85] has been isolated and validated as AR coregulator
in this manner.

5.2. Rapid Immunoprecipitation Mass Spectrometry of Endogenous Proteins

A general drawback to the approaches above is that they may not efficiently detect
protein-protein interactions that are labile or transient. A recent adaptation to overcome
such limitations has involved the inclusion of a crosslinking agent that preserves these
interactions. In Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins
(RIME), formaldehyde is used to crosslink endogenous protein-protein interactions [86,87].
Formaldehyde is already used in ChIP(-Seq) assays to crosslink DNA-protein interactions;
these techniques are complementary, and their combination has proven useful to identify
and characterize coregulators and cofactors of DNA-bound transcription factors. This assay
can be done on smaller amounts of starting material, which makes it amenable also to
tissue samples. Antibodies targeting the bait are immobilized on beads, to which sonicated
nuclear lysates from crosslinked cells are added. Beads are washed extensively, eluated
and the eluate subjected to enzymatic digestion prior to MS analyses. Several groups have
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applied RIME to CaP cells to gain better insights into AR function. For instance, comparing
protein interactomes between isogenic CaP cells that express either full length AR or the
AR variant Arv567es using RIME confirmed many known AR coregulators such as FoxA1,
p300 and identified GRHL2 as a novel AR-associated coregulator [88]. Another study
performed RIME on the chromatin remodeler CHD1 and found significant overlap between
the interactomes for CHD1 and AR [89].

5.3. Biotin-Based Proximity Ligation Assay

Another way to overcome the problems with isolating transient or labile protein-
protein interactions and to focus on proteins in the immediate vicinity of the bait is
evidenced by biotin-based proximity labeling assays. In such assays, a promiscuous
biotin-labeling enzyme is targeted by genetic fusion to the bait protein and to a subcellular
compartment. The enzymes used in these assays are constantly being refined. Currently,
TurboID has substantially higher activity than the previously described BioID [90]. A recent
version, Split-TurboID, consists of two inactive fragments of TurboID that can be recon-
stituted through protein-protein interactions or organelle-organelle interactions, which
fosters even greater targeting specificity [91]. The addition of a small molecule substrate
such as biotin initiates covalent tagging of endogenous proteins within a 10 nm radius of
the enzyme [90]. Biotinylated proteins can be retrieved using streptavidin-coated beads
and defined using MS on the beads to identify proteins proximal to the fused AR that were
biotin-tagged by the Turbo-ID-fusion protein. Although this relatively novel technique has
not yet extensively used in CaP cells, it has recently identified KLF4 as AR interactor [92].

In combination, these MS-based characterization efforts on AR transcriptional com-
plexes have considerably expanded the spectrum of its coregulators and cofactors. Alter-
natives are possible, for instance (MS) analyses of complexes bound to ARE-containing
regions [93,94]. A limitation of the approaches above is the potential for aspecific interac-
tions or false positives to be detected by MS, emphasizing the need for stringent analysis
and experimental validation of MS data [95]. Along the same lines, despite isolation of
multi protein AR complexes, information on their conformation and 3D structures, needed
for the proposed therapeutic strategy, has been difficult to ascertain from such studies.
Ongoing evolution in MS-based assays, e.g., crosslinking (XL)-MS, that allows to assess
the proximity of amino acids and to infer protein folding and complex topology, may help
alleviate these constraints and provide important insights in protein interfaces [96].

6. Opportunities, Challenges and Limitations for Effective Therapeutic AR
Complex Disruption

AR’s role in CaP biology is tightly regulated by its interaction with other cellular
proteins which affect its binding to ligand, nuclear translocation, folding and transcrip-
tional activity. Over the past few decades, hundreds of AR-interacting proteins have been
identified using different unbiased approaches [4,37]. Together, the approaches described
above have each contributed to the identification of the current spectrum of AR-associated
coregulators and cofactors. Several of these regulators were identified as AR interactors
by at least 2 independent screening and/or characterization assays described above. Rep-
resentative examples of these, their cellular localization and functions are included in
Table 2 [56,82,88,92,97,98]. AR-interacting proteins display remarkable functionally diver-
sity and are involved in various cellular processes or signal transduction pathways [4,37].
Their combined role in mounting an AR transcriptional output, along with the isolation of
the AR cistrome [99], is starting to uncover the breath of the biology under control of AR
and the context-dependency of AR action. At the same time, questions arise as to how to
leverage this information to develop novel CaP therapeutics that target transcription factor
function of AR.
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Table 2. Representative examples of AR interactors identified via 2 independent screening or char-
acterization approaches. For each AR interactor, the table shows the first and the second method
by which the protein was isolated, the reference for both papers reporting the interactor as associ-
ated with AR, the cellular localization of the interactor and its function. Y2H, yeast 2 hybrid; PLA,
proximity-ligation assay; RIME, Rapid Immunoprecipitation Mass spectrometry of Endogenous
proteins; AP-MS, affinity purification mass spectrometry.

AR Interactor Method 1 Ref 1 Method 2 Ref 2 Cellular Location Function

TAF1 Y2H [56] PLA [92] nucleus transcriptional
regulator

NCOR1 PLA [92] RIME [88] nucleus coregulator

USP7 AP-MS [82] PLA [92] cytoplasm, nucleus ubiquitinyl
hydrolase

SRC1 Y2H [97] PLA [92]

cell junction, cell
membrane,

mitochondrion,
perinuclear region

coregulator

RBM10 PLA [92] RIME [98] nucleus RNA binding
SSBP2 PLA [92] RIME [88] cytoplasm, nucleus splicing

SMARCE1 RIME [98] PLA [92] nucleus chromatin
remodeller

That disrupting AR complexes may have therapeutic potential when AR-driven CaP
has lost responsiveness to ADT is supported by a multitude of studies. In these reports,
expression of AR-associated coregulators or cofactors is silenced by siRNA, shRNA or
CRISPR approaches, or dominant-negative or catalytic-dead versions of diverse coregu-
lators are overexpressed. Moreover, coregulator-derived decoy proteins or peptides that
compete with coregulators for AR binding have shown promise in model systems after
short term treatments [44,73]. Peptidomimetics designed to inhibit AR’s interaction with
NR box proteins through their LxxLL motif reduced ligand-stimulated nuclear localization
of AR as well as CaP cell proliferation [35]. Yet none of these strategies have transitioned
into clinic.

The structure-function basis for the majority of these AR-regulator interactions is yet
to be defined, which will likely be critical to explore their full potential for therapeutic
intervention [100]. Effective and specific targeting the functional interplay between AR and
its associate transcriptional regulators will likely require detailed insights in the molecular
basis for their physical interactions, including not only the precise and selective interaction
sites but also the 3D conformation of these interfaces and that of the larger AR complex and
multimer. Using the approaches described above, some studies have been able to retrieve
some useful information and have for instance fine-tuned the specific amino acid motifs by
which coregulators can preferentially interact with AR [71,74,101] or have defined crystal
structure of cofactor-derived peptides associating with AR regions [71,74]. Others have
delineated the effects of AR agonists, antagonists or SARMs on their association, leading
to grouping of coregulators based on interaction patterns after ligand treatments [78].
However, these assays mostly involved interaction of short peptides with isolated AR
domains in an in vitro setting, so their results may not necessarily be representative of the
molecular interactions in endogeneously expressed full-length proteins.

The first cryoEM study on full length DNA-bound AR has recently been published [11].
As discussed above, this work has provided new insights in the manner in which AR en-
gages in intra- and intermolecular dimerization. Importantly, this study also provided new
insights in domains (NTD) by which pivotal AR coactivators SRC-3 and p300 preferentially
interact with AR, and the stochiometry by which they associated with AR (1 coactivator
each per AR dimer). Insights from such assays on more and other coregulators may provide
new information on (conformation of) interfaces between AR and its regulators and the
ratios in which different components make up the AR transcriptional complex. While
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the above-mentioned study was done in vitro, in vivo cryoEM assays on endogenous pro-
tein complexes have been reported [102], which may provide additional information on
how to extrapolate findings to the endogenous setting. Alternatively, or complementar-
ily, cross-linking mass spectrometry (XL-MS) has emerged as another method to provide
lower resolution modeling of protein (complex) conformations and protein-protein inter-
actions [96]. This technique is applicable to in vivo protein complexes [96,103], and has
already validated conformational changes for PPAR-gamma [104], suggesting it may be
amenable to study other NRs such as AR. In combination with computational modelling
and bioinformatics tools that are continuously evolving and being refined, new insights in
AR complex formation may be derived.

In anticipation of the renewed insights in AR complex composition, conformation
and stoichiometry that the above-mentioned technological advances and others that may
emerge can deliver, it is important to consider a few questions will need to be addressed
and prioritized to deliver the most useful information that can be move forward clinically.
For instance, to which of the hundreds of AR-associated transcriptional regulators should
these efforts be directed to ensure clinical applicability? It seems reasonable that an AR
interactor pursued for therapeutic intervention contributes to AR activity that drives ADT-
recurrent CaP progression. Its AR-dependent activity or expression may increase also
during CaP progression. Ideally, its function would not be impacted by CaP genomic
heterogeneity [105]. On the other hand, an interactor may become subject to genomic
alterations in a subset of CaP cases which may render it more amenable for targeting and
may create a therapeutic window that facilitates precision medicine interventions. Ideally,
its AR interaction site(s) are AR-specific and also CaP- or prostate-specific so that significant
off target effects and toxicity do not occur.

With respect to the proposed therapeutic targeting, several other questions remain.
From a molecular perspective, as protein–protein interactions in transcriptional complexes
display a tiered hierarchy [106], what level of complex resolution is necessary and at
which tier are disruptions best induced to inhibit AR function? How to best consider and
capture dynamic protein-protein interactions and the kinetics of AR complex formation?
AR’s interaction with ligands, associated proteins and DNA recognition motif all induces
discrete conformation changes in distinct AR regions [71,77,78]. Can and should the
different context-dependent AR conformations that contribute to AR’s overall activity be
resolved and targeted for therapeutic targeting? How should the impact of different AR
expression levels, somatic mutations and variants, which may impact dimerization, folding
or access to interaction sites, be taken into account? Should these efforts be directed to
DNA-bound AR only?

Considering and prioritizing these relevant issues will be important to ultimately
employ the anticipated novel molecular insights in AR complex formation in an evidence–
based manner for therapeutic intervention in treatment-resistant CaP.
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