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Abstract: In 1982, Kuntz et al. published an article with the title “A Geometric Approach to
Macromolecule-Ligand Interactions”, where they described a method “to explore geometrically
feasible alignment of ligands and receptors of known structure”. Since then, small molecule docking
has been employed as a fast way to estimate the binding pose of a given compound within a
specific target protein and also to predict binding affinity. Remarkably, the first docking method
suggested by Kuntz and colleagues aimed to predict binding poses but very little was specified about
binding affinity. This raises the question as to whether docking is the right tool to estimate binding
affinity. The short answer is no, and this has been concluded in several comprehensive analyses.
However, in this opinion paper we discuss several critical aspects that need to be reconsidered before
a reliable binding affinity prediction through docking is realistic. These are not the only issues
that need to be considered, but they are perhaps the most critical ones. We also consider that in
spite of the huge efforts to enhance scoring functions, the accuracy of binding affinity predictions
is perhaps only as good as it was 10–20 years ago. There are several underlying reasons for this
poor performance and these are analyzed. In particular, we focus on the role of the solvent (water),
the poor description of H-bonding and the lack of the systems’ true dynamics. We hope to provide
readers with potential insights and tools to overcome the challenging issues related to binding affinity
prediction via docking.
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1. Introduction

Docking, originally introduced by Kuntz et al. [1], is a computational method that virtually
tries to predict a complex of (usually) two binding partners. Typically, these binding partners are
biological macromolecules (e.g., protein, DNA/RNA, peptide) or small molecules (e.g., endogenous
ligands, drugs). Although nowadays specific docking methods are available for distinct binding
partners, such as HADDOCK for protein-protein docking [2], here we focus on the more traditional
small-molecule molecular docking methods, such as GOLD [3–5], Surflex-Dock [6], AutoDock [7] and
Glide [8–10], that are regularly utilized in structure-based drug design to predict ligand interactions
with the target protein. In structure-based small-molecule docking a small ligand molecule is aligned
inside the binding cavity of the target protein and the resulting docking pose is evaluated by a specific
scoring function. The scoring function generates a score for each pose, and the resulting values are
used to rank the different poses and ligands. In a methodological sense, there are two independent
stages in the docking process: the pose generation and the scoring. The first refers to the methods
which are used to create different ligand and protein conformations and aligning different ligand
conformations within the binding site of the protein. The latter, the scoring, is required in the docking
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process for a quantitative estimation of the pose quality. As docking is typically utilized to screen
extensive small-molecule (up to millions) chemical libraries, the pose generation and the pose quality
evaluation must be carried out by fast methods i.e., the computational cost should be low. To fulfill
this, several simplifications are needed in the overall docking process.

The first simplification in docking is related to water, as this solvent is neglected by most
docking programs. Only very recently, have several docking methods been introduced where individual
water molecules are included in the pose generation and evaluation phase [10,11]. The challenge in
water description is related to the fact that these abundant molecules are fast moving and rotating and
they participate in hydrogen bonding (H-bonding) as a donor and acceptor. This means that a change in
the orientation of a single water molecule in the binding site not only has an effect on the neighboring
waters, but also extends to the surrounding multiple hydration layers, thereby affecting the whole
water network. In addition, the differentiation of strong and weak H-bonds in these interactions should
be considered. Thus, the abundant possibilities in the water arrangement prohibit a feasible, explicit
evaluation of all the potential water interactions. The current state of how the water can be treated
explicitly in docking is reviewed in [12].

The lack of motion is another simplification in docking. However, the dynamic nature of the
whole system in terms of entropy and enthalpy should be acknowledged. Whereas the ligand flexibility
is typically included in the docking process, the same does not hold true for protein. Usually, protein is
considered as rigid, with the exception of the rotating hydroxyl groups of serine, threonine and
tyrosine residues. Obviously, these simplifications affect the quality of the generated poses, which may
be artificial [13]. As a result, different approaches that consider the protein flexibility have been
developed, such as ensemble docking [14], where docking is conducted in an ensemble of different
protein conformations.

The third simplification in docking is related to the analysis of the interactions between the protein
and the ligand. The different types of protein–ligand interactions (for non-covalent binders) include
ionic interactions, hydrogen bonds and van der Waals interactions (including dispersion, polar and
induced interactions). The most accurate way to estimate these interactions is with a quantum
mechanics (QM) based approach [15]. However, in most cases QM methods are computationally
too expensive for docking purposes. To speed up the interaction analysis, calculations are typically
conducted with simple potential energy functions, usually related to force-fields or statistical potentials.
While the current force fields and scoring functions are well parametrized, polarization effects and a
detailed proton affinity estimation are still lacking.

Docking programs produce one (or several) different poses for every ligand, and further rank
different compounds based on their scoring functions. A comparison of different docking programs is
difficult as the data sets to estimate the docking performance are often of low quality and there is no
consensus on which metrics to apply in these comparisons. For instance, binding affinities predicted
by the docking might be incorrect, despite the correctly predicted binding pose. Another example is
the case in which a particular docking method performs reasonably with one protein but with another
protein, docking poses are constantly mispredicted. These problems are well explained in the work of
Cheng et al. [16], in which the frequently used CASF-2007 data set was employed to evaluate docking
performance. In the same work, evaluation problems were solved by using three different metrics,
namely “docking power”, “ranking power” and “scoring power”. Recently Li et al. [17], described a
fourth metric, called “screening power”. “Docking power” is the power to identify the native docking
pose among the decoy poses, while “scoring power” is the ability to predict the binding affinity. In
virtual screening campaigns, employment of “ranking power” is usually more appropriate, as it is the
ability to correctly rank compounds according to their binding affinity. Also, the “screening power” is
highly relevant for virtual screening, as it measures how well the method is able to identify the true
binders from a random pool of ligands, including non-binders.

Docking is utilized as a tool in both virtual screening and compound optimization. There are
several very comprehensive reports indicating unreliable binding affinity predictions by docking;
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a good summary of those studies has been published by Pagadala et al. [18]. Additionally, in order
to achieve reliable binding affinity predictions, the old docking methods being updated and new
methods have been published. New parametrizations and methods are based on ever increasing
datasets and increased computational capacities, such as the implementation of QM in docking [19]
and moving towards dynamic docking [20]. In our laboratory, we have carried out different virtual
screening and docking experiments since the early 2000s. While we used docking as a stand-alone
approach in our early studies, nowadays, to increase the quality of our results we are increasingly
employing diverse methods in parallel to docking. In the following, we briefly discuss those theoretical
aspects which have directed us to use docking in combination with other methods. First, we focus
on the pose generation in docking and then, we provide a short overview of scoring function caveats.
Finally, we discuss the role of water and (the lack of) dynamics in the docking process.

2. Pose Generation and Scoring Functions in Docking

2.1. Pose Generation

Ligand and protein conformational freedom is a huge challenge in docking. Widely used
docking programs handle ligands as fully flexible, thus typically generating a very large number
of conformations during the docking process. In addition to conformation generation methods,
the quality of the docking will depend on the force field. It is evident that the conformational aspect of
the process is well optimized as all the widely used docking methods are able to identify the correct
bioactive conformation of a ligand (i.e., to recreate the X-ray pose) in several instances. For example,
this was shown by Li et al. [17], Warren et al. [21], and the same conclusions were reached in the CASP2
competition [22]. However, these results do not necessarily imply that the pose generation produces
the correct ligand conformation and binding pose in all instances. Based on these observations, it is
apparent that the focus should be placed on the scoring function to increase the quality of docking.

2.2. Scoring Functions

The strength of a protein-ligand complex is related to the intermolecular interactions between these
binding partners, solvent effects and dynamics. The most conservative method to estimate all of these
simultaneously, is to apply all-atom molecular dynamics (MD) simulations. However, in order to avoid
the significant computational costs related to these simulations, molecular docking utilizes scoring
functions to provide a fast and crude estimation of the binding affinity. There are three main types
of scoring functions: force-field based, knowledge-based statistical functions, and empirical scoring
functions [23]. Force-field based methods utilize molecular mechanics functions for evaluating the
direct interactions between a ligand and the protein, and solvent effects are typically evaluated by a
generalized Born/surface area (GB/SA) type of approach [24], which is often based on the work of
Wesson and Eisenberg [25]. Knowledge-based methods rely on statistical information derived from the
existing ligand-receptors complex structures [26] in the form of distance-dependent atom-pair potentials.
The third approach, empirical scoring functions [8] is based on the idea that all the relevant factors
affecting the binding are expressed in the form of (preferably simple) equations, like those describing
H-bonding, rotational/translational degrees of freedom and polar/lipophilic effects. In addition,
these equations are balanced by using a regression-type approach; in the literature this approach is
sometimes referred to as regression-based scoring.

2.2.1. Enthalpy and Entropy

Scoring functions attempts to estimate the binding affinity, which is directly related to the Gibbs
energy of binding. There are several ways to describe the partitions of binding energy and one of
these is described in Equation (1). This partition by Ajay and Murcko [27], describes the binding
energy as individual components: the solvation/desolvation energy (∆Gsolvent); the change in energy
of the receptor and ligand due to complex formation (∆Gconf); the change in energy due to specific
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interactions between the ligand and the receptor (∆Gint); and the contribution due to changes in
movement (rotational, translational, vibrational) (∆Gmotion).

∆Gbind = ∆Gsolvent + ∆Gcon f + ∆Gint + ∆Gmotion (1)

What can we conclude based on Equation (1)? First, one must note that it is inadequate to only
study the protein-ligand interactions. Additionally, it is important to understand how both interact
with water before the formation of the complex and how water mediates this process. Also, one must
recognize the fact that binding energy includes the conformational aspects of ligand and protein,
and also changes in motion (this is mainly an entropic effect). As entropy is directly related to
the motion and the temperature, a single protein-ligand complex pose may not provide enough
information to reliably predict binding affinity.

Finally, how reliable is the estimation of the strength of the direct interactions (∆Gint) between
different binding partners (protein-ligand-solvent)? This depends greatly on the description of the
ionic interactions and van der Waals interactions (including H-bonding). The entropic component
is thought to be related mainly to the conformational and rotational/translational aspects, but we
believe this is an optimistic view. More emphasis should be placed on how much the protein flexibility
contributes to the stability of the protein-ligand complex and how the water affects the binding energy.

2.2.2. Direct Interactions

Direct polar interactions between ligand, protein and water are enthalpic in nature. In scoring
functions, these interactions are considered by specific terms such as H-bonding, Lennard-Jones type
of functions and ionic interactions. Dispersion-type interactions (erroneously called van der Waals
interaction) are usually reasonably described by classical Lennard-Jones potential. As indirect proof of
how precise these equations are, even the latest parametrization of the OPLS (Optimized Potentials
for Liquid Simulations) force field family, OPLS3 [28], utilizes the formerly developed Lennard-Jones
parameters. Indeed, many of the scoring functions use this approach to model dispersion [5,24,29],
although GOLD uses softer 8–4 potential while Dock and Glide prefer 12–6 potential [1,3–5,8–10].
Other approaches do exist, for example Surflex uses surface-based description (derived from van der
Waals surface) [6] and FlexX has a scoring term based on separate attractive terms for H-bonds, ionic,
aromatic and lipophilic interactions and atom-center distance-based repulsive function [30].

One could argue that a proper description of dispersion is needed for accurate ligand-binding
prediction, however, a precise understanding of the H-bonding is even more important.
Recently, Raschka et al. analyzed the type of interactions found in 136 non-homologous protein-ligand
complexes [31], concluding that strong H-bonds are required for most high-affinity ligands. In addition,
they disclosed that the protein prefers to act as a H-bonding donor. As an explanation of why
the protein prefers to act as a H-bond donor for high-affinity ligands, the authors speculated
that geometrically more constrained H-bonding donors were enriched during the evolution.
Consequently, a proper H-bonding description in scoring functions is required.

In all scoring functions, both distance and angular parameters are included in the H-bond
potentials in similar fashion, in several force fields. In addition, the type of H-bonding (e.g., charged,
neutral) is considered. One of the most detailed forms of H-bonding potential is implemented within
the Glide XP [10], where three different types of H-bond are used: neutral-neutral, neutral-charged
and charged-charged. The functional form of the Glide XP includes several H-bond class-specific
modifications and environment-based restrictions. As a result, enhanced recognition of the “false
positive” H-bonds is achieved.

2.2.3. Hydrogen Bond Strength and Classification

The hydrogen-bond (H-bond) is mainly an electrostatic interaction, which is typically
modelled via Coulomb-type-equations, and for this, the dielectric constant is a critical factor.
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Unfortunately, a reliable and fast method to calculate the dielectric constant does not exist.
One approach is to use QM/MD-methods but this approach is currently too slow for docking
purposes [15]. Furthermore, the challenge in H-bond modeling is the high variability of different
H-bond types and strengths. Even the environment has a huge effect as demonstrated with water–water
H-bonds [32]. In a neutral (pH 7) environment a single water-water H-bond is weak but in basic or
acidic medium it becomes a 6-fold stronger and 15% shorter charge assisted H-bond. In fact, H-bond
strengths can usually be estimated based on the proton affinities or pKa-values of both the donor and
acceptor site. Based on this approach, a 6-class classification for H-bonding has been developed [33].
Normal, weak H-bonds (those without charge) are the most common type of H-bonds found in
biological systems. These are unassisted by charge or resonance and thus are weak, asymmetric
and driven by electrostatic force. On the other hand, all the H-bonds assisted by charge (either
negative or positive or both) are strong and short, if the pKa-values of donor and acceptor match.
When pKa-values mismatch (>2 pKa units), these H-bonds are classified as regular H-bonds. In a
biological system this means that the ionization state of the protein and ligand are needed for proper
H-bonding evaluation, and also the pKa-values are required. Most of the current H-bond potentials
produce reliable predictions for uncharged H-bonds. The same does not hold true for the H-bonds that
include ionizable donor and acceptor groups. There are several computational methods available for
both protein and ligand pKa-value calculations [34–36]. Nevertheless, proton affinities are hardly ever
considered in scoring functions. Therefore, the Glide approach [10] of differently scoring H-bonds with
charge, is probably correct.

3. Water, Dynamics and Docking

Water has an important role in the biological environment, especially in the protein matrix [37,38].
The crucial role of the water in the ligand binding process has long been acknowledged [39]. Water has
an important role in ligand binding thermodynamics [40,41], even in the environment of a lipophilic
binding cavity [42] and displacing specific water molecules from the binding site may play an important
role in the ligand optimization process [43]. Moreover, water related H-bonding networks have a
significant influence in the structure-activity relationship [44], and optimizing the ligand taking into
account the surrounding water network may result in enhanced binding affinity and prolonged
residence time [45]. The problem is that detailed information of how water is located within and
around the ligand binding site is mostly unavailable. The most common tool for determining 3D
structure, X-ray crystallography, can only provide partial information because the resolution and
low-quality electron density limits water detection. Those water molecules which are detected by
X-ray are often entropically stabilized [46]. In addition, crystallization conditions are typically far
from the biologically relevant ones, and also the co-crystallized ligand molecule(s) may influence the
observed hydration network (differently when compared to a docked ligand).

Easy application of water placement in docking is restricted because the water in the binding site
is heterogenous. In different locations, an individual water molecule has restricted rotational freedom
and H-bonding capabilities. The terminology, “happy” and “unhappy” water has been introduced to
describe the individual water energies compared to bulk water [47]. Happy and unhappy water refer
to low-energy and high-energy water, respectively. The unhappy water molecules within the binding
site have either lost their degree of freedom (entropic penalty) or they are incapable of fulfilling all
possible H-bonds (enthalpic penalty), which result in higher energies compared to the bulk water.
Therefore, displacing unhappy water molecules from the binding site with the ligand results in a
gain in binding affinity [48]. On the other hand, displacing a happy water molecule from the site is
typically unfavorable. Furthermore, not all regions within the binding sites are hydrated and occupied
by water molecules [49,50]. Areas exist that are energetically so unfavorable for water to occupy
that there is no water present; instead, they appear as dry void regions (also referred to as vacuum
or dewetted regions) [51,52]. Occupying these regions with a ligand molecule results in both more
favorable enthalpy and entropy of binding. The reason for this gain in binding affinity is the fact
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that the increased protein-ligand interaction surface results in stronger van der Waals interaction.
In addition, filling the dewetted region increases entropy. In accordance with this, we have noticed
that these vacuum sites played a significant role in determining the compound activity in our series of
Autotaxin inhibitors [53].

Even though water has been acknowledged to play an important role in binding, de novo
placement of water has not been explicitly included in docking methods, with the exception of
Glide XP [10]. The Glide XP includes terms for the hydrophobic enclosure, which promotes the
insertion of the lipophilic parts of the ligand in the protein’s lipophilic cavities; thereby, simulating
the displacement of potential high-energy water. Moreover, in this method, by utilizing a grid-based
methodology “virtual waters” are placed into the binding site, and penalties for are given for
improperly solvated hydrophilic (polar or charged) groups and for the water that makes an unusual
number of hydrophobic contacts.

As already stated, docking is usually unable to provide a good estimate of the role of the solvation
penalties related to the binding. As a result, several complementary computational methods have been
developed to identify and analyze water molecules around the protein-ligand complex to estimate its
role in binding. Different approaches have been reported and the most popular methods are reviewed
by Bodnarchuk [54]. For instance, the Schrödinger’s WaterMap uses a short MD simulation and the
estimation of the energies of the hydration sites are derived based on the simulation [48,50], whereas in
the Molecular Operating Environment (MOE), the binding desolvation penalties can be estimated
by 3D reference interaction site model (3D-RISM), which is based on the density functional theory
of liquids [55,56]. The main limitation of these methods is that they are heavily dependent on the
protein conformation used in the calculation. To exemplify this, a parallel calculation of the hydration
site energy with the same protein may produce totally different results, even if only minor protein
conformational change occurs or only one side of the chain conformation is altered. This limitation
should be kept in mind when utilizing these methods, as for example, a conformational “induced-fit”
effect upon ligand binding (via docking) might hamper the results [57]. Although these methods are
now becoming increasingly popular and have demonstrated usefulness in explaining lead molecule
structure–activity relationships [58], it is still unclear if these methods are applicable in virtual screening
campaigns. One of the first attempts to include these computational approaches directly into scoring
functions is WScore [11]. In WScore, a default WaterMap calculation with the apo-protein is utilized
to gain insight into the hydration site positions and their corresponding energies. The occupancy
of these hydration sites by a ligand are included in the scoring. Moreover, an ensemble docking is
carried out that aims to take into account the protein flexibility, which as mentioned above, is the
major issue with the WaterMap. The usefulness of WScore and other related methods remain to be
seen. Furthermore, conventional MD simulations can be applied to evaluate the hydration networks;
thus, some errors related to force field accuracy may arise [59]. In a way, we agree with the statement
by Hummer [60], that the contribution of water for the ligand binding may be substantial but its
evaluation is challenging.

One of the shortcomings of docking is that it produces only a snapshot of the putative
binding conformation. This is a notable limitation, as in real-life the binding event is not a static event,
it is dynamic. For instance, we observed a good example of this in a study of 1-/2-monoacylglycerol
hydrolysis by Monoacylglycerol lipase (MAGL) [61]. Whereas the wild-type MAGL hydrolyzes both
substrates at an identical rate, a C242A mutation in the active site impairs the hydrolysis of the
1-acylglycerol but not the 2-acylglycerol. This mutation had no effect on the binding conformations
obtained by the docking; but, it was unable to provide an explanation for the observed difference in
the hydrolysis among the substrates. However, in this case even short MD-simulations were capable
of highlighting the differences in the substrate binding dynamics that arose due to the mutation.

Perhaps due to the fact that docking is currently unable to consider the impact of water
and the dynamic nature of binding, applying MD simulations for the docking pose validation
has attracted growing interest in the scientific community [62–67]. This is probably also due to
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increased accessibility to adequate computing resources (e.g., GPUs) that are required for simulations
with a reasonable time-scale. Another factor that has made MD simulations more relevant is the
improvement in the force fields that are now capable of handling both small molecules and proteins
with reasonable accuracy. These improvements have led to more relevant observations from the
simulations. Interestingly, MD simulations appear to provide the solution to the two issues that
docking is incapable of handling—water and the dynamics.

4. Solution

In this opinion paper, we have exemplified the underlying issues in predicting binding affinity
via docking. The main issues are related to the H-bonding and the water description, and how water
and the protein-ligand complex should be considered as a dynamic system. While describing the
H-bond is clearly an issue, we should also acknowledge that this has already been quite well described
in modern force fields. For example, the new OPLS3 and recent AMBER (Assisted Model Building
with Energy Refinement) and CHARMM (Chemistry at Harvard Macromolecular Mechanics) force
fields include a better H-bonding description [28,68,69]. Additionally, MD is becoming an increasingly
robust method to study individual protein-ligand complexes. Unfortunately, the computational costs
of MD are still too high to allow virtual screening.

What can be done to increase the accuracy of the binding affinity prediction? With current
methods, resolving this issue is extremely challenging. For H-bonding, it is feasible to include a
more precise energy evaluation method that would allow recognition and differentiation of the
strong and weak H-bonds. However, this requires a fast and reliable pKa-value calculation that also
considers conformational and environmental aspects of the binding cavity. Furthermore, due to the
active role of the water in binding, it is obvious that water needs to be explicitly included in the
docking process. All the current evidence contradicts docking in the gas phase. WaterMap and
other related methods have partially resolved this issue but a more comprehensive solution is
required. Finally, implementation of dynamics in scoring functions remains challenging. In future,
scoring functions need to be reinvented so that they are able to describe the dynamics related to the
binding. Overall, new approaches are required to address the issues discussed above.

Our current solution is based on two comprehensive approaches, one to use docking tools in
more efficient ways [53,70], and the other is to use MD simulations to validate the results of the
classical docking [71,72]. Prior to any docking experiment, one should explore the flexibility of the
target protein, based on both the existing protein structures and MD simulations. At the same time,
it is of utmost importance to determine the solvation status of the binding cavity and the energy
levels of the potentially happy and unhappy water. Subsequently, this information is further applied
in docking by utilizing suitable constraints. This approach can help us to identify more reliable
binding poses. Finally, the most promising poses are further analyzed by short (usually 200 ns) MD
simulations and followed by WaterMap analysis. However, our approach has two major shortcomings:
It is slow and difficult to implement. These shortcomings are tolerable, as long as we have sufficient
computing resources and an adequate amount of time to work with the target. We resolve the
H-bond issue by estimating the pKa-values with different computational methods (e.g., QM-polarized
docking). Lastly, even after implementing all of these user-based interventions, we always use the
most sophisticated scoring function, the eye. If you trust your docking pose, you might be right.
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