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Abstract
The cytokines IL-1α and IL-1β are induced rapidly after insults to the CNS, and their subsequent
signaling through the type 1 IL-1 receptor (IL-1R1) has been regarded as essential for a normal
astroglial and microglial/macrophage response. To determine whether abrogating signaling through
the IL-1R1 will alter the cardinal astrocytic responses to injury, we analyzed molecules
characteristic of activated astrocytes in response to a penetrating stab wound in wild type mice and
mice with a targeted deletion of IL-1R1. Here we show that after a stab wound injury, glial fibrillary
acidic protein (GFAP) induction on a per cell basis is delayed in the IL-1R1-null mice compared to
wild type counterparts. However, the induction of chondroitin sulfate proteoglycans, tenascin, S-
100B as well as glutamate transporter proteins, GLAST and GLT-1, and glutamine synthetase are
independent of IL-1RI signaling. Cumulatively, our studies on gliosis in the IL-1R1-null mice indicate
that abrogating IL-1R1 signaling delays some responses of astroglial activation; however, many of
the important neuroprotective adaptations of astrocytes to brain trauma are preserved. These data
recommend the continued development of therapeutics to abrogate IL-1R1 signaling to treat
traumatic brain injuries. However, astroglial scar related proteins were induced irrespective of
blocking IL-1R1 signaling and thus, other therapeutic strategies will be required to inhibit glial
scarring.

Background
The cytokines interleukin-1α and interleukin-1β (collec-
tively referred to as IL-1) are dramatically and rapidly
induced following injury to the CNS and elevated IL-1 lev-
els are associated with many neurodegenerative diseases
[1]. For instance, IL-1β is rapidly induced in experimental
models of stroke [2,3] and mice that have decreased IL-1
production are significantly protected from ischemic

injury [4-7]. Similarly, administering IL-1 receptor antag-
onist or IL-1β blocking antibodies reduces neuronal death
subsequent to ischemia [8-10]. There also is increased IL-
1β production surrounding amyloid plaques in brains of
patients with Alzheimer's disease and Down Syndrome
[11], and IL-1 has been implicated in the excessive pro-
duction and processing of beta-amyloid precursor protein
as well as the synthesis of most of the known plaque-asso-
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ciated proteins [12]. IL-1 also has been shown to be ele-
vated in the spinal fluid and within demyelinated lesions
of patients with multiple sclerosis (MS) [13-15].

Microglia appear to be the earliest and major source of IL-
1 after CNS injury, infection or inflammation, and they
express caspase-1, the enzyme responsible for converting
pro-IL-1β to its active form [16]. IL-1 subsequently
increases the production of inflammatory mediators, such
as cyclooxygenase 2, prostanoids, nitric oxide, matrix met-
alloproteinases, collagenase [17], and pro-inflammatory
cytokines, including Interleukin-6 (IL-6) [18,19], tumor
necrosis factor alpha (TNF-α) [20], colony stimulating
factors [21] as well as itself. These molecules subsequently
establish a feedforward cycle of inflammation [6].

Contrary to accumulating evidence that portrays IL-1 as a
maladaptive injury related cytokine IL-1 increases the
expression of multiple growth and trophic factors, includ-
ing fibroblast growth factor-2 [22], transforming growth
factor β 1 [23], ciliary neurotrophic factor [24], nerve
growth factor (NGF) [25-28], insulin-like growth factor-1
[29] and hepatocyte growth factor [30], and these factors
can promote the survival of neurons and glia.

Determining which cellular and molecular responses to
CNS injury are coordinated by IL-1 signaling is essential
towards a better understanding of how antagonizing IL-1
protects neurons from injury and disease. In several stud-
ies we showed that IL-1 signaling through the type 1 IL-1
receptor (IL-1R1) is essential for multiple aspects of the
brain's response to a tissue damaging injury. Analyses at
both cellular and molecular levels to a penetrating neo-
cortical injury in mice that lack IL-1R1 demonstrated:
diminished responsiveness of macrophages and micro-
glia, deficient recruitment of peripheral macrophages,
attenuated production of the vascular cell adhesion mole-
cule-1 (VCAM-1), attenuated cyclooxygenase-2 produc-
tion and attenuated levels of pro-inflammatory cytokine
mRNAs. By contrast, the induction of NGF was intact [31].
Furthermore, studies on IL-1R1-null mice following a
mild stroke demonstrated that abrogating IL-1R1 signal-
ing reduces edema, recruitment of immune cells, produc-
tion of several proinflammatory cytokines as well as
microglial activation and therefore leads to reduced brain
damage and preserved neurological functions [32,33]. In
another study we demonstrated that the expression of cer-
uloplasmin (CP) is induced by a traumatic injury and that
IL-1 is responsible for the injury-induced expression of CP
in astrocytes [34].

To investigate whether IL-1 signaling through IL-1R1
abrogates the fundamental responses of astrocytes to a
penetrating injury, here we have analyzed a panel of mol-
ecules associated with astrocytic functions. We analyzed

the expression of the structural protein GFAP as increases
in this protein support the integrity of the parenchyma
after damage and GFAP-null mice are more susceptible to
injuries than their wild type counterparts [35,36]. We also
analyzed levels of glutamate transporters and the gluta-
mate catabolic enzyme glutamine synthetase, since the
capacity of an astrocyte to remove glutamate from the
extracellular space will affect amino acid induced excito-
toxicity [37]. As astrocytes also buffer levels of brain cal-
cium and as the calcium binding protein S-100B also has
neurotrophic properties [38-40], we measured the levels
of S-100B after injury. We also examined the expression of
the protease-activated receptor 1 (PAR-1) in wild type
(WT) and IL-1R1-null mice following a neocortical pene-
trating injury as this receptor has been implicated in astro-
cyte hyperplasia after brain injury [41]. Last, we analyzed
the expression of several extracellular matrix proteins that
are known constituents of the astroglial scar to assess
whether scar formation will be reduced in the absence of
IL-1R1 signaling.

Methods
Experimental animals
Adult male IL-1R1-null mice backcrossed 9 times against
a C57BL/6 background and C57BL/6 WT mice were used
between 3 and 12 months of age. IL-1R1-null mice were
originally provided by Amgen Inc (Seattle, WA). All mice
were bred and maintained at the Hershey Medical Center
by the Department of Comparative Medicine, an AAALAC
accredited facility. Animal experimentation was in accord-
ance with research guidelines set forth by Penn State Uni-
versity and the Society for Neuroscience Policy on the Use
of Animals in Neuroscience Research.

Penetrating brain injury and micro-injection of IL-1
Surgery on adult male mice was performed under xyla-
zine/ketamine anesthesia (2mg xylazine and 15 mg keta-
mine/kg). Once the animal failed to respond to an
external stimulus such as a toe pinch, it was secured in a
stereotactic apparatus. A midline incision exposed the
skull and a small hole of 1.35 mm in diameter was drilled
through the skull. Three 1 mm deep penetrating stab
wounds were produced perpendicular to the pial surface
with a 45° angle 26-gauge needle. The lesion site
remained constant at 2.0 mm caudal and 2.0 mm lateral
from Bregma. Overall the procedure took 30 minutes per
animal. The burr hole was filled with gel-foam and the
scalp was sutured. The animals were placed on a warming
mat, allowed to recover, and then returned to the animal
facility. At intervals, the mice were sacrificed by cervical
dislocation. To insure reproducible diameter tissue sam-
pling, the area of the cortex containing the stab wound
and adjacent tissue was removed using a 2.7 mm trephine.
In addition, tissue from the same location relative to
Bregma in the opposite hemisphere was removed and
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used as a control. From this sample any subcortical struc-
tures were removed, isolating only the neocortex and
adjacent white matter. The samples were placed in plastic
tubes, quick-frozen on dry ice and stored at -80°C until
assayed.

For the micro-injection procedure a sterile glass micro-
pipette (diameter < 50 µm) was used to inject 5 units (in
a volume of 2 µl) of recombinant murine IL-1β (R&D Sys-
tems, Inc, Minneapolis) into the cortex. The area of sur-
gery and the other measures following the surgery are
identical for both stab wound injury and micro-injection.

Immunohistochemistry and histological analysis
Animals used for immunocytochemistry for GFAP stain-
ing were perfused with culture medium containing 7 U/
ml heparin followed by a fixative containing 3% parafor-
maldehyde and 0.1% glutaraldehyde in phosphate buffer,
pH 7.35. Brains were dehydrated through graded alcohols
and embedded in paraffin wax. Sections were cut at 6 µm
and mounted onto Superfrost+ slides. Prior to staining,
sections were de-waxed using standard methods and
Immunocytochemistry was performed as described previ-
ously [42]. Counts of GFAP+ cells were performed on
photomicrographs taken at 40 × magnification in regions
240 µm away from the lesion site of brain sections from
WT (n = 4) and IL-1R1-null (n = 3) animals at day 3. Four
to five pictures per section were taken. The number of
GFAP+ astrocytes from each picture was counted by an
investigator blinded to their identity.

Cell culture
Primary astrocyte and microglial cultures were prepared
from newborn C57BL/6 mice (P0-2). Pups were sacrificed
by decapitation and the whole brain excluding the cere-
bellum was isolated. The meninges were removed, the tis-
sue was enzymatically and mechanically dissociated and
the cell suspension was passed through 100 µm and 40
µm nylon mesh screens sequentially. Cells were counted
using a hemocytometer in the presence of 0.1% trypan
blue. Mixed glial cultures were plated into 75 cm2 tissue
culture flasks at a density of 1 × 105 viable cells/cm2. Cells
were fed with MEM-C (10% fetal bovine serum (FBS), 2
mM glutamine, 100U/100 µg/ml penicillin and strepto-
mycin and 0.6% glucose in Eagles minimum essential
media). The medium was changed every two days after
plating.

To establish enriched astrocytes, the original flasks were
shaken overnight to remove contaminating O-2A progen-
itors and microglia. The adherent astrocytes and the
mixed glia from original flasks were replated into 6 well
plates at a density of 3 × 104 viable cells/cm2 fed with
MEM-C. After reaching confluence, the cells were main-
tained in a chemically defined medium (MN1A) (Dul-

becco's modified eagle's medium/F12 with 15 mM HEPES
and 1 mm L-glutamine, 5 ng/ml insulin, 20 nM progester-
one, 100 µM putrescine, 5 ng/ml selenium, 50 U/50 ng/
ml Penicillin/Streptomycin, and 50 µg/ml apo-transfer-
rin) for four days. To establish enriched primary cultures
of cortical neurons, the cortices from brains of 17-day-old
mouse embryos were dissociated by trituration, layered
onto a 4% BSA gradient and centrifuged at 700 × g for 2
min. The cells were resuspended in L-15 medium contain-
ing supplements [43] and plated on poly-l-ornithine
coated dishes at a density of 6 × 104 cells/cm2 in 2 ml on
60 mm petri dishes. One day after plating, media were
replaced with neurobasal medium supplemented with B-
27, 6.3 mg/ml NaCl, and 10 U/ml penicillin/streptomy-
cin. The cells were maintained in vitro for 10 days to allow
the neurons to differentiate. The purity of the cultures was
assessed by determining the percentage of GFAP (1:500,
DAKO, Carpinteria, CA) immunoreactive cells (<5%).
Media and B-27 were purchased from Gibco (Rockville,
MD). Other chemicals were obtained from Sigma (St.
Louis, MO).

Astrocytes, mixed glia and cortical neurons were treated
with 5 ng/ml of recombinant murine IL-1β (rmIL-1β) (R
& D Systems, Minneapolis, MN) in defined medium for
24 hrs, then washed twice with ice-cold PBS, and lysed in
buffer containing a final concentration of 1% Triton-X
100, 10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.5% non-
idet P-40, 1 mM EDTA, 0.2% EGTA, 0.2% sodium
orthovanadate and protease inhibitor cocktail (Sigma, St
Louis, MO). The lysate was gently agitated for 15 minutes
at 4°C. DNA was sheared using a 21-gauge needle and
then the homogenate was centrifuged at 10,000 rpm for
15 minutes at 4°C. Protein levels were determined using
the BCA colorimetric assay (Pierce, Rockford, IL). Protein
lysates were aliquoted and stored at -80°C until needed.
Control cells received defined medium, minus cytokine.

ELISA
Stab wounds were performed on adult WT C57BL/6 and
IL-1R1 knockout (KO) mice as described above. Mice
were sacrificed at 3, 5, 7 and 10 days following injury.
Cortical tissues were placed in 1.5 ml microcentrifuge
tubes with 150 µl of homogenization buffer (20 mM Tris,
1 mM EDTA, 255 mM sucrose with protease inhibitor
cocktail (aprotinin, leupeptin, pepstatin and AEBSF) from
Sigma (1 ml of cocktail per 20 g cells wet weight). Samples
were homogenized and then sonicated for 10 pulses 2×
each. Protein concentrations were determined using the
Pierce BCA Protein Assay Kit. All tissue samples were
stored at -80°C until needed. ELISA for GFAP was per-
formed using a two-site ELISA as described previously
[44].
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Western blotting
For immunoblotting of chondroitin sulphate proteogly-
can-4 (CSPG-4), 2.5 µg of protein was digested with chon-
droitinase ABC (0.1 U/ml at 37°C for 3 h, Sigma
Chemical, St Louis, MO) prior to electrophoresis on
NuPAGE 3–8 % gradient gel and transferred to a nitrocel-
lulose membrane. The membrane was then blocked in 2%

nonfat dry milk in PBS containing 0.05% Tween-20
(PBST) for 1 h at room temperature with gentle agitation.
After blocking, the blots were probed overnight with anti-
CSPG-4 (1:10,000; ICN, Costa mesa, CA), anti-fibronec-
tin (1:10,000; DAKO, Carpinteria, CA), or anti-tenascin
(1:5000). Antibody was diluted in 1 % BSA in PBST over-
night at 4°C with gentle agitation. After extensive washes
in PBST, blots were incubated with HRP labeled second-
ary antibodies in 1% BSA in PBST for 1 h with agitation.
Goat anti-rabbit-HRP (1:10,000) was used for Tenascin
antibodies and Goat anti-Mouse (IgG+IgM) (1:10,000)
was used for fibronectin and CSPG-4 and -6. The blots
were again rinsed extensively in PBST and bands were vis-
ualized using the Renaissance chemiluminescence reagent
from New England Nuclear (Boston, MA). Optical density
measurements were made using a UVP Chemi-Imaging
system.

For Immunoblotting for glutamine synthetase (GS),
glutamate aspartate transporter (GLAST), glutamate trans-
porter-1 (GLT-1), S-100B and protease-activated receptor
(PAR-1), 10 µg of protein were analyzed. Blots were incu-
bated in rabbit anti-GLT-1 (1:1000), rabbit anti-GLAST
(1:1000) (Alpha Diagnostic International, San Antonio,
TX), mouse anti-GS (Chemicon International, 1:2000),
rabbit anti-PAR1 (Santa Cruz Biotechnology,1:1000), or
mouse S-100B (1:1000) (Sigma chemical, St Louis, MO)
antibody. Blots were stripped (30 min at 50°C in 62.5
mM Tris-HCl pH 6.8, 2% SDS, 100 mM 2-mercaptoetha-
nol) and re-probed with anti-β-tubulin antibody (1:1000,

The increase in GFAP protein is delayed in IL-1R1-null mutant mice vs WT mice after a penetrating brain injuryFigure 2
The increase in GFAP protein is delayed in IL-1R1-
null mutant mice vs WT mice after a penetrating 
brain injury. GFAP levels were measured from lesioned 
neocortices by two-site ELISA at 3, 5 and 7 d after injury in 
wild-type or IL-1R1-null mice. Values represent the means ± 
S.E.M. from at least 6 mice per time point. p < 0.05 by Stu-
dent t test.

Deletion of IL-1R1 reduces GFAP immunoreactivity but does not alter the number of GFAP+ astrocytes after a penetrat-ing neocortical injuryFigure 1
Deletion of IL-1R1 reduces GFAP immunoreactivity 
but does not alter the number of GFAP+ astrocytes 
after a penetrating neocortical injury. Adult wild-type 
mice (A and C) or age matched IL-1R1-null mice (B) received 
a penetrating brain injury to the somatosensory cortex. After 
3 d, animals were sacrificed and processed for GFAP immu-
nohistochemistry. Panels A and B were captured from layers 
3–5 of the neocortex within the penumbra of the lesion 
whereas panel C depicts the contralateral hemisphere from 
the wt animal at 10×. Insets depict representative cells from 
WT or IL-1R1-null mice at 40×. Scale bar represents 50 µm. 
Counts of GFAP+ cells (D) were performed on photomicro-
graphs taken in areas 240 µm away from the lesion site of 
brain sections from WT (n = 4) and IL-1R1-null (n = 3) ani-
mals at day 3 at 40×. The number of GFAP+ astrocytes from 
each picture was counted by an investigator blinded to their 
identity. Values represent the means ± S.E.M.
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Santa Cruz Biotechnology, Santa Cruz, CA) to confirm
equal loading of proteins.

Results
Absence of IL-1R1 signaling leads to attenuated 
hypertrophy of astrocytes and delayed induction of GFAP 
(Fig. 1 and 2)
GFAP immunohistochemistry revealed that GFAP expres-
sion was attenuated in the IL-1RI-null mice compared to
their WT counterparts following a neocortical stab wound
(Fig 1). At 3 days post lesion, GFAP immunoreactivity was
increased in both WT and null mice, but the response was
markedly abrogated in IL-1R1-null mice. Astrocytes adja-
cent to the injury in the WT mice appeared hypertrophied
and exhibited a dramatic increase in GFAP immunoreac-
tivity (Fig 1A inset). In contrast, IL-1R1-null mice stained
less robustly for GFAP and the astrocytes appeared on
average smaller in size (Fig 1B inset). In the unlesioned
cortice, GFAP+ cells are less frequently observed and
appeared in similar size as seen in IL-1R1-null animals
(Fig 1C inset). Quantifying the numbers of GFAP+ cells
(Fig 1D) in the lesion penumbra revealed a trend towards
the IL-1R1-null animals having fewer GFAP+ cells than
the WT animals, but this trend was not statistically signif-
icant.

An analysis of GFAP protein levels by using a two-site
ELISA confirmed the immunohistochemical findings (Fig
2). At 3, 5 and 7 days after stab wound, GFAP expression
was increased by stab wound injury in both WT and recep-
tor-null mice. However, compared to the WT counterparts
GFAP levels were attenuated at the early time point (3
days post lesion) in the receptor-null mice, but by 5 days
of recovery GFAP achieved comparable levels to injured
WT mice. Routine histological analyses did not reveal any
obvious differences in the extent of the initial injuries sus-
tained by the animals. Thus, these data show that the cel-
lular expression of GFAP is delayed in the IL-1R1 null
mice, but that a compensatory mechanism, such as the

delayed production of other cytokines, eventually stimu-
lates GFAP expression to the same level as induced in the
wild-type animals [45].

Induction of protease-activated receptor-1 (PAR-1) by 
stab wound injury is ablated by the deletion of IL-1R1 (Fig. 
3 and 4)
During injury thrombin is released and cleaves the pro-
tease-activated receptors (PARs), which subsequently
induce plasma extravasation and inflammation. Activated
thrombin receptors also stimulate glial cell proliferation
[46]. Therefore, we analyzed the expression of PAR-1 fol-
lowing penetrating brain injury. The PAR-1 expression
was dramatically increased in the WT mice at 3 days post
injury (Fig. 3). By contrast, PAR-1 protein was not induced
and remained undetectable in the IL-1R1-null mice. To
elucidate which cell type expresses PAR-1 protein, we per-
formed immunofluorescence staining of PAR-1 on the
brain sections. However, the immunofluorescence lacked
the sensitivity and specificity to determine which cell type
expresses PAR-1 after neocortical injury. Therefore, we
performed in vitro studies to examine which brain cell
increases PAR-1 expression in response to IL-1β stimula-
tion. IL-1β at 5 ng/ml was used to stimulate primary cul-
tures of mixed glia, astrocytes, microglia and cortical
neurons, and the expression of PAR-1 proteins was
assayed. Upon stimulation with IL-1β, the expression of
PAR-1 slightly increased in the astrocyte cultures, but not
in mixed glial or cortical neuronal cultures (Fig. 4), and it
was undetectable in the microglial culture (data not
shown). To ensure that the astrocyte and mixed glial cul-
tures were responding to IL-1β, the expression of cerulo-

IL-1β slightly increases PAR-1 protein expression in the pri-mary astrocyte cultures, but not that in neuronal nor mixed glial culturesFigure 4
IL-1β slightly increases PAR-1 protein expression in 
the primary astrocyte cultures, but not that in neuro-
nal nor mixed glial cultures. Mouse cortical neuronal, 
mixed glial and astrocyte cultures were treated with 5 ng/ml 
of rmIL-1β for 24 hr and 10 µg of protein was analyzed by 
Western blot. Increased ceruloplasmin expression demon-
strated that the mixed glia and astrocytes responded to IL-
1β. The blot was reprobed for β-tubulin to confirm equal 
protein loading. Data are representative of results obtained 
from three independent experiments.

Thrombin receptor 1 (PAR-1) protein is depressed in IL-1R1-null mice after a stab wound injuryFigure 3
Thrombin receptor 1 (PAR-1) protein is depressed in 
IL-1R1-null mice after a stab wound injury. Tissues 
from 3 wild-type (WT) and 3 IL-1R1null mice (KO) at 3 d 
after stab wound (SW) were analyzed by Western blot for 
PAR-1. The blot was reprobed for β-tubulin to confirm equal 
protein loading.
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plasmin (CP) was analyzed. As expected, IL-1β increased
CP significantly in the astrocyte and mixed glial cultures.

Extracellular matrix molecules are independent of IL-1R1 
(Fig. 5 and 6)
Extracellular matrix (ECM) molecules play an important
role in mediating the wound-healing process in the body,
and are essential components of glial scars. In adult CNS,
ECM molecules, such as chondroitin sulfate proteogly-
cans (CSPG) and tenascin, are expressed at low levels;
however, injury can elicit a prominent increase in their
expression, which is primarily associated with reactive
astrocytes surrounding the injury site. Thus, we analyzed
the protein levels of tenascin-c and CSPG-4 family.
Tenascin-c resolved as a single band by Western blot in the
unlesioned brain at approximately 220 kDa (Fig. 5). Fol-
lowing the stab wound injury, tenascin resolved as two
bands at approximately 208 and 240 kDa. However, there
was no difference in the induced level of tenasin-c
between the WT and the IL-1R1-null mice.

Similarly, the expression of a CSPG-4 protein of approxi-
mate molecular weight of 240 kDa was increased after the
injury, but there was no difference in the expression
between WT and IL-1R1-null animals (Fig. 6A). To con-
firm that the induction of CSPG-4 was independent of IL-
1β, we injected IL-1β into the neocortex of WT and IL-
1R1-null mice and analyzed CSPG-4 levels after 5 days.
Consistently, IL-1β did not induce CSPG-4 expression in
WT or IL-1R1-null mice (Fig. 6B and 6C).

Several astrocytic functions are also independent of IL-1R1 
(Fig. 7)
To assess the functional state of astrocytes after traumatic
brain injury, we analyzed the expression of two glutamate
transporters, glutamate aspartate transporter (GLAST) and
glutamate transporter-1 (GLT-1/EAAT2), the glutamate

transaminase, glutamine synthetase (GS) and the calcium
regulatory protein S-100B. These proteins enable astro-
cytes to regulate the levels of two important signaling
molecules in the brain, glutamate and calcium. Our
results show that in both WT and receptor-null mice, stab
wound injury increased GLAST, GLT-1, GS and S-100B
protein expression at 3 day post injury by 8, 6, 4 and 12
fold, respectively (Fig. 7). However, neither the basal nor
induced levels of these proteins were different between
the WT and the receptor-null mice. Although we observed
decreased GFAP expression at this time point, our data
indicate that there is reduced GFAP per cell rather than
fewer astrocytes. Thus, these results suggest that several
astrocytic physiological functions, such as the capacity to
clear glutamate, synthesize glutamine from glutamate and
buffer levels of calcium, do not depend upon IL-1 signal-
ing through IL-1R1 in either the normal or injured state.

Discussion
IL-1β coordinates many of the initial and late stages of cel-
lular responses to injury. Since IL-1β is usually present in
elevated quantities in and around sites of injury, it has
been cast in a negative light in the context of CNS injury
and diseases [11,13,47-49]. In particular, since IL-1 can
induce many pro-inflammatory mediators causing unde-
sirable effects, it is regarded as an undesirable injury-asso-
ciated cytokine [20,21,50,51]. Furthermore, IL-1R1 is
essential for the activation of microglia and the induction
of multiple pro-inflammatory mediators in response to
brain injury [31-33]. Altogether, these studies suggest that
the signaling of IL-1 through IL-1R1 can be deleterious
through both direct and indirect actions.

Astrocytes play a major role in restoring homeostasis to
the damaged brain and IL-1β regulates multiple astrocytic
responses after injury [52]. The data presented in this
communication demonstrate that several aspects of the
astroglial response subsequent to CNS trauma require IL-
1 signaling through the IL-1R1; however, quite a few
adaptive physiological functions of astrocytes are inde-
pendent of IL-1R1 signaling. In summary, this study on
the effect of a penetrating brain injury in mice lacking IL-
1R1 demonstrates that IL-1R1 deletion results in: 1) atten-
uated hypertrophy of astrocytes; 2) delayed cellular GFAP
induction; 3) diminished induction of PAR1; 4) intact
induction of extracellular matrix proteins and 5) intact
induction of glutamate transporters, glutamine synthetase
and S-100B.

The induced levels of the protease-activated receptor,
PAR-1, were significantly attenuated in IL-1R1-null mice.
Thrombin, a serine protease generated by cleaving pro-
thrombin, is an essential component of the coagulation
cascade. It is produced in the brain either immediately
after a cerebral hemorrhage (primary or secondary to

Extracellular matrix protein, tenascin-c, is induced by a stab wound injuryFigure 5
Extracellular matrix protein, tenascin-c, is induced 
by a stab wound injury. Neocortices from 3 wild-type 
(WT) and 3 IL-1R1-null mice (KO) at 5 d after stab wound or 
protein samples from the contralateral cortex were analyzed 
by Western blot for tenascin-C.
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brain trauma) or after the blood-brain barrier (BBB)
breakdown that occurs following brain injury [53]. Evi-
dence, both in vivo [46,54,55] and in vitro [56,57] indicate
that high levels of thrombin within brain parenchyma can
be deleterious. A recent report documents upregulated
PAR-1 expression in astrocytes during HIV encephalitis
[58]. Our findings suggest that blocking IL-1 signaling via
IL-1R1 may attenuate the activation of PAR-1 after brain
injury. To determine which cell type is induced to express
PAR-1, the effects of IL-1β on PAR-1 expression were
assessed in vitro. The level of PAR-1 protein expression
after IL-1β stimulation was examined in the mixed glial,
enriched astrocyte, enriched microglial and cortical neu-
ronal cultures. The level of PAR-1 expression trended
towards increasing in the astrocyte cultures; the level was
unchanged in mixed glial cultures, the level was very low
in the cortical neuronal cultures and below the level of
detection in the microglial cultures. Altogether, these
results suggest that brain cells are not responsible for the
induction of PAR-1 expression after traumatic brain
injury. Other cell types, such as endothelial cells or infil-
trating monocytes are likely candidates [59,60]. As the
brains were not perfused prior to extracting tissue for anal-
ysis, therefore, the observed PAR-1 could have been in the
vascular compartment.

Extracellular matrix (ECM) molecules, including CSPGs
and tenascin, are important participants in the wound-
healing process. They are expressed at low levels in the
normal brain and are induced by injury. In a damaged
brain, this increase is primarily associated with reactive
glia that surround the injury site [61]. The astrocytes
respond to CNS injury by forming "astroglial scars",
which can become a barrier to regenerating axons. It has
been observed that axons fail to regenerate past a lesion
site, even in the absence of a recognizable glial scar [62].
This suggests that reactive glia establish a biochemical
rather than a physical barrier that inhibits axonal regener-
ation. Following CNS injury, CSPGs are upregulated in
areas of reactive gliosis and multiple molecular species are
induced [61,63,64]. These injury-induced CSPGs inhibit
neurite outgrowth both by directly acting on receptors
present on growth cones as well as by indirectly altering
the actions of growth-promoting factors [65,66]. Further-
more, the CNS-specific CSPG core proteins brevican and
phosphacan are primarily expressed by astrocytes [67-69],
whereas the neuroglycan 2 (NG2) CSPG is produced by a
unique population of glial cells termed polydendrocytes
[70,71]. NG2 mRNA and protein levels are induced after
many types of CNS injury [72]. Neurocan is another CSPG
distributed throughout the developing CNS [69].
Although neurocan is initially localized to neurons [73],
it is also expressed by astrocytes [74].

Chondroitin sulfate proteoglycans-4 (CSPG-4) is induced by stab wounds, but not by IL-1βFigure 6
Chondroitin sulfate proteoglycans-4 (CSPG-4) is 
induced by stab wounds, but not by IL-1β. A, Neocorti-
ces from 2 wild-type (WT) and 2 IL-1R1-null mice (KO) at 10 
d after stab wound or protein samples from the contralateral 
cortex were analyzed by Western blot for CSPG-4. Each lane 
represents protein from an individual animal. B, Samples 
from injected neocortices were homogenized in chondroiti-
nase ABC and analyzed by Western Blot for CSPG-4. Each 
lane represents an individual WT animal that received either 
IL-1β or PBS. C, IL-1β was injected into WT or IL-1R1-null 
mice. Neocortices from 4 WT and 4 IL-1R1-null mice at 5 d 
after injecting 1 ng IL-1β were analyzed by Western blot for 
CSPG-4. Each lane represents protein from an individual ani-
mal.
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In the present study we confirmed that CSPGs are induced
by traumatic brain injury, and also found that the injury-
induced expression of CSPGs is unaffected by IL-1R1 dele-
tion. One logical mechanism is that IL-1 signals through
an alternative receptor than IL-1R1, and hence deleting
the IL-1R1 does not affect signaling through that receptor.
Or, the induction of CSPGs is mediated by other factors.
However, to date we have no direct evidence from our
studies for an alternative IL-1 receptor mediating the effect
of IL-1. Furthermore, if an alternative receptor acts to
induce the expression of CSPGs, we should have seen an
increased expression of the CSPGs when we directly
injected the IL-1 into the IL-1R1-null mice. The absence of
such a response suggests that other factors are responsible
to the induction of CSPGs in response to injury. A strong
candidate is transforming growth factor-beta (TGF-β)
[75].

Neuronal dysfunction subsequent to brain damage causes
the release of glutamate, which can lead to secondary exci-
totoxic neuronal death and death of oligodendroglial pro-
genitors. Astrocytes regulate glutamate levels by actively

removing it from the extracellular space and converting it
to glutamine. The capacity of astrocytes to reduce extracel-
lular levels of glutamate dramatically impacts the extent of
neuronal and oligodendroglial damage after an insult.
Astrocytes possess two glutamate transporters that seques-
ter excess glutamate, GLT-1 and GLAST, and glutamine
synthetase, which converts glutamate to glutamine. Here
we demonstrate that a penetrating brain injury increases
the expression of GLT-1 and GLAST. Previous studies also
have shown increases in these transporters as a result of
other injury paradigms. For instance, GLT-1 levels
increase 2.5 fold above the control three days after the
trauma caused by transplanting E18 neocortical tissue
into rat cortex [76]. Similarly, GLT-1 and GLAST mRNA
expression are induced after cultured astrocytes are physi-
cally traumatized [77,78]. Studies from our lab indicate
that there is a dramatic induction of GLAST protein in WT
and IL-1R1-null mice after a mild hypoxic/ischemic insult
(Sen et al. unpublished observation). In addition, the cal-
cium regulatory protein S-100B was upregulated by the
stab wound injury, but the levels of expression were not
different between WT and IL-1R1-null mice. S-100B can
affect a number of calcium regulated enzymes within
astrocytes and it also can be secreted from astrocytes to
serve as an intercellular signal between glial cells and neu-
rons [38,40]. Thus, a neocortical stab wound injury
induces the expression of GLT-1, GLAST, the GS, and S-
100B, but our data indicate that this induction is inde-
pendent of IL-1R1.

Data presented in this communication and from previous
studies in our laboratory support the concept that block-
ing IL-1 signaling through IL-1RI will reduce damage
caused by injury or disease. Our previous studies have
shown that the induction of NGF and ceruloplasmin is
preserved when this receptor is deleted [31,34]. In this
paper we demonstrate that IL-1R1 deletion has minimal
effects on glutamate homeostatic proteins and calcium
binding proteins in astrocytes. As numerous studies have
provided rationale for antagonizing the IL-1R1 to prevent
damage to CNS neurons and glia, a concern has been that
the adaptive responses of the astrocytes that occur subse-
quent to IL-1 stimulation will be lost. In the present study
we show that abrogating IL-1R1 signaling will not have
any direct effect on sequestering and detoxifying gluta-
mate nor on S-100B-mediated signaling in the brain as
these functions are preserved when this receptor is
blocked.

Conclusion
We show that a number of astrocytic functions, including
the increased capacity to buffer glutamate and the
increased capacity for S-100B signaling are preserved
when the IL-1RI is genetically ablated. On the other hand,
the absence of IL-1R1 signaling results in attenuated

Glutamate transporters, GLAST and GLT-1, glutamine syn-thetase, GS, and S-100B are upregulated in both WT and IL -1R1-null mice after a penetrating brain injuryFigure 7
Glutamate transporters, GLAST and GLT-1, 
glutamine synthetase, GS, and S-100B are upregu-
lated in both WT and IL -1R1-null mice after a pene-
trating brain injury. GLAST, GLT-1, GS and S-100B 
protein expression was analyzed by Western Blot on tissues 
from the lesioned cortices of wild-type mice (WT-SW), an 
equivalent region of unlesioned contralateral cortices of the 
same wild-type animal (WT-CC), the lesioned cortices of 
receptor-null mice (KO-SW), and an equivalent region of 
unlesioned contralateral cortices of the same receptor-null 
animal (KO-CC). Blots were re-probed for β-tubulin to 
establish equal protein loading on the gel. Lanes represent 
samples from 3 individual WT animals at 3 d after stab 
wound.
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hypertrophy of astrocytes, delayed induction of cellular
GFAP, decreased induction of PAR-1 and unperturbed
production of extracellular matrix proteins. In a previous
study, we showed that abrogated IL-1R1 signaling
decreases the responsiveness of microglia and macro-
phages to injury and lowers the basal and induced levels
of cyclooxygenase-2, IL-1 and IL-6 [79]; these results sug-
gest that antagonizing IL-1R1 decreases inflammatory
responses after injury. Altogether, these data provide
important support for the development of therapies
designed to antagonize this receptor. Our research sug-
gests that these strategies may reduce inflammation and
preserve the adaptive gain of physiological functions by
astrocytes in the central nervous system.
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