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Abstract
The tribbles protein family, an evolutionarily conserved group of pseudokinases, have been shown to
regulate multiple cellular events including those involved in normal and malignant haematopoiesis. The
three mammalian Tribbles homologues, Trib1, Trib2 and Trib3 are characterized by conserved motifs,
including a pseudokinase domain and a C-terminal E3 ligase-binding domain. In this review, we focus on the
role of Trib (mammalian Tribbles homologues) proteins in mammalian haematopoiesis and leukaemia. The
Trib proteins show divergent expression in haematopoietic cells, probably indicating cell-specific functions.
The roles of the Trib proteins in oncogenesis are also varied and appear to be tissue-specific. Finally, we
discuss the potential mechanisms by which the Trib proteins preferentially regulate these processes in
multiple cell types.

Tribbles
Tribbles proteins belong to an evolutionarily conserved
protein family that is implicated in diverse cellular events
including proliferation, metabolism and oncogenic trans-
formation. Tribbles was first characterized in Drosophila
as an important cell cycle regulator [1,2]. The three
mammalian Tribbles homologues, Trib1, Trib2 and Trib3
[3] are characterized by a conserved pseudokinase domain
[4] and a C-terminal E3 ligase-binding domain [5]. Tribbles
proteins function as scaffolding molecules that facilitate
the degradation of proteins via a proteasome-dependent
mechanism. In Drosophila, tribbles mediates the degradation
of the cell division cycle 25 homolog A (CDC25a) homologue
string, which regulates cell cycle progression [1,6] and
the CCAAT/enhancer-binding protein (C/EBP) homologue
slow border cells (slbo) which functions in oocyte migration
[7]. In mammals, Trib1 and Trib2 promote C/EBPα and
C/EBPβ degradation by recruiting the E3 ligase, Caspase
recruitment domain-containing protein 16 (CARD16, also
known and defined in this article as COP1) [8,9]. Similarly,
Trib3 promotes COP1-dependent degradation of acetyl
CoA carboxylase (ACC), an enzyme involved in fatty
acid synthesis [5]. TRIB proteins also modulate signalling
pathways such as protein kinase B (PKB, also known and
defined in this article as AKT) [9,10] and Mitogen-activated
protein kinase (MAPK) [11] (Figure 1). However, it is unclear
if these functions are related to protein degradation or
alternative TRIB functions.
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Tribbles in normal haematopoiesis
The expression of the Trib genes in mammals is widely
divergent, suggesting the compartmentalization of their
function. Trib3 is largely expressed by non-haematopoietic
tissues and therefore will not be discussed in this review.
In contrast, both Trib1 and Trib2 are expressed in
haematopoietic lineage cells; in mice, Trib1 is predominantly
expressed in myeloid lineage cells, whereas Trib2 has a
lymphoid bias [12]. This separation is not absolute as
Trib2 is moderately expressed in the common myeloid
progenitor (CMP) and megakaryocyte/erythroid progenitor
(MEP; Figure 2). It is important to note that these data are
derived from mRNA expression as antibodies capable of
detecting endogenous expression are still being developed.

Although the expression of Trib1 and Trib2 is largely
segregated between the myeloid and lymphoid lineages, there
is evidence that both affect myeloid development. It was
initially noted that retroviral expression of Trib2 in murine
bone marrow progenitors reduced the percentage of granulo-
cytes and concomitantly increased the number of monocytes
prior to the development of acute myeloid leukemia (AML).
This phenomenon correlated with decreased C/EPBα p42
protein expression with minimal impact on C/EPBα p30 [8].
Although increased Trib2 expression can affect myelopoiesis,
the physiological relevance of this finding is uncertain as
myeloid defects have not been described in Trib2 knockout
mice [13]. Furthermore, given the absence of Trib2 expression
in the majority of myeloid progenitors and mature cells, it is
unclear what affect this protein has on normal myelopoiesis.

Trib1 is expressed in myeloid cells and probably regulates
development of this lineage. A recent study by Satoh et al.
[13] examined the role of Trib1 in myeloid development in a
knockout mouse model. The results showed that Trib1 loss is
associated with a decrease in splenic macrophage populations,
including ‘M2’ biased cells [13]. In addition, these mice also
exhibited an expanded peripheral neutrophil population and
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Figure 1 The Trib family members regulate protein function

Trib proteins facilitate the degradation of C/EBP in a COP1-dependent manner. Additionally, Trib inhibits AKT phosphorylation

and activates MAPK signalling.

absence of eosinophils. These phenotypic changes correlated
with increased C/EBPα protein expression, highlighting
the potential importance of the interaction between Trib1
and C/EBP family members in myelopoiesis. Furthermore,
these alterations promoted the development of lipodystrophy
and metabolic disturbance, which could be rescued by
transferring wild-type macrophages. The data, to date,
suggest a role for Trib1 in physiologic myelopoiesis;
however, overexpressed Trib2 may affect myelopoiesis in
pathologic conditions [8]. C/EBPα appears to be connected
to these phenotypes; however, this does not rule out the
possibility that additional Trib-regulated signalling pathways
are involved. For example, Trib proteins in mice and humans
interact with the MAPK pathway [11,14], suggesting a
potential role in cell proliferation. Further, Trib2 can inhibit
AKT in a model of adipocyte differentiation [9] and Trib3 is
also known to inhibit AKT activation (Figure 1) [10].

Tribbles in leukaemia

Acute myeloid leukemia
Despite the role of Drosophila tribbles as a negative regulator
of the cell cycle, which suggested that it functioned as a
tumour suppressor, exogenous expression of murine Trib1
or Trib2 is sufficient to induce AML in vivo, a process
that requires COP1-mediated proteasomal degradation of
C/EBPα [15,16]. Deletion of C/EBPα resulting in its
complete absence in vivo leads to the development of
a myeloproliferative disorder [17], whereas expression of
the p30 C/EBPα isoform drives AML [18]. Therefore, an
important function of Trib proteins in AML pathogenesis is
the degradation or modification of C/EBPα that results in an
altered ratio of the p42 and p30 C/EBPα isoforms. These
findings are consistent with studies showing that TRIB1
and TRIB2 are highly expressed in molecularly-defined sub-

Figure 2 Variable expressions of Trib1 and Trib2 mRNA in

haematopoietic cells

The expression data were obtained from the Immgen database [12].

Red denotes high expression, blue denotes low expression.

types of human AML. However, distinct differences between
TRIB1 and TRIB2 are apparent in AML pathogenesis. Mice
transplanted with haematopoietic progenitors expressing
Trib1 develop leukaemia more quickly (116 ± 28 days) than
those that receive cells expressing Trib2 (174 ± 21 days) [19].
Additionally, increased TRIB2 expression is limited to a
distinct subset of AML patients in which C/EBPα is not
mutated, but displays decreased function [8]. In contrast,
TRIB1 is highly expressed among multiple sub-types of AML
that are not grouped by C/EBPα status including those driven
by inv(16) or t(16;16) as well as M4 and M5 as compared with
healthy controls [20,21].

The mechanistic role of Trib1 in AML is unclear. Trib1 is
known to collaborate with HoxA7 and HoxA9 to decrease
AML latency in mouse models [22], raising the possibility
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that TRIB1 and HOXA7/HOXA9 co-operate in human
AML. Additionally, Trib1 and MEK1 interact, leading to the
phosphorylation of ERK and the degradation of C/EBPα

[23]. A TRIB1 gain of function mutation, R107L, was
identified in human acute megakaryocytic leukaemia, the
overexpression of which enhances Erk phosphorylation and
accelerates the onset of AML in vivo [24]. These data suggest
that the leukaemogenic functions of TRIB1 and TRIB2 are
not identical.

T-cell acute lymphoblastic leukemia
Trib2 was first identified as a Neurogenic Locus Notch
Homolog Protein homologue 1 (NOTCH1) target in murine
T-ALL [8,25] and subsequent gene expression studies show
that TRIB2 is highly expressed in T-ALL [21]. High TRIB2
expression was identified in T-ALL and correlates with
NOTCH1/FBXW7 (F-box/WD repeat-containing protein
7, which is involved in Notch turnover) mutations in
paediatric cases [26]. Additionally, studies showed that Trib2
is also a direct transcriptional target of TAL-1 and is required
for the growth and survival of human T-ALL cell lines. The
studies of Sanda et al. [27] show that TRIB2 is oppositely
regulated by the TAL1 and immunoglobulin enhancer-
binding factors E12/E47 (E2A) and Transcription Factor
12 (TCF12/HEB) transcription factors, where the former
activates transcription and the latter represses. Their data
showing that inhibiting TRIB2 leads to apoptosis and growth
arrest of multiple human T-ALL cell lines suggest that TRIB2
may be a therapeutic target in T-ALL.

Perspectives on the oncogenic
mechanisms of tribbles proteins
An oncogenic role for Trib proteins was first uncovered
in a mouse model of AML. Recipients of haematopoietic
progenitors overexpressing Trib2 developed AML with a
median latency of 179 days [8]. Subsequent studies showed
that Trib1 acts co-operatively with HoxA9 and Meis1 in
a murine model of AML [22] and that the overexpression
of Trib1, but not Trib3, in haematopoietic progenitors also
induces AML in vivo [19]. Mechanistically, the Trib proteins
promote leukaemogenesis by facilitating the degradation
of C/EBPα [8] through interaction with the E3 ubiquitin
ligase COP1 [15,16,19]. Additionally, Trib1 interacts with the
MAPK pathway member MEK1 to drive disease [23].

The Trib proteins are also implicated as oncogenic factors
in solid tumours, though the role of these proteins appears
to be tumour dependent. TRIB1 was shown to be essential
in the growth and survival of prostate cancer cells [28,29].
Trib2 is highly expressed in melanoma cells and promotes
oncogenesis by inhibiting FOXO proteins [30] and was
identified as a potential biomarker of melanoma progression
[31]. Additionally, Trib2 was identified as a potential driver
of lung tumorigenesis through C/EBPα inhibition [32]. Trib3
is highly expressed in human lung, colon and breast tumours
[33]. Additionally, high Trib3 expression is associated with
poor prognosis in breast cancer patients [34].

Despite having a potential oncogenic role in leukaemia and
solid tumours, Trib proteins are also implicated as tumour
suppressors. A recent study by Salazar et al. [35] showed that
the genetic deletion of Trib3 accelerated progression mouse
skin papillomas, resulting in a more aggressive phenotype.
The mechanism of enhanced tumorigenesis was largely
dependent on the de-regulated phosphorylation of AKT
and the subsequent inactivation of the FOXO3 transcription
factor [35]. Another study showed that TRIB1 interacts with
p53 to suppress its transcriptional activity by enhancing
deacetylation and decreasing DNA binding, resulting in
increased cell viability [36].

In summary, the accumulating data support an important
function for Trib proteins in oncogenesis. The precise
function is unlikely to be stereotypical and will probably
depend on context. For example, Trib proteins have the
capacity to function as both dominant oncogenes and tumour
suppressors. Although Trib inhibition of C/EBPα may be
an important mechanism in some tumour types, there are
data implicating other signalling pathways, such as MAPK
and AKT. Clearly, further studies are needed to identify the
downstream targets of oncogenic Trib signalling as well as
targets during normal haematopoiesis, which may be distinct.
We anticipate that ongoing studies will reveal both the mech-
anisms by which Trib functions in oncogenic transformation
and in which tumours it may be therapeutic target.
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