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Abstract

As educational institutions begin a school year following a year and a half of disruption from

the COVID-19 pandemic, risk analysis can help to support decision-making for resuming in-

person instructional operation by providing estimates of the relative risk reduction due to dif-

ferent interventions. In particular, a simulation-based risk analysis approach enables sce-

nario evaluation and comparison to guide decision making and action prioritization under

uncertainty. We develop a simulation model to characterize the risks and uncertainties asso-

ciated with infections resulting from aerosol exposure in in-person classes. We demonstrate

this approach by applying it to model a semester of courses in a real college with approxi-

mately 11,000 students embedded within a larger university. To have practical impact, risk

cannot focus on only infections as the end point of interest, we estimate the risks of infection,

hospitalizations, and deaths of students and faculty in the college. We incorporate uncer-

tainties in disease transmission, the impact of policies such as masking and facility interven-

tions, and variables outside of the college’s control such as population-level disease and

immunity prevalence. We show in our example application that universal use of masks that

block 40% of aerosols and the installation of near-ceiling, fan-mounted UVC systems both

have the potential to lead to substantial risk reductions and that these effects can be mod-

eled at the individual room level. These results exemplify how such simulation-based risk

analysis can inform decision making and prioritization under great uncertainty.

Introduction

Educational institutions such as universities and K-12 schools face ongoing challenges in man-

aging risks associated with the ongoing SARS-CoV-2 pandemic. As schools and universities

return to in-person classes they must decide what, if any, mitigation measures to implement.

Should they require masks? Reduce density in classes? Install in-room active mitigation mea-

sures such as HEPA filtration or UVC virus inactivation? What testing policy should they

have? These types of decisions may have significant impacts on virus spread, institutional oper-

ations, and cost, yet they must be made under localized conditions of considerable uncertainty
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including temporal variability about virus spread, prevalence of the virus in the surrounding

community, and the health impacts of infections.

Risk analysis can provide valuable support for decision-makers by providing both quantita-

tive and qualitative insights into the risks faced by decision makers and the impacts of different

mitigation measures. Here we use the term “risk” in line with the accepted definitions from

the Society for Risk Analysis [1]. Risk must consider both the potential outcome space (what

can happen), the uncertainty about the outcomes, and the severity of the outcomes (how much

do we care about them) in a given situation. A key question then is what the end points of con-

cern are. In this work we consider the key outcomes to be health effects of infections with

infections themselves being an important intermediate measure. That is, we cannot use only

infections as the end point of the analysis; we must consider health outcomes such as hospitali-

zation and death. At the same time, we do not explicitly consider other critical outcomes such

as student learning and mental health outcomes and institutional financial and reputation out-

comes among many others. These are all critical components of the landscape of risk associ-

ated with in-person teaching during COVID-19 and must be considered in addition to the

output of quantitative risk models like the one presented here for the ultimate decision and

policy making.

One aspect of many risk analyses is a quantitative risk model. While a quantitative risk

model does not address all aspects of a given situation, it can help by providing probabilistic

estimates of outcomes such as, in the case of COVID, infections, hospitalizations, and deaths

due to virus aerosol transmission under different mitigation strategies. Doing so requires that

the risk analysis approach models transmission at the level of individuals within classrooms to

allow the room-level effects of interventions and mixing of individuals across classes to be

modeled. Also, influences such as the prevalence of infection in the outside community must

be accounted for. In addition, the risk analysis approach must provide estimates of the uncer-

tainty in the assessed risks in a way that reflects the high degree of uncertainty in virus trans-

mission. This requires a fundamentally different approach than traditional

compartmentalized, population-averaged epidemiology-based models.

In this paper we develop a stochastic simulation framework to estimate the probability of

infection, hospitalization, and death at the individual level and collective (campus) levels and

to compare these risks with different potential mitigation measures. This framework simulates

transmission between individual students and faculty in each meeting of each class throughout

a semester, resulting in estimated probability distributions of both individual likelihood of

becoming infected, hospitalized, or dying and estimated probability distributions for these

three outcomes for the campus as a whole. It must be emphasized that these estimated proba-

bilities are highly dependent on the input values for parameters such as community prevalence

of disease, transmissibility of the disease vector, and testing policy, among others. This

approach provides support that informs both individuals as well as those responsible for higher

level policy decisions as they choose among possible individual-level and room-level and orga-

nization-level mitigation options.

We demonstrate our approach by modeling COVID risk for one semester of operation of

classes in a real college with approximately 11,000 students set in the context of a larger univer-

sity. For privacy reasons we leave this college unnamed given the sensitive nature of this work.

While this model was initially designed to support mitigation decision making related to the

SARS-Cov-2 virus in a college setting, it can be used to model any other aerosol-transmitted

virus as long as the needed parameter values can be satisfactorily approximated. It can also be

used in other settings such as primary and secondary schools with appropriate adjustments in

model logic and input parameters. This model advances the ability to estimate risks associated

with virus transmission in a way that allows mitigation measures at the individual and room
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levels to be evaluated and compared, providing stronger support for mitigation decision mak-

ing as well as communicating the underlying rationale to the myriad stakeholders to facilitate

ultimate organizational success.

An important caveat is needed up front. No model can fully represent reality. Or in the

words of a well-known quote often attributed to George Box “All models are wrong, but some

are useful” [2]. The goal of a quantitative risk model such as the one presented here is not to

make precise predictions about future outcomes. Rather, the purpose is to provide a probabi-

listic understanding of potential outcomes under different interventions and, most critically,

to provide a relative ranking of risk and better understanding of the effects of different poten-

tial interventions thus aiding in the selection of the most prudent decisions.

This paper is organized as follows. We first present background on COVID-19 aerosol

transmission, dose response modeling, and simulating COVID-19 transmission and response

at universities. We next present the simulation model and the data used to populate this

model. We then demonstrate the model using the the course schedule for an actual semester of

classes in our example college. Following this, we discuss the results and the limitations in the

current version of the model. We conclude with comments on the benefits of our model and

simulation-based risk analysis in general and identify opportunities for expanding this meth-

odology to other settings. We provide additional details about the model’s algorithmic struc-

ture, input parameters, and detailed model results for the example college in the Appendices.

Background

Consensus has built around the dominance of SARS-CoV-2 transmission via aerosols [3, 4]. In

addition, while symptoms such as coughing and sneezing lead to higher levels of virus being

expelled by those who are infected, the high rate of asymptomatic prevalence of SARS-CoV-2

requires consideration of spread beyond quarantining those who express symptoms [5, 6]. Just

one seemingly healthy but infected individual is capable of transmitting SARS-CoV-2 through

breathing and that risk increases with higher respiratory activity from whispering, to lecturing,

to singing [4, 7]. Thus, shared spaces, particularly indoor spaces with higher respiratory activ-

ity including eating and talking, pose increased risk for individuals to inhale SARS-CoV-2.

With this increased risk accompanying previously very typical activities have come efforts

to model aerosol and droplet concentrations in various settings including indoor dining, hos-

pitals, planes, and classrooms [8–11]. While particles come in a continuum of sizes, there is a

common, though at times problematic, attempt to classify them as either droplets, the larger

particles that settle out of air relatively quickly (e.g., typically within 2m from being exhaled),

or aerosols, the smaller particles that can stay airborne for hours. There has been vigorous

debate about how much of a role aerosols play in the transmission of SARS-CoV-2, but the evi-

dence has become clear that aerosols are the dominant transmission mode in most indoor set-

tings [3, 12–14]. We focus on only aerosol-based transmission in this paper.

Dose response modeling is one method for translating aerosol virion concentration to indi-

vidual-level probability of infection [15, 16]. Evans [17] presents a relatively simple mathemati-

cal model for COVID-19 aerosol exposure assuming a well-mixed room. Watanabe [16]

provides an exponential dose response function formulated for SARS Coronavirus. Dabisch

et al. [18] recently estimated a dose-response function for SARS-CoV-2 and found an expo-

nential dose response function and parameters in rough agreement with those from [16]. We

build from this previous work, particularly that of Evans [17] and Watanabe [16] to model

how individuals interact with aerosols in an enclosed space under various conditions and for

various activities and the infections that result. These efforts present opportunities to evaluate

the effects of interventions such as air purifiers (e.g., HEPA filtration and ultraviolet light),
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improved HVAC systems, and masking on virion concentration and health outcomes in a

spaces ranging from a single room to a college [8, 9, 12, 19].

As universities, schools, and communities grapple with the risks associated with both in-

person and virtual learning, researchers have taken advantage of simulation methods to for-

mulate of the spread and impact of COVID-19 that accompanies in-person interactions, from

entire states [20] to universities [21–23], to K-12 schools [11, 24, 25], and individual rooms

[26]. Such endeavors take advantage of compartmental modeling, agent-based modeling, and

social network analysis methods to evaluate interventions that include testing, mask-wearing,

isolation, and distancing measures. In general, agent-based models (ABMs) account for com-

plex dynamics of individual agent-level decisions for a particular community where data is

available or results are aggregated enough to reflect the wide range of possible interactions.

But, they are not easily adaptable across community populations or facilities. ABMs are useful

for simulating interactions based on prototypical activity spaces across a state [20] or campus

[22, 23, 26], including classrooms, dormitories, libraries, office buildings, and restaurants. In

these cases, ABMs may be helpful for evaluating high-level, broad policy interventions such as

distancing, masking, and surveillance testing. Conversely, ABMs can also be useful for evaluat-

ing risk drivers in single spaces (e.g., classrooms) over short time horizons where interactions

and fluid dynamics can be represented, such as in [26]. However, ABMs are not suited for eval-

uating individual room or facility-level interventions over longer time horizons (e.g., a semes-

ter) because of the computational challenges and the difficulties capturing behavior and room-

level details over these longer horizons. Compartmental SEIR models, on the other hand, rely

on simulating transmission through close contacts between infectious and susceptible individ-

uals, which can take advantage of social network modeling and differentiating between shared

classrooms versus households to show population level impacts of COVID-19 from [11, 24,

25]. But, compartmental models must assume room parameters for defining close contacts

rather than capturing varying risk of different spaces or non-linear risk of multiple infectious

individuals in a shared room [27].

Our simulation model is unique from these approaches in that we utilize a risk analysis

framework for assessing the uncertainty accompanying both COVID-19’s parameters and

potential policy responses. In addition, while still allowing for tracking susceptible, exposed,

infectious, and removed individuals over the course of a college semester, our method differs

from compartmental models in our ability to model individual class meeting room aerosol

concentrations. Thus, our method enables evaluation of both individual room- and human-

level interventions rather than relying on applying a single basic reproductive number, R0, to

larger populations or an average number of daily contacts [21, 23–25]. Furthermore, our

model stands out from other university agent-based models as we incorporate actual individ-

ual classroom facility data, including volume and airflow, rather than assuming universal class-

room size or sampling from prototypical classrooms. Consistent across all of these

methodologies is the demonstrated effectiveness of defense in depth, where the compounding

effects of multiple interventions are necessary for maintaining manageable levels of transmis-

sion risk [20, 25, 26] and the challenges associated with successfully translating simulation

model results into adaptive decision-making [21–23].

Methods

Ethics statement

This project and date therein received approval of exemption by the University of Michigan’s

Health Sciences and Behavioral Sciences Institutional Review Board under the ID
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HUM00206822. This data was approved for the purpose of secondary research and so was

deemed exempt from informed consent of the subjects involved.

General approach

To understand the risks of COVID-19 in the context of in-person classes on a college campus,

we developed a simulation model to assess the probability of aerosol transmission of COVID-

19 and the associated adverse health outcomes for students and faculty. We structured this

simulation into three layers: class period, day, and semester. After initializing infection status

at the beginning of the semester, we assess students’ daily exposure to SARS-CoV-2 aerosol

particles in the classroom. Given a single day’s cumulative viral exposure, we apply a dose-

response function [16] to assess an individual’s probability of developing COVID-19 each day.

We inject additional exogenous infections at the end of each day based on prevalence of

COVID-19 in the community. We simulate every class meeting on every day over a period of

13 weeks to represent a semester to determine the total number of in-class infections for non-

immune students. We used actual student and faculty class schedules from our example college

as input to demonstrate the model. For each in-class infection during the semester, we simu-

late the risk of adverse health outcomes (hospitalization, death) based on age-specific rates

from the health department of the county that is home to our example college.

This simulation starts with an input schedule array with all students and faculty assigned to

classes and all classes assigned to rooms based on Fall 2019 (the last pre-pandemic fall semes-

ter) data provided by the college. Each individual is randomly assigned immunity status

(defined as prior infection or vaccination) based on user-set immunity rate parameters for stu-

dents and faculty. This reflects the combined influence of prior infection and vaccination.

Individuals are then randomly assigned a weekday testing day to implement a weekly testing

policy, reflecting the college’s testing policy at the time this model was created. Initial infec-

tions at the beginning of the semester are randomly assigned to non-immune individuals

based on a user-set parameter. The length of infectiousness of each infection is assigned based

on a process described later in this paper that includes lag time, testing policy, and asymptom-

atic rate. Finally, we initialize arrays to track the days when individuals become infected and

when they are actively infectious.

For each day and for each class that meets that day, the number of infected persons and the

air changes per hour (ACH) of the classroom are used to simulate a non-immune individual’s

in-class exposure to SARS-CoV-2 assuming a well-mixed, equilibrium concentration of

SARS-CoV-2 containing aerosol particles in the room using [17] as described in S1 Appendix.

Note, at the time of publication this formulation from [17] was not yet peer reviewed, but the

equation utilized for calculating cumulative exposure is verifiable by unit calculations and

could be replaced in future applications of the model if appropriate. At the end of each day, we

sum each non-immune individual’s total daily exposure. We apply an exponential dose-

response function based on [16] to determine their probability of developing COVID-19 on

that day and randomly assign infectiousness as a Bernoulli trial. We incorporate exogenous

infections by assigning infectiousness to the remaining non-immune and uninfected individu-

als based on a user-defined external infections rate. This process is repeated for each day of the

semester.

At the end of the semester, we identify all students infected in class over the semester (that

is, removing initial exogenous infections from the total). For each in-class infection, we simu-

late hospitalizations based on age-specific hospitalization rates from the local county public

health records. For each resulting hospitalization, we simulate death again based on age-
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specific rates consistent with county data. We replicate each semester 1000 times, beyond what

we identified as necessary to achieve stochastic convergence of the simulation model.

Data

Schedule data was provided by the college based on the Fall 2019 student class schedule and

the Fall 2019 course schedule with room assignments. The Fall 2019 data initially include

15,221 students and 989 instructors across 2,280 classes. The course schedule contained 1,067

classes and their room and time assignments. Many of the classes include independent study

and virtual classes that are not assigned to physical spaces, so we included only those courses

with regular in-person meetings. Further, many of the courses contain multiple instructors, as

the data set includes teaching assistants and faculty members as course instructors. The college

also provided age ranges for faculty members. We cross referenced these faculty ages with the

class schedule to separate faculty from student instructors. Ultimately, the schedule input for

the demonstration of the model included 11,968 students and 342 faculty in 1,025 courses.

The course schedule data also contains room specifications critical for exposure calculations

including the classroom volume and the length of class period. Some rooms contained airflow

parameters. However we noticed inconsistencies in stated versus measured airflow for a sam-

ple of classrooms, and so assigned a reasonable estimate of 3.5 air changes per hour (ACH) in

each room. We subsequently measured ACH values in a subset of the rooms. While some were

higher, others were lower. This parameter could easily be updated if specific and accurate

room ACH values are known.

As SARS-CoV-2 impacts vary by age, the health risks born by students versus faculty also

vary. These differences should be reflected in modeling outcomes. We incorporate age-specific

hospitalization and death rates from the county health department COVID-19 data collection

for the county the college is in. Table 1 below shows values for rates of hospitalization given

infection and of death given hospitalization by age group as calculated from the county data.

The data from the county for the 18–24 age group is, however, insufficient. There were no

deaths in this age group, yet we know the risk is not zero. At the same time, there were substan-

tially fewer college-age students in the county during much of the period covered by this data

because the college was largely virtual. This poses a challenge. Rather than using the county

data, we set the death rate for this age group to 1.90% to match the death rate in the next high-

est category. This parameter could be adjusted for future implementations of the model.

Parameters and assumptions

The model makes some foundational assumptions about COVID-19 transmission. Foremost,

the model considers immunity from vaccination and prior natural infection to provide perfect

immunity for the duration of the semester. We know this is not true, particularly given the

Table 1. COVID-19 hospitalization (given infection) and death (given hospitalization) rates by age in the county

in which our example college is located. This data is taken from a publicly available county web page.

Age Hospitalization Death

18–24 0.60% 0.00%

25–39 2.73% 1.90%

40–49 5.46% 1.90%

50–59 8.73% 7.11%

60–69 15.01% 13.27%

70+ 34.30% 36.97%

https://doi.org/10.1371/journal.pone.0271750.t001
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recent surge in the Delta variant with associated break-through infections. This likely underes-

timates the risk, particularly of infection. We are extending this aspect of the model to account

for imperfect vaccination in ongoing work. While students can become infected (and thereby

gain immunity) mid-semester, the model assumes that no additional vaccinations occur in the

student body after the start of the semester. The model solely represents aerosol transmission

and does not consider transmission from fomites (inanimate objects such as surfaces or floors)

or droplets. Each room is assumed to be well-mixed, such that each occupant receives an equal

dose of viral particles. External infections can be configured to be constant over time (implying

consistent local area spread) or time-varying (implying spikes); our demonstration runs

assumed a constant external infection parameter.

To determine the length of an individual’s infectiousness, we assume a somewhat-simpli-

fied dynamic for infectivity in which individuals become infectious two days after being

infected with SARS-CoV-2. Non-immune students are tested for COVID-19 weekly on a fixed

day-of-week based on an assigned testing day at the beginning of the simulation. Testing is

assumed to be perfectly accurate and students are assumed to comply with quarantine mea-

sures (i.e., not attend class) after testing positive, though we include a one-day lag in receiving

test results. We acknowledge that neither of these simplifying assumptions are strictly true for

all students; testing is not perfect and experience has shown that students do not perfectly fol-

low quarantine rules. Infected students are classified as either symptomatic (who leave the

classroom one day after becoming infectious), or asymptomatic (who are removed one day

after testing positive, accounting for the testing lag).

Given the recency of the SARS-CoV-2 pandemic, there is still great uncertainty in the

nature of this virus and the details of its spread. In particular, while experts hold some consen-

sus in modeling dose response for COVID-19 as exponential, the parameter value of this expo-

nential function is still unknown. However, including and communicating this uncertainty is

critical to evaluating risk. To incorporate this uncertainty, we bound the probability of infec-

tion based on an exponential dose response function P(Infection) = 1 − exp(−dose/k) with k val-

ues selected to represent the lowest and highest expected transmissibility (k = 500 and k = 75,

respectively) based on values from [16].

Model functions

The simulation model and the functions within it are described below in Fig 1.

In a single class, we identify the number of infected individuals and the number of infect-

able individuals from the active infections tracking table. If these values are both greater than

zero, we use a well-mixed room function to determine class-goer’s aerosol exposure. Class-

room parameters include room area, height, airflow (ACH), and the length of the class meeting

period. We then calculate the in-class exposure NA based on equation 8 from Evans [17] below

where breathing at rate rb in a room with aerosol virion concentration ρA cumulative exposure

NA in a room is proportional to the time spent in the room t:

NA ¼ rA rb t ð1Þ

The aerosol source rate is calculated as a function of the number of infected students and

faculty in the room, with different source rates representing the variability in aerosol escape

rate expected from an observing student versus a lecturing faculty member. This algorithm is

shown in detail in Algorithm 1 in S2 Appendix with model formula details provided in S1

Appendix.

At the end of each simulated day, we sum each non-immune individual’s aerosol exposure

over all of their class meetings in a day. We calculate a probability of infection from that
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exposure based on an exponential dose response function parameterized with low and high

transmissibility values as described above. This function is detailed in Algorithm 2 of S2

Appendix. Any changes in infection states are updated in the tracking infections table.

For each infection, we further simulate the length of infectiousness. We assign symptomati-

city as a Bernoulli trial based on the user-input asymptomatic rate. For symptomatic individu-

als, we assign infectiousness for a single day after the lag period based on the assumption that

students will stop going to class when they have symptoms, as college policy and required daily

symptom checking dictate. For asymptomatic individuals, we assign infectiousness for all days

between the lag period and a day after the individual’s next test day, accounting for delay in

receiving test results. The results of this function update the active infections table.

Fig 1. Overview of simulation model.

https://doi.org/10.1371/journal.pone.0271750.g001

Table 2. User-settable parameters for modeling transmission of and outcomes from COVID-19 infection.

Parameter Value Source for parameter values

initial semester infection prevalence among students and faculty 1% Expert judgement on local community

prevalence

infections introduced from outside the classroom daily among

students and faculty

0.2% weekly college testing data

incubation period 2 days [22]

asymptomatic rate 40% [11]

viral particle settling time (τsettle) 20 min [17]

viral deactivation time (τdeact) 90 min [17]

viral load in saliva (ρ0) 1000

/nL

[17]

breathing rate (rb) 10 L/

min

[17, 28]

student aerosol source rate (rstud) 1 nL/

min

[29]

faculty aerosol source rate (rfac) 5 nL/

min

[29]

https://doi.org/10.1371/journal.pone.0271750.t002

PLOS ONE Simulation of in-class COVID-19 aerosol transmission

PLOS ONE | https://doi.org/10.1371/journal.pone.0271750 July 21, 2022 8 / 27

https://doi.org/10.1371/journal.pone.0271750.g001
https://doi.org/10.1371/journal.pone.0271750.t002
https://doi.org/10.1371/journal.pone.0271750


At the end of the semester, we simulate two possible adverse health outcomes of infection:

hospitalization given infection and death given hospitalization. For each individual infected in

class during the semester, we simulate 100 replications of hospitalization versus not hospital-

ized with a probability of hospitalization given infection corresponding to the age of the

infected individual as shown in Table 1 above. For each simulated hospitalization, we simulate

death or not given hospitalization with probability based on age groups from Table 1. As these

probabilities are much smaller, we simulate 1000 iterations per hospitalization. These simula-

tions provide probability distributions for the cumulative number of hospitalizations and

deaths for a given scenario as well as the risk of hospitalization and death for each individual.

This algorithm is detailed in Algorithm 3 in S2 Appendix.

Scenario development

The model considers a set of parameters related to the spread dynamics of SARS-CoV-2. The

parameters we set but keep constant in our demonstration are described in Table 2. These

parameters are meant to correspond to the situation at our example college at the time this

model was created (April and May 2021). These input parameters are designed to be easily

changed to adapt to model users and their community conditions.

Evaluating the relative risks associated with in-class meetings for the semester includes

exogenous uncertainties around immunity as well as possible facility and policy interventions.

Immunity rates in the fall were still uncertain at the the time this model was created. To sepa-

rate the impacts of masking and UVC-fan interventions from the range of possible immunity

rates, we simulate over varying college immunity rates from 60% to 95%.

While we could include innumerable interventions, for the purposes of demonstration in

this paper we limit our consideration to masking mandates and the installation of UVC ceiling

fans that increase the rate of aerosol deactivation and increasing mixing in the room to counter

stagnant areas. To determine the effect of UVC fans, we calculate an equivalent viral decay rate

based on parameters provided by the UVC fan manufacturers (S1 Appendix) consistent with

literature on inactivation models for germicidal UVC [30, 31]. This is not meant to be the

definitive assessment of the decay parameters for any UVC intervention, particularly since pre-

cise inactivation data on aerosols of SARS-CoV-2 are not yet published in peer reviewed litera-

ture. Rather, these parameters give us a reasonable, even conservative, starting point for our

demonstration of structural environmental interventions and are based on experiments with

live SARS-CoV-2 virus on surfaces [32, 33], other coronaviruses as aerosols [34, 35], and rec-

ommendations from the American Society of Heating, Refrigeration, and Air-Conditioning

Engineers [36, 37]. This decay rate is added to the other viral decay and settling rates that ulti-

mately factor into the aerosol concentration decay variable. We implement the effectiveness of

masking on aerosols by applying a masking coefficient to the aerosol source rates rstud and rfac.
We also apply a masking coefficient to the inhalation rate (rb), the same for students and fac-

ulty. Ultimately, 20 scenarios are evaluated across five different immunity rates (60%, 70%,

80%, 90%, 95%), with and without masking, and with and without UVC fans.

Results

Scenario comparison

For each individual in each of the scenario combinations, we calculate the probability of in-

class infection of a non-immune individual during the full semester by dividing the total num-

ber of replications in which they were infected in that scenario by the total number of replica-

tions where that individual was not assigned immunity in that scenario. We then generate

distributions based on the non-immune individuals’ probability of infection over the evaluated
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scenarios. This then represents the probability distribution of individual probabilities of infec-

tion taken over the individuals in the college. This captures differences in likelihood of infec-

tion due to course schedules (e.g., a student with one small course vs. one with 4 large courses)

and room properties. We also compute the college-cumulative number of infections, hospitali-

zations, and deaths. We do this by summing each of these quantities over all students and all

faculty for each replication of each scenario. Together this process yields the information

needed to estimate probability density functions over the individual probabilities of each out-

come (infection, hospitalization, and death) and the probability density functions over the

total number of each outcome (infection, hospitalization, and death) in the college. These sup-

port different decisions. The individual-level probability estimates support decisions by both

individuals and college leadership about whether or not risk levels are acceptable at the indi-

vidual level under different mitigation options. The college-total estimates are aimed primarily

at supporting college-level decision-making about which mitigation options to implement and

the logistical and administrative impacts of these decisions.

While the true probability of infection in the fall 2021 semester cannot be precisely pre-

dicted given the uncertainties inherent to COVID-19 and to simulation in general, the low-

transmissibility and high-transmissibility distributions provide bounds on infection probabili-

ties under the given conditions and assumptions. Stating this differently, neither of these

curves likely is the true risk curve for the college. The true risk curve is likely somewhere

between these bounds if our assumptions are reasonable. For a more transmissible variant it is

likely towards the upper end. For a less transmissible variant it is likely near the lower end.

From these we can compare differences in risk when decision-makers introduce interventions.

Figs 2 and 3 show the relative risk of in-class aerosol infection comparing scenarios with

and without masking for students (Fig 2) and faculty (Fig 3) with a 95% immunity rate. The

graphs show the model results in the form of inverse cumulative density functions. These

show the probability of exceeding a given number of infections. Full results for student and

faculty infections including other immunity rates and scenarios are shown in S3 Appendix.

Consider first the results for student infections for the high transmissibility scenarios in Fig

2. The dashed lines show that if there is 95% immunity and no masking, there is a probability

of about 0.943 of exceeding 50 infected students. If masking is added, the probability of

exceeding 50 infections drops to about 0.008. Similar figures for student infection inverse

cumulative density functions across all the tested interventions and immunity rates scenarios

are presented in S3 Appendix. We list the probability of college infections exceeding example

infection levels of 50 and 100 students in Table 3.

Fig 2. Inverse cumulative density functions for the total number of students infected under the different scenarios. Each graph

shows the curve of the probability of exceeding a given number of infections.

https://doi.org/10.1371/journal.pone.0271750.g002
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Table 3 shows that, given the model assumptions and without interventions, if immunity in

the community is instead 90%, there is near certainty (>0.999) of exceeding 100 infections

and a probability of 0.586 of exceeding 500 student infections in the high transmissibility case.

If masking is adopted with 90% immunity, the probability of exceeding 100 and 500 infections

drop to 0.914 and<0.001 respectively. At the lowest immunity value used in this study, 60%,

the probabilities of exceeding 100 and 500 student infections are approximately 1 both without

and with masking. Masking alone cannot counteract low immunity rates in this setting. It is

only with the addition of both masking and UVC with 60% immunity that the probabilities of

exceeding 500 student infections drops to 0.554 (the probability of exceeding 100 infections is

still approximately 1).

Consider next the results for faculty infections for the high transmissibility scenarios. Fig 3

shows that for the 95% immunity case the probabilities of exceeding 1 faculty infection are

between the low transmissibility and high transmissibility bounds of 0.159 and 0.734 without

masking. With masking, these probabilities shift down to between 0.058 for the low transmissi-

bility case and 0.328 for the high transmissibility case. Corresponding figures for faculty infec-

tion inverse cumulative density functions across all scenarios are presented in S3 Appendix.

We list the probability of cumulative infections exceeding various infection levels for faculty in

Table 4.

Using Table 4 if we consider the 90% immunity scenario, the probabilities of exceeding 5

and 20 faculty infections without masking are 0.9 and<0.001 under the high transmissibility

case. If masking is added, the probability of exceeding 5 infections drops to 0.109 for the high

transmissibility case. If only UVC is used (without masking) this probability is instead 0.008. If

both masking and UVC are employed, this probability drops to<0.001. If we instead look at

the 60% immunity scenarios, the probabilities of exceeding 5 and 20 faculty infections are

approximately 1 both without and with masking in the high transmissibility case. Only if both

masking and UVC are implemented do these high transmissibility case probabilities drop to

0.926 and 0.005.

From these tables and their corresponding figures in S3 Appendix, we see that the use of

masks significantly reduces the probability of infection for non-immune students and faculty,

consistent with international policy recommendations, guidelines, and mandates in place over

the pandemic period for indoor gatherings. In addition, the introduction of UVC fans in every

classroom reduces the risk of infection more than universal masking alone, and UVC fans are

not as directly dependent on behavioral compliance as masking. Finally and as expected,

masking and UVC fans used in combination show the greatest reduction in risk compared to a

Fig 3. Inverse cumulative density functions for the total number of faculty infected under the different scenarios. Each graph

shows the curve of the probability of exceeding a given number of infections.

https://doi.org/10.1371/journal.pone.0271750.g003
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no-intervention scenario. With the decreases in infection rates we also see a narrowing of

uncertainty bounds, indicating decreases in uncertainty offered by these interventions. These

figures and tables also highlight the importance of high rates of immunity (vaccination plus

immunity due to prior infection) in the community. Masking or UVC alone cannot overcome

the vulnerabilities caused by lower immunity rates. Only when masking and UVC are used

together do we begin to see reduced transmission in the low immunity rate scenarios.

Fig 4 shows the cumulative density function over the probability of infection at the level of

individual students and faculty for those who are not vaccinated when 95% of the population

is immune for students and faculty. These plots allow a decision maker to determine what frac-

tion of the population is above a given level of individual risk (e.g., a threshold or acceptable

risk). With no masks and no UVC, the median (0.50 on the y-axis) probability of infection is

between<0.001 and 0.128 for students and between<0.001 and 0.052 for faculty. In other

words, if a student or faculty member were drawn at random from the college, half would have

a probability of infection at or below the median level and half would have a probability of

infection above the median level, reflecting differences in course schedules and classrooms.

With masking added the median probability of infection for students is between<0.001 and

0.033 and for faculty the median probability of infection with masking added is between

<0.001 and 0.016. Adding UVC alone reduces these probability more than masking alone

Fig 4. Cumulative density functions over the probabilities of individual student and faculty infection given 95%

immunity in the college.

https://doi.org/10.1371/journal.pone.0271750.g004
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(between <0.001 and 0.019 for students, <0.001 to<0.001 for faculty). Together UVC and

masking results in further reductions relative to each separately.

If immunity rates were instead 90% (results shown in S4 Appendix) the median probability

of infections for students without masking is between 0.029 and 0.426, and the median proba-

bility of infection for faculty is between 0.011 and 0.195. If masking is added the median range

for students drops to 0.01 to 0.10 and the median bounds for faculty drops to<0.001 to 0.042.

If UVC fans were added rather than masking with 90% immunity, the student median infec-

tion probability is between<0.001 to 0.044 and the faculty median infection probability is

between<0.001 and 0.019. These results show clearly that masking and UVC fan interventions

diminish both the probability of infection as well as the range of uncertainty due to the differ-

ent possibility transmissibility k values. Similar plots showing student and faculty probabilities

of infection for other immunity rates are also in S4 Appendix.

Fig 5, similar to that featured in [21], summarizes the average number of modeled class-

room-acquired infections across scenarios and transmissibility k values. Adopting a policy that

employs both UVC fans and universal masking even in the highest transmissibility scenario,

shown by the solid red line with circle markers, reduces the average number of infections

more than doing nothing in a low transmissibility scenario, shown by the blue dashed line

with diamond markers.

We evaluated health outcomes including hospitalization and death based on the county

health department rates described in the Data section. We show associated probabilities for at

Fig 5. Average infections by immunity rate and scenario.

https://doi.org/10.1371/journal.pone.0271750.g005
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least a number (N) of student hospitalizations in Fig 6 or deaths in Fig 7 under 95% immunity

rates for the no UVC scenarios with and without masking.

Consider the scenario with 95% immunity and no masks in Figs 6 and 7. Given the assump-

tions and uncertainties underlying the model, the probability of at least 1 student being hospi-

talized due to transmission in the classroom is estimated to be between 0.055 and 0.398 (low

transmissibility and high transmissibility bounds respectively) in Fig 6. For this scenario the

probability of having one or more deaths of students due to transmission in the classroom is

between 0.001 and 0.01 shown in Fig 7. With universal masking and 95% immunity, the prob-

ability of 1 or more hospitalized students is estimated to be between 0.019 and 0.138, and the

probability of 1 or more student deaths is estiamted to be between<0.001 for low transmissi-

bility and 0.003 for high transmissibility.

We summarize results for different impact levels and varying masking and UVC use at all

immunity rates in Table 5. If UVC fans are added to masking in the 95% immunity scenario,

the probability of 1 or more hospitalized students is between 0.004 and 0.027, and the probabil-

ity of 1 or more student deaths is between <0.001 and 0.005. From these results for the the

95% immunity scenario, we see masking reduces the probability of student hospitalization

substantially and the probability of a student death by an order of magnitude. Adding UVC

fans to universal masking reduces the probabilities of having one more student hospitalizations

and one or more student deaths by an additional order of magnitude each.

Overall, Table 5 along with the corresponding plots in S3 Appendix show that increasing

immunity levels (under the perfect immunity assumption) is effective for diminishing risk of

hospitalizations and deaths in both low and high transmissibility specifications. However,

even in the 95% immunity scenario, masking and UVC fans yield substantial further reduc-

tions in risk. Given uncertainty surrounding student immunity rates and the challenges faced

by a college in enforcing a vaccination mandate, these plots also show how policy and facility

interventions, individually or in combination, can contribute to mitigating risk.

Figs 8 and 9 similarly show the 95% community immunity rate probabilities of N or more

hospitalizations or deaths for faculty members, who are in higher risk categories for negative

health outcomes but perhaps hold fewer class hours than students. These same plots for all sce-

narios and immunity rates are compiled in S3 Appendix and summarized below for various

impact levels in Table 6.

Consider again the 95% immunity scenario without masks or UVC. The probability of at

least one faculty member being hospitalized is between 0.016 and 0.116, as shown in Fig 8, and

the probability of at least one faculty death is between 0.002 and 0.018, as shown in Fig 9. If

masks are added, the bounds on the probability of at least one faculty hospitalization drop to

0.005 to 0.040 as shown in Fig 8, and the bounds on the probability of at least one faculty death

drop to<0.001 to 0.006 as shown in Fig 9. Both of these are an order of magnitude lower than

without masks.

As with the hospitalization and death results for students, we see that for faculty high

immunity rates effectively reduce risk. However, even at the high immunity rate of 95% immu-

nity, the risk of hospitalizations and deaths is not zero. Masking and UVC further reduce the

risk by an order of magnitude. If decision makers have a clear level of residual risk that they

find acceptable, results such as these can help a decision maker determine if mitigation mea-

sures are needed and, if so, which ones to implement.

As hospitalizations and deaths vary by age, we can also show a distribution of any non-

immune individual’s probability of hospitalization and death outcomes by age. Below in Figs

10 and 11, we show these distributions for the 95% immunity rate scenario. Similar plots bro-

ken down by additional immunity rates can be found in S4 Appendix.
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Sensitivity analysis

We conducted sensitivity analyses on several parameters to better understand the impact of

outside-class infections on in-class infections by testing different initial and exogenous (out-

side the classroom) infection rates. These sensitivity analyses all assume no masking or UVC,

70% vaccination rate, and a weekly testing policy.

We compared initial infection prevalence values of 0.5% and 2.0% with the base case value

of 1.0% value used for the model runs as referenced in Table 2. Fig 12 shows that this parame-

ter does not visibly shift the results of the model over the 13 week semester.

We next evaluated the daily exogenously introduced infections parameter set to 0.2% in the

base case runs based on test positivity at the college in the most recent semester previous to the

creation of this model. We tested the model with the daily exogenous infections set to 0.1%

and 0.4%, which translates to about 0.5% and 2.0% weekly infections respectively. For these

runs we kept the initial infection rate consistent with the original run of the model at 1.0%.

From Fig 13 we see similar results in student infections across the range of 0.1% to 0.4% daily

exogenous infections showing that the model is not sensitive to subtle differences in this

parameter assumption that may come from errors in data around community infection preva-

lence. However, this range may not capture larger fluctuations in community infection preva-

lence from gatherings such as the start of the school year or large events like football games.

We also evaluated our assumption of 40% mask effectiveness to determine the range of

masking’s impact on the model results. The original 40% value included in the model was

Fig 7. Inverse cumulative density functions for the total number of students that die under the different scenarios.

Each graph shows the curve of the probability of exceeding a given number of deaths.

https://doi.org/10.1371/journal.pone.0271750.g007

Fig 6. Inverse cumulative density functions for the total number of students hospitalized under the different scenarios.

Each graph shows the curve of the probability of exceeding a given number of hospitalizations.

https://doi.org/10.1371/journal.pone.0271750.g006
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based on expert judgement of the effectiveness of surgical masks worn as they commonly are

in practice. In Fig 14 we compare these base case results to results with assumptions of 25%,

50%, 75%, and 95% mask effectiveness. This figure shows the large potential impact of masking

and highlights the critical role that individual mask wearing can play on aerosol infection

spread within a community. In particular, if an educational institution could ensure that those

in the classroom, both students and faculty, wore high-quality masks and wore them fitted

correctly, there is the potential for a larger reduction in risk than the 40% effectiveness of

masks we assumed in our base case. Note, for these tests the initial infections parameter is set

to 1.0% and the daily exogenous infections parameter is set to 0.2%, we do not include UVC,

we assume a 70% vaccination rate, and a weekly testing policy.

As this model includes numerous other assumptions previously mentioned, future sensitiv-

ity runs could evaluate the impact of our other chosen default parameters such as asymptom-

atic rate, breathing rate, and room ACH. More in-depth sensitivity analysis could include

testing assumptions around the uniform distribution of viral load to evaluate the role of super

spreaders or the changing community infection prevalence that would impact daily exogenous

infection rates. Future sensitivity analysis could also evaluate our assumptions around testing

compliance, as students at colleges are known to have not received mandated regular testing

and to have continued to participate in campus activities for substantial periods of time despite

receiving a positive test result.

Fig 8. Inverse cumulative density functions for the total number of faculty hospitalized under the different scenarios.

Each graph shows the curve of the probability of exceeding a given number of hospitalizations.

https://doi.org/10.1371/journal.pone.0271750.g008

Fig 9. Inverse cumulative density functions for the total number of faculty that die under the different scenarios.

Each graph shows the curve of the probability of exceeding a given number of deaths.

https://doi.org/10.1371/journal.pone.0271750.g009
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Discussion

These results highlight how this method can support risk-informed cost-benefit analysis of

intervention policies and prioritization of selected mitigation policies. Although UVC fans are

potentially more effective than a mask mandate and the impact of UVC fans does not rely on

the compliance of individual behavior as is the case with mask use, countervailing factors such

Fig 10. Cumulative density function for the probability of hospitalization by age group given 95% immunity. Note that all students are lumped

together into one age group, assumed to be the 18–24 age group.

https://doi.org/10.1371/journal.pone.0271750.g010

Fig 11. Cumulative density function for the probability of death by age group given 95% immunity. Note that all students are lumped together into

one age group, assumed to be the 18–24 age group.

https://doi.org/10.1371/journal.pone.0271750.g011
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as cost, time required for installation, and other facility level limitations may prohibit the

installation of UVC fans in every classroom. There does remain uncertainty about the rate of

deactivation of virions from UVC fans, and this likely depends on specific configurations and

rooms and requires careful engineering design. This simulation method could be used to show

where fan installation would have the biggest impact on risk and account for relevant opportu-

nity costs to optimize the use of such equipment, even quantifying how many UVC fans are

required to meet the same expected risk as masking policies thus quantifying the cost of lifting

a mask mandate without increasing risk. Of particular note, masking and UVC effectiveness

are relatively insensitive to new variants or other novel aerosol viruses, unlike vaccines whose

effectiveness is primarily restricted to the particular vectors for which they were developed.

In high uncertainty scenarios, evaluating such interventions and policies must reflect a

range of possibilities for variables outside of the decision makers’ control. The variability in

vaccine adoption and effectiveness across geographies, ideologies, age groups, and virus vari-

ants in the U.S. impacts the effectiveness of the interventions over which the college has con-

trol. Population level immunity rates change the magnitude of the impacts of masking and

UVC interventions, thereby affecting the cost-benefit ratio of these interventions. Including

these exogenous variables in risk-based simulation modeling yields results that can inform

decision making and policy prioritization under low-data regimes and remain helpful as the

situation and data progress.

Some will likely also ask why in-room HEPA filters were not included as a mitigation

option in our demonstration. We initially did include in-room filtration in the model. HEPA

filters reduce virus concentrations in the air through filtration. In conversations with facility

and instructional planners at our example college there were clear concerns about the noise of

HEPA filters used at a high enough setting to be effective for virus removal. In the case of our

example college nearly all classrooms are used for recording lectures, making noise a

Fig 12. Sensitivity of model to initial infections rate parameter.

https://doi.org/10.1371/journal.pone.0271750.g012

Fig 13. Sensitivity of model to daily community prevalence (e.g., exogenous infections rate parameter in the model).

https://doi.org/10.1371/journal.pone.0271750.g013
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substantial concern. In other settings or if lower-noise HEPA filters were available these could

be a viable option to consider and can be modeled.

In addition, it should be noted that vaccination is, by itself, a fragile policy. If a new variant

emerges that has a higher degree of escape of the vaccine and other mitigation interventions

are not in place, the college faces a substantial likelihood of increased transmission and health

impacts as well an increased chance of needing to return to virtual instruction. Defense in

Depth, the use of multiple layers of interventions, is a critical risk analysis approach to consider

in cases of high uncertainty about future conditions in order to have a response that is more

robust and resilient in the face of new and varying threats. A Defense in Depth approach

means there are still at least some protections (e.g., UVC fans, masking) in place if one layer of

protection (e.g., vaccines) fails or is dramatically reduced in its effectiveness. This provides a

level of fault tolerance.

Limitations

While risk-based simulation offers the opportunity to model many scenarios related to aerosol

spread in classrooms, these models are still limited by time, data, and the uncertainties of the

reality being modeled. Computational run time and data availability force model and parame-

ter assumptions such that no model can perfectly represent a real-world scenario. In this case,

adopting the assumption of a well-mixed room over computing the fluid dynamics of each

classroom ignores the role of airflow patterns and proximity to the infectious source on trans-

mission. These can be critical in some rooms. Moreover, a model can only be as good as its

input data, so any inaccuracy in scheduling or room data impact how representative results

can be of the future. For example, if airflow rates in classrooms are significantly lower than

those we used in this model, the results may understate risks associated with a do-nothing sce-

nario and the potential benefits of facility interventions. In addition to the inaccuracies of data

we do have access to, the lack of epidemiological data on COVID-19 (including variant trans-

missibility, vaccine efficacy against variants, and dose response mechanisms) limit the accu-

racy of these results. As such, we consider the role of this model in portraying relative risk

across possible scenarios, rather than claiming to precisely predict outcomes. Finally, this sim-

ulation can only capture some dimensions of the risk involved with in-person instruction,

namely the risk of infection, hospitalization, and death. Risks associated with the economic,

reputational, social, and educational costs of virtual learning for faculty and students should

also factor into decisions regarding in-person operations. Also, the contributions of other risks

outside of in-person classroom activity need to be considered when arriving at a decision of a

global systems-based nature.

Conclusion

The simulation method for evaluating risk associated with aerosol spread of SARS-CoV-2 in

classes at a college developed in this paper contributes valuable information to decision makers

Fig 14. Sensitivity of model to mask effectiveness parameter.

https://doi.org/10.1371/journal.pone.0271750.g014
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during a time of crisis as decisions around that crisis evolve. These results show how simula-

tion modeling can provide valuable data for risk analysis and ultimately decision making even

under great uncertainty. Particularly, we show how decisions based on relative risk and the

effectiveness of interventions and combinations of interventions to provide defense in depth

can lead to a more robust and resilient prioritization of policies and actions. Decision makers

can have risk and cost analysis on hand to manage risk levels before information such as stu-

dent body immunity rates or variant transmissibility parameters are available. Decision mak-

ers are then further empowered to adapt those analyses as more data becomes accessible over

time.

This simulation model has the capability of expanding into modeling relative risks of addi-

tional interventions in response to COVID-19, such as universal testing policies or density

protocols. Furthermore, this model has the potential for adoption beyond the example college

including to other colleges and universities as well as high-risk population centers such as K-

12 schools, day care facilities, or nursing homes. Beyond SARS-CoV-2, this model can model

aerosol spread of other diseases ranging from annual influenza strains to future pandemics.

Despite this capacity for expansion into other populations and transmission scenarios, this

simulation model on its own cannot implement change. Responsible risk communication that

includes not only the decisions and actions taken but also the accompanying rationale is an

essential component of risk analysis for translating model results into actual meaning for

stakeholders. Appropriate risk communication involves tailoring the reporting of model

results to different audiences. For decision makers like college leadership, risk communication

must account for highlighting and explaining information in a way that enables individuals to

make decisions with that information. For other stakeholders such as faculty and students, risk

communication must account for the value of transparency for informed consent, holding

leadership accountable for their decisions, and the communication of the residual risk that was

accepted.

Beyond the COVID-19 pandemic, universities must be able to cope with many potential

and often ignored hazards that affect in-person operations to keep their students, faculty, staff,

and surrounding community members acceptably safe. This proactive identification of haz-

ards and their associated risk is an essential component for any organization to avoid the oft

heard ‘unanticipated’ outcomes that many organizations identify as the cause of many trage-

dies but are really the result of a lack of proactive imagination and effort. Simulation-based

risk analysis is a critical tool that helps decision-makers prepare for, mitigate against, adapt to,

and recover from such events to evaluate the impacts of variables within and outside of deci-

sion-makers control. We should continue developing simulation models for risk analysis to

expand our toolbox to better plan for and communicate risk to foster safer and more resilient

communities.

Supporting information

S1 Appendix. Algorithm structure.

(ZIP)

S2 Appendix. Model equations.

(ZIP)

S3 Appendix. Inverse cumulative density functions for various outcomes in the college

under the different scenarios. Each graph shows the curve of the probability of exceeding a

given number of infections, hospitalizations, or deaths.

(ZIP)
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