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Abstract
There is a major need to overcome therapeutic resistance and metastasis that eventually arises in many breast cancer patients.
Therapy resistant and metastatic tumors are increasingly recognized to possess intra-tumoral heterogeneity (ITH), a diversity of
cells within an individual tumor. First hypothesized in the 1970s, the possibility that this complex ITH may endow tumors with
adaptability and evolvability to metastasize and evade therapies is now supported by multiple lines of evidence. Our understand-
ing of ITH has been driven by recent methodological advances including next-generation sequencing, computational modeling,
lineage tracing, single-cell technologies, and multiplexed in situ approaches. These have been applied across a range of speci-
mens, including patient tumor biopsies, liquid biopsies, cultured cell lines, and mouse models. In this review, we discuss these
approaches and how they have deepened our understanding of the mechanistic origins of ITH amongst tumor cells, including
stem cell-like differentiation hierarchies and Darwinian evolution, and the functional role for ITH in breast cancer progression.
While ITH presents a challenge for combating tumor evolution, in-depth analyses of ITH in clinical biopsies and laboratory
models hold promise to elucidate therapeutic strategies that should ultimately improve outcomes for breast cancer patients.

Introduction

Breast cancer is the most frequently diagnosed cancer and the
leading cause of cancer deaths in women worldwide [1]. In
addition to the inter-patient heterogeneity, across patients, of
protein levels of established prognostic and predictive bio-
markers (estrogen receptor, ER, progesterone receptor, PR,
and human epidermal growth factor receptor 2, HER2) [2],
the cells within each tumor are also diverse with respect to
their somatic mutations, gene expression and epigenetic pro-
files, and proteomic and metabolic programming. This intra-
tumor heterogeneity (ITH) is a major obstacle for diagnosis,

prognostic prediction, and standardization of treatment for
breast cancers. ITH can be appreciated in different areas with-
in a tumor (spatial heterogeneity) at a single point in time,
temporally throughout tumor progression, or amongst primary
and metastatic lesions within an individual patient. Thus, con-
ventional sequencing from a single biopsy at a single time
point provides only a partial view of the full molecular com-
plexity of a patient’s tumor(s) [3].

ITH can originate through a variety of mechanisms involv-
ing cancer stem-like cell (CSC) hierarchies [4] and clonal
evolution of somatic genomic aberrations [5]. Both concepts
postulate that tumors originate from a single tumor-initiating
cell (TIC) that has acquired multiple molecular alterations and
developed indefinite proliferative potential. In the CSCmodel,
cancers are hierarchically organized with a stem cell-like pop-
ulation, initiating tumor growth through self-renewal and dif-
ferentiation [6]. In the clonal evolution model, genomic insta-
bility results in accumulation of somatic mutations and/or
copy number alterations (CNAs) during disease progression
or when faced with selective pressures. These processes are
not mutually exclusive. In fact, they are potentially comple-
mentary, creating a complex tumor ecosystem with multiple
layers of heterogeneity. Furthermore, heterogeneity of nutrient
availability and interaction with stromal populations can exist
within tumors [7]. The important roles of stromal populations
in breast cancer have been recently reviewed [8, 9].
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ITH within tumor cells exists at the genomic, transcriptomic,
epigenetic, proteomic, and functional levels. This complex ITH
is now understood to have crucial implications for breast tumor
biology based on several observations: (1) some patterns of ITH
have been found to be reproducibly altered in metastatic or
therapy-resistant tumor biopsies, (2) levels of ITH have been
found to correlate with clinical outcomes in breast cancer pa-
tients, and (3) direct experimental evidence in laboratory models
has established a functional role for inter-clonal cooperativity in
some contexts. Numerous methods have been used to identify
ITH in breast cancer specimens, including bulk and single-cell
genomic and transcriptomic sequencing, lineage tracing, analysis
of circulating tumor cells and DNA, and in situ analyses on
tissues. These methods have been implemented in patient tumor
biopsies and laboratory models including cell lines, genetically
engineered mouse models (GEMMs), and patient-derived xeno-
graft (PDX) mouse models. Taken together, this diversity of
approaches and models is painting an ever-clearer picture of
the heterogeneous composition of tumors, which is providing a
deeper understanding of breast cancer biology.

Bulk Methods to Assess ITH

Analysis of Tumor Biopsies From the Clinic

Breast cancers fall into three major subtypes based on expres-
sion of clinically relevant markers: ER/PR+, HER2+, and tri-
p le nega t ive (TNBC). Mul t i -p la t form genomic ,
transcriptomic, epigenomic, and proteomic profiling have elu-
cidated molecular subtypes of breast cancer [10–13]. In par-
ticular, PAM50 subtyping, a microarray-based 50-gene signa-
ture classifying breast cancers into five intrinsic subtypes
(Luminal A, Luminal B, HER2-enriched, Basal-like, and nor-
mal-like), provides prognostic and predictive classification of
breast tumors [11, 13]. The development of high-depth geno-
mic sequencing technologies has enabled computational esti-
mation of genomic ITH, or subclonal architecture, within tu-
mors in each of these subtypes. Genomic sequencing and
immuno-fluorescence in situ hybridization (iFISH) using
chromosomal probes in small patient cohorts have provided
contrasting evidence as to whether the degree of genomic ITH
in primary untreated tumors correlates with breast cancer sub-
type [14, 15]. This point will need to be more thoroughly
vetted through genome-wide analyses of larger patient cohorts
spanning the major subtypes. Here we discuss studies of clin-
ical biopsies, thus providing a portrait of ITH in biopsies ob-
tained directly from breast cancer patients (Table 1).

Genomic ITH in Primary Tumors

A landmark study of 21 primary breast tumors spanning the
major breast cancer subtypes used whole-genome sequencing

(WGS) to computationally model the evolutionary history of
each tumor’s development. Each tumor analyzed harbored
genomic ITH. In fact, the majority of somatic mutations de-
tected were restricted to subclonal populations of tumor cells
[16]. Further investigation of genomic ITH using WGS and
targeted DNA multi-region sequencing of 50 primary breast
tumors revealed that ITH was not evenly distributed amongst
spatially distinct biopsies within the same tumor, suggesting
that representative sampling of tumors is an important consid-
eration when sampling tumors [15]. An expanded analysis of
greater than 100 TNBCs revealed that while TP53, PIK3CA,
and PTEN somatic alterations were recurrent amongst some
patients and tended to be clonally dominant, a wide spectrum
of ITH amongst patients was observed, with up to 19 genomic
subclones observed in an individual’s breast tumor [17]. ITH
of HER2 overexpression and gene amplification has been re-
ported in HER2 + breast cancer patients. Whole exome se-
quencing (WES) and targeted sequencing of HER2 + breast
cancers identified alterations in oncogenes including BRF2
andDSN1 in the HER2-negative compartment, while all sam-
ples were all ER-positive and predominantly harbored somatic
TP53 mutations [18].

A variety of computational algorithms have been devel-
oped to integrate this information to model subclonal archi-
tecture . Computational approaches have been used to recon-
struct the subclonal history of tumors by deconvoluting
DNA sequencing data from bulk tumors. Sequencing data
reveal the mutant allele frequencies (MAFs), the fraction of
reads containing mutant alleles, of the single nucleotide vari-
ants (SNVs), and the depth of the sequencing at a genomic
location is associated with the local copy number. Using this
data, methods have been developed to estimate subclonal ar-
chitecture from SNVs (PyClone [100], BayClone [101],
DPClust [16], Sciclone [102], cloneHD [103], CTPsingle
[104], PhyloSub [105], PhyloWGS [106], LICHeE [107],
BAMSE [108]), copy number profiles (Sclust [103], THetA
[109], TITAN [110]), or structural variants (SVclone [111]).

By far, the most effort has been devoted to methods that
rely on SNVs, likely due to the fact that SNVs are more di-
rectly observed in sequencing data than are CNAs or structural
rearrangements. Nevertheless, constructing subclonal archi-
tecture has been challenging. Subclonal SNVs are estimated
based on MAFs, which are proportional to the cancer cell
fractions (i.e. the fraction of the cancer cells that comprise
the subclone). More specifically, MAFs are a result of the
purity of the tumor, the multiplicity of mutation (the fraction
of the total copy number that is mutated), and the subclonal
frequency. Unfortunately, the multiplicity of mutation is not
observed, and each of the methods employ different assump-
tions and approaches to estimate this, leading to frequent dis-
agreement in architectures. In practice, multiple methods are
used to create a consensus architecture. While bulk sequenc-
ing approaches are readily available with existing
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technologies, the ability to detect rare subclone populations
is limited. Indeed, the power to detect low-frequency muta-
tions is highly dependent on depth of sequencing coverage
[112]. Furthermore, clinically important samples, often from
metastatic sites or therapy-resistant tumors longitudinally,
are often not readily available. Thus, bulk sequencing is
often considered a low-resolution approach suitable for de-
tecting sizeable subclones or gross changes in subclonal
composition across tumors.

Genomic ITH in Therapy Resistance

Genomic analyses of patients’ tumors under treatment have
provided insights into the dynamics of ITH and identified
genomic mechanisms of resistance. Although ITH is asso-
ciated with poor prognosis and outcome in several tumor
types [113–116], it is not yet clear whether higher degree of
ITH in breast cancer is correlated with development of ther-
apy resistance. Analysis of a relatively small sample set
suggested the extent of genomic ITH of primary breast can-
cers was found to have no correlation with neoadjuvant
chemotherapy response [15], while another study of a small
cohort did suggest a correlation between the degree of pre-
treatment ITH, as assessed by iFISH for several chromo-
somal probes, and chemotherapeutic responses [14].
A longitudinal study in metastatic breast cancer has shown
that subclones harboring resistance pathways can become
dominant after treatment with chemotherapy [34].
Thorough assessment of the relationship between ITH and
therapeutic resistance will require genome-wide analyses of
a greater number of biopsies associated with therapeutic
response data. A study using targeted deep cancer gene se-
quencing of greater than 1900 breast cancers, most of which
were hormone receptor positive, revealed enrichment of
mutations in genes such as ESR1 and HER2 in post-
endocrine therapy treated tumors relative to pre-treatment
tumors. Additionally, alterations such as EGFR amplifica-
tion orHER2mutation were detected in rare subpopulations
of tumor cells prior to treatment and then became enriched
following endocrine therapy in subsets of patients. In con-
trast, mutations in MAPK signaling genes such as NF1,
KRAS, MAP2K1, and BRAF were typically not detected in
the pre-treatment primary tumors, but rather arose de novo
after therapy, suggesting some mutations were acquired
while others were pre-existing then selected following en-
docrine treatment [19].

With the introduction of HER2-targeted therapies such as
trastuzumab, overall survival has vastly improved in
HER2 + patients [20]. However, multi-region WES pre-
and post-neoadjuvant chemotherapy plus HER2-targeted
treatment of five HER2 + breast cancer patients revealed
extensive genomic ITH pre- and post-therapy. A subset of
tumors exhibited shifts in clonal architecture and outgrowthT
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of clones harboring de novo mutations, whereas others main-
tained stable clonal architecture, following treatment [21].
Therefore, despite the elimination of some therapy-
responsive clones, resistant clones were able to survive and
predominate the tumor cell population. Therapies aimed at
targeting anti-HER therapy-resistant subclones will be neces-
sary to overcome this ITH.

Chemotherapies are the only approved agents for treatment
of non-BRCA1/2 mutant TNBC, and patients with substantial
residual cancer burden following standard chemotherapy have
poor relapse-free and overall survival rates [117]. Targeted
cancer gene sequencing of > 80 post-chemotherapy residual
tumors revealed that 90% harbored at least one clinically ac-
tionable genomic alteration, some of which were subclonal
[22]. While ITH dynamics have been analyzed in only a lim-
ited number of pre- and post-chemotherapy TNBC biopsies, a
few preliminary trends have emerged. First, targeted cancer
gene sequencing of 20 matched pre- and post-chemotherapy
biopsies revealed that while most cancer gene MAFs were
unaltered following treatment, MAFs in genes including
ATM, TP53, and CDH1 became enriched after treatment in a
fraction of patients [22]. Similarly, WES or WGS has been
conducted on a combined total of 12 matched pre- and post-
chemotherapy residual TNBCs, encompassing a variety of
standard chemotherapies, revealing that while some patient’s
tumors underwent clonal selection, others maintained similar
genomic architecture after chemotherapy [22–24]. Larger
studies investigating whether ITH dynamics are specific to
chemotherapeutic agent, and whether they are functionally
important, will provide valuable insights into mechanisms of
chemoresistance in TNBC. In cases where genomic architec-
ture is stable throughout treatment, non-genomic mechanisms
of resistance such as metabolic and epigenetic plasticity have
been identified as functionally contributing to survival of
chemoresistant subpopulations in prelinical studies [24, 118].

Genomic ITH in Metastasis

Genomic studies of matched primary tumors and metastases
have provided insights into the clonal origins of, patterns of
seeding, and relatedness of distant metastases in breast can-
cers. The potential for a functional role of primary tumor ITH
in the development of metastasis is not fully understood. One
study utilizing iFISH-based genomic ITH estimation of 75
primary TNBC biopsies revealed that the extent of ITH in
CNVs of MYC, EGFR, and CCND1 correlated with subse-
quent metastasis [33]. Although only a limited number of
matched primary and metastatic tumors have been
genomically analyzed, several informative findings have
emerged. First, while metastases are clearly clonally
descended from the primary tumor, harboring all clonal mu-
tations found on the ‘trunk’ of the tumor’s evolutionary tree,
they often harbor only subsets of subclonal mutations from

primary tumors, indicating an evolutionary branch point [15,
25–28]. Second, most driver gene alterations are detected as
evolutionarily early events in primary tumors and maintained
in metastases, rather than arising de novo in metastatic lesions
[15, 28]. Third, the majority of breast cancer metastases across
subtypes are polyclonal, meaning they harbor genomic ITH
[28], although this is a controversial topic across cancers and
some evidence for monoclonal metastatic seeding has been
found in breast cancer [29]. Fourth, a very limited number of
studies have analyzed matched primary tumors and multi-site
metastases within individual patients, enabling comparisons
across secondary organs. WES and targeted sequencing of
matched primary and multiple metastatic autopsy samples
from 10 metastatic breast cancer patients revealed that
metastasis-to-metastasis ‘secondary’ seeding may happen
more frequently than multiple seeding events from the prima-
ry tumor [29]. With a set of 11,616 breast tumors, including
5,034metastases, a recent study revealed heterogeneous status
of ER and HER2 mutations across metastatic sites. Some me-
tastases were found to have distinct mutations, with enrich-
ment of ASXL1 amplification and PTEN deletion in brain,
DNMT3A mutations in bone, NOTCH1 mutations in skin,
and KRAS, KEAP1, STK11 and EGFR mutations in lung me-
tastases [30]. These findings suggest that genomic alterations
may enable breast tumor cells to adapt to distinct foreign
microenvironments.

An important consideration in comparing matched primary
and metastatic tumors is that patients often receive systemic
treatments in the time between primary and metastatic biopsy
sampling, thus the pattern of clonality in the metastatic site is
likely influenced by these treatments. In fact, treated metasta-
ses have been found to be enriched for functional driver mu-
tations compared to untreated metastases. Metastatic seeding
can happen very early for synchronously diagnosed metasta-
ses while distant metastases following treatment occur rela-
tively later and harbor more genomic aberrations including
enrichment of functional driver mutations [31]. This implies
that some treatments can remodel the clonal evolution of me-
tastasis and may select disseminated cells harboring drug-
resistant mutations. When combined with functional studies
in laboratory models as reviewed below, genomic analysis of
biopsies directly from patients can provide useful insights into
the natural history of metastatic dissemination.

Analysis of Liquid Biopsies From the Clinic

Due to spatial and temporal ITH, a single tumor biopsy may
not fully represent the complete molecular profiles of all le-
sions within an individual patient [3]. While multiple biopsies
are not always clinically, technically, or ethically feasible,
longitudinal sampling of peripheral blood, known as “liquid
biopsy”, is a minimally invasive approach to monitor tumor
progression [119] and enables monitoring of genomic
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aberrations present in metastatic lesions [120]. Monitoring
circulating tumor DNA (ctDNA) from early-stage breast can-
cer patients demonstrated sensitive detection of oncogenic
mutations [121]. ctDNA analysis revealed within-patient
ITH between the primary tumor, ctDNA, and metastases from
metastatic breast cancer patients [49]. Serial analysis of
ctDNA in an ER + breast cancer patient with synchronous
bone and liver metastases captured all mutations from the
primary tumor and liver metastasis and further revealed shifts
inMAFs over time [50]. Monitoring clonal evolution by com-
paring plasma and tumor biopsies from a patient with meta-
static ER+/HER+ breast cancer over three years identified se-
rial changes in circulating levels of subclonal mutations,
which correlated with differential targeted treatment responses
between metastatic sites [51]. These studies demonstrated that
ctDNA is a tool for longitudinal monitoring of multi-site dis-
ease progression throughout the course of targeted therapy
treatments.

Recent studies have shown the feasibility of detecting
ESR1mutations in ctDNA and provide a better understanding
of the prevalence of ESR1 mutations in various stages of dis-
ease and throughout treatment [52]. Comparison of the fre-
quency of ESR1mutations among the primary tumor, multiple
metastases, and in ctDNA revealed that mutation rates of
ESR1 in ctDNA are higher than in other lesions and lowest
in the primary tumor [122]. ctDNA sequencing often identi-
fied multipleESR1mutant alleles while only a single mutation
was detected in each individual metastatic biopsy, suggesting
that liquid biopsiesmay reflectESR1mutational heterogeneity
from diverse metastatic lesions [123]. A study of ER+/PR+/
HER2 −metastatic breast cancer patients demonstrated the
emergence of acquired HER2 mutations in circulating tumor
cells (CTCs) isolated from 143 patients who had developed
endocrine therapy resistance. Treatment with neratinib, an ir-
reversible HER2 inhibitor, resulted in significant clinical re-
sponses, supporting the use of CTC analyses to monitor
molecular heterogeneity that emerges as tumors resist
therapy [124].

Bulk Analysis of ITH in Laboratory Models

While studies profiling biopsies from patients have extensive-
ly documented ITH in primary, therapy resistant, and meta-
static breast cancer samples, laboratory models of breast can-
cer have provided further insights into the functional roles of
heterogeneous tumor cell subpopulations. Experimental
models enable tighter control of variables, an opportunity that
is often not afforded in the clinical setting. Furthermore, use of
biological replicates when monitoring ITH in experimental
models enables determination of whether patterns of ITH, as
well as how ITH responds to external pressures, are reproduc-
ible and thus potentially linked to functional biological

features. In this section we review experimental approaches
to study ITH using in vitro and in vivomodels of breast cancer
including cultured cell lines, GEMMs, and PDXs. While use
of cell lines is ideal for ease of manipulation and testing of
numerous experimental conditions, concerns over lack of mi-
croenvironmental factors and evolutionary selection of popu-
lations specifically suited to two-dimensional culture may lim-
it the translatability of findings. GEMMs have an intact im-
mune system and same-species interactions between tumor
and stromal components. However, these models are general-
ly initiated by a select few oncogenic driver events, progress
over timescales much faster than do human tumors, and may
not harbor the extent of complex ITH that is observed in
human breast tumors. On the other hand, PDX models enable
experimentation with highly heterogeneous populations of
minimally manipulated human tumor cells. However, PDX
models lack a fully intact immune system, have cross-
species tumor-stroma cell interactions, and can inadvertently
enrich for aggressive subclones from the originating human
tumor. While each of these models has its limitations, they
have each yielded valuable insights into breast tumor biology
and ITH as discussed below (Table 1).

Laboratory Models – Cancer Stem-Like Cell
Hierarchies

According to the CSC model, ITH can be generated by sub-
population of TICs with self-renewal capabilities at the hier-
archical apex of tumor cell differentiation. Numerous studies
have documented the existence of CSCs using flow
cytometry-based identification of cell surface markers. In
PDX models representing the major breast cancer subtypes,
cells expressing CD44 with low or no expression of CD24
(CD44 + CD24-) [4], as well as cells with aldehyde dehydro-
genase (ALDH) activity [77], were found to be enriched for
CSC features as evidenced by in vitro mammosphere forma-
tion capacity and in vivo tumor-initiating capacity. Gene ex-
pression profiling of breast cancer cell lines and PDX models
revealed that CD44 + CD24- cells were enriched for expres-
sion of mesenchymal genes while ALDH-expressing cells had
an epithelial gene expression profile [78]. Additionally, in ER/
PR-negative xenografts, a population of TICs enriched in
CD44 + CD49fhiCD133/2hi cells displayed CSC features and
was characterized by heightened expression of the stem cell-
associated genes BMI1, NANOG, and SOX2 [79].

In a panel of GEMMs of p53-null transplantable mammary
tumors, CSC features were enriched in the lineage
(Lin)−CD29HiCD24Hi subpopulation which displayed height-
ened resistance to radiotherapy and activation of the Akt path-
way. Treatment with an Akt inhibitor sensitized TICs to ra-
diotherapy, suggesting targeting CSCs may be of potential
therapeutic benefit [59, 60]. In the mouse mammary tumor
virus (MMTV)-Wnt1 GEMM, the CD24 + Thy1 +
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subpopulation is enriched for CSC properties [61]. Several
additional markers have been shown to enrich for the CSC
population in the MDA-MB-231 cell line model of TNBC,
including CX26 [90], LGR5 [91], ANTXR1 [92], OCT4A
[93], HN1L [94], RPL39, and MLF2 [95]. Together, these
studies have demonstrated that ITH of TIC and/or CSC fea-
tures is prevalent in breast cancers and that therapeutic
targeting of the CSC subpopulation may be a promising ap-
proach to eliminate the self-renewal capacity of breast tumors.

Laboratory Models – Inter-clonal Interactions

A consequence of ITH, potentially amplifying its malignancy,
is the communication and cooperativity between distinct cell
subpopulations. In the MMTV-Wnt1 mouse mammary tumor
model, mammary-specific expression of the Wnt1 oncogene
produces tumors with a mixture of luminal and basal epithelial
cell populations. Transplantation of fluorescence-activated cell
sorting (FACS)-isolated populations (Wnt1-secreting luminal
cells or basal cells that had spontaneously acquired an Hras
mutation), intomammary fat pads revealed that animals receiv-
ing either subpopulation alone failed to develop tumors,
whereas transplantation of an admixture of the two subpopu-
lations led to tumorigenesis [62]. Similarly, generation of se-
creted factor-overexpressing subclones from the MDA-MB-
468 human TNBC cell line followed by mammary fat pad
transplantations revealed non-cell autonomous maintenance
of ITH and promotion of tumor growth through interleukin
11 stimulation of tumor-promoting changes in the local vascu-
lature [125]. Isolation of the (Lin−)CD29hiCD24hi population
from p53-null mouse mammary tumors by FACS followed by
gene expression profiling revealed mesenchymal gene expres-
sion patterns characterized byWnt and cytokine signaling [59].
These mouse models enabled functional interrogation of mes-
enchymal stem cell niche cells and TICs. FACS isolation of
each population from mammary tumors followed by single or
co-culture of each population revealed that the proliferative
and self-renewal properties of TICs were enhanced when co-
cultured with niche cells or niche cell-conditioned medium.
These properties were also observed when orthotopically
transplanting in vivo. Lentivirus-mediated knockdown of
Wnt2 within the niche population led to reduced self-renewal
capabilities of the TIC population in vitro and in vivo [63].
Thus, generation of these mouse models harboring ITH en-
abled functional dissection of the role of various tumor cell
subpopulations. In vitro assays, using experimentally produced
trackable clones derived from the MDA-MB-231 cell
line revealed interactions between clones functionally drove
tumor growth, implying inter-clonal communication may play
a functional role in tumor progression [85]. Thus, studies in a
variety of experimental models have demonstrated the pro-
tumor functional effects of ITH.

Laboratory Models – Genomic ITH

Genomic sequencing has enabled computational modeling of
subclonal architecture in PDX models, revealing extensive
genomic ITH and distinct patterns of clonal dynamics across
samples [25, 70–72]. Analysis of genomic ITH in serially
passaged PDXs revealed that while some models maintained
stable levels of minor subclones relative to matched patient
tumors, other models exhibited a selective sweep in which a
minor subclone outgrew at early or late passages [71]. Thus,
while some PDXmodels faithfully maintain the genomic ITH
of patients’ biopsies, others do not. Mouse models of sponta-
neously arising metastasis have enabled investigation of the
somatic evolution of breast tumor cells throughout the meta-
static cascade. Next-generation sequencing of two luminal-
like breast cancer GEMMs, MMTV-PyMT and MMTV-
Her2, revealed a high degree of genomic ITH within each
model. Analysis of the functional relevance of CNAs identi-
fied two potential metastasis-related genes, Col1a1 and Chad.
A population of cells with Col1a1 and Chad knockdown were
unable to metastasize to the lung after orthotopic injection,
suggesting these are functional metastasis driver genes [56].
A study that conducted WES of paired primary tumors and
lung metastases from the MMTV-PyMT and MMTV-Her2
models identified metastasis-enriched and metastasis-specific
mutations and CNAs in known oncogenes, including Kras.
Orthotopic engraftment of cells expressing the Kras G12D
mutation led to increasedmetastatic burdenwhile knock down
of Kras reduced metastasis to the lungs [126].

Many orthotopic PDX models develop spontaneously aris-
ing metastases to common organ sites of human breast cancer
metastasis [73, 127–129]. Genomic analyses of matched pri-
mary tumors and metastases from PDX models have revealed
that despite the high degree of genomic similarity, metastases
often arise from a minority of primary tumor subclones as
evidenced by differential maintenance of MAFs and CNAs.
These analyses of PDX models have also revealed that the
majority of mutations detected in metastases were also detect-
ed, albeit at lower frequencies, in the matched primary tumor
[25, 73, 130]. Together, these studies have revealed that me-
tastases are clonally derived from primary tumors, often from
a minor primary tumor subclone, and that metastatic cells
sometimes continue to evolve de novo genomic aberrations
after escaping the primary tumor. Deep sequencing of multi-
site metastases in a PDX model of TNBC revealed reproduc-
ible selection of a common genomic subclone in lung, liver,
and brain metastases relative to primary tumors, suggesting
that distinct organ microenvironments may enable outgrowth
of shared genomic subclones [73]. Isolation of CTCs from
TNBC PDX models revealed CTC clusters harbored hetero-
geneous levels of epithelial and mesenchymal proteins, sug-
gesting that CTCs in PDX models harbor phenotypic ITH
[74]. To address the functional role of ITH in metastasis, the
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orthotopically xenografted MDA-MB-468 cell line model, in
which secreted factor-over-expressing subclones were de-
rived, was used to demonstrate that polyclonality was required
for metastatic outgrowth. This study revealed that two factors,
IL11 and FIGF, secreted by minor primary tumor subclones,
promoted distant metastases through effects on the immune
and vascular microenvironments, respectively [131].

Studies investigating CSC features and genomic ITH have
provided insights into mechanisms of therapy resistance. Based
on the observation that TNBC cells express high levels of
EGFR protein and reactive oxygen species, treatment of
MDA-MB-468 TNBC cells with an antioxidant in combination
with an EGFR inhibitor revealed a marked growth inhibitory
response. Mammosphere-forming cultures of FACS-sorted
CSC and non-CSC cells revealed that the EGFR inhibitor
targeted non-CSC cells while the antioxidant targeted the
CSC sub-population, suggesting that combining drugs to target
heterogeneous tumor cell subpopulations may be an effective
therapeutic strategy [84]. Genomic sequencing of PDX tumors
throughout treatment with standard chemotherapies revealed
that TNBCs can maintain genomic ITH rather than exhibiting
a selective bottleneck or evolution of de novo genomic aberra-
tions [24]. This non-mutational mode of resistance has been
described as a reversible drug-tolerant state and can be mediat-
ed by alterations in tumor cell metabolism [24] and epigenetic
programs [132]. In summary, analyses of genomic ITH in lab-
oratory models have demonstrated reproducible patterns of
subclonal architecture and dynamics with a high degree of sim-
ilarity to those observed directly in patients’ biopsies and allow
for functional dissection of heterogeneous subpopulations.

Laboratory Models – Lineage Tracing

Lineage tracing approaches have enabled precise monitoring
of ITH dynamics in a variety of in vitro and in vivo experimen-
tal models. One, or up to thousands of, tumor cell subpopula-
tion(s) can be labeled with a tag transmitted to all cells clonally
descended from the initially tagged cell which is then detected
by fluorescence imaging or sequencing. These approaches
have effectively provided quantitative portraits of subclonal
architecture in multiple laboratory models of breast cancer.

Multi-color Lineage Tracing

GEMMs have enabled fluorescence in situ lineage tracing of
luminal and basal cell lineages throughout tumorigenesis, re-
vealing that the identity of the cell of origin bearing a tumor-
imitating oncogenic insult can dictate mechanisms of tumori-
genesis and progression [64]. Intravital imaging enabled mon-
itoring of cancer stem-like cell plasticity longitudinally with-
out the need to disrupt and isolate tumor cell subpopulations
and revealed that TIC properties could be dynamically lost
and gained within diverse subpopulations of cells over the

course of mammary tumor growth. Using the MMTV-PyMT
model [65], investigators introduced a previously generated
Cre-inducible ‘confetti’ construct [133] which randomly in-
duces expression of CFP, GFP, YFP, or RFP in each trans-
duced cell. In this system, clonal expansion of a founder TIC
manifests as large tumor areas marked by a single fluorophore.
Longitudinal intravital imaging provided experimental evi-
dence for the plasticity of TIC capacity, as evidenced by loss
of some single-color areas and gain of de novo single-color
areas over several weeks of mammary carcinoma develop-
ment [134]. Imaging of single cells in the complex 3D envi-
ronment of intact breast tumor tissue has been a major chal-
lenge, but recent advances in tissue clarifying methods that
preserve tissue and cellular architecture have provided the
unprecedented ability to image ITH in tissues. This method
enabled multiplexed 3D immuno-fluorescence imaging of a
PDX breast tumor, revealing extensive cellular and spatial
ITH. Authors also applied this methodology to GEMMs bear-
ing the Cre-inducible ‘confetti’ construct [133] in luminal or
basal lineages to visualize 3D ITH throughout tumorigenesis
[66]. Further utilization of multi-color lineage tracing con-
structs with the advancement of 3D single-cell imaging will
provide invaluable insights into ITH dynamics following ther-
apeutic treatments and throughout the metastatic cascade.

While numerous genomics studies have demonstrated that
metastases are usually polyclonal, multi-color lineage tracing in
the MMTV-PyMT mouse model allowed direct testing of the
relative metastatic capacity of single vs. clustered tumor cells
[67]. This study used a two-color inducible construct that
switched from membrane tdTomato to membrane eGFP ex-
pression upon introduction of adenoviral Cre recombinase, thus
allowing determination of whether tumor cells detected
throughout the metastatic cascade were single or two-colored.
This approach identified multiclonal tumor cell clusters at var-
ious stages of metastasis and revealed that clusters were sub-
stantially more metastatic than were single tumor cells. This
system has also been used in PDX models of TNBC to track
the fates of cells positive for epithelial-mesenchymal transition
(EMT)-related gene expression, revealing that only subsets of
EMT-related genes were associated with in vivo tumor-
initiation capacity [80]. A recent study reported the utility of
immunodeficient zebrafish engrafted with a wide array of hu-
man cancer cells, including breast, which exhibited similar
growth kinetics to cells grown in immune-compromised mice.
Zebrafish are optically clear and thus permit ready longitudinal
fluorescence imaging with single-cell resolution. This study
demonstrated the power of this system to monitor ITH dynam-
ics following therapeutic treatment of zebrafish engrafted with
rhabdomyosarcoma cells that had been engineered to express a
four-color cell cycle reporter [81]. Implementation of this mod-
el system to study ITH of breast cancer cells undergoing clin-
ically relevant therapeutic regimens will be of great interest.
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Viral Barcode-mediated Lineage Tracking

Several studies have leveraged lentivirally introduced lineage
tags, or “barcodes”, to simultaneously track the dynamics of
hundreds to thousands of clonal lineages in breast cancer
models. Barcode tags are neutral, short DNA sequences that
virally integrate into random genomic locations. Pooled
barcode libraries enable high-throughput tracing of clonal lin-
eages when transduced at a low multiplicity of infection such
that the vast majority of transduced cells receive one single
barcode, followed by next-generation sequencing to identify
and quantify barcodes [135]. While barcodes enable high-
throughput analysis of hundreds to thousands of unique clones
simultaneously, they are not directly linked to molecular
events within the cells they mark, necessitating further down-
stream investigations to identify drivers of the observed pat-
terns of ITH. This technology has been used in cell line and
PDX in vivo models of breast cancer to track patterns of ITH
during xenograft passaging and primary tumor growth, reveal-
ing substantial ITH and diversity of clonal growth patterns
between samples derived from distinct models [82].
Retroviral barcoding of a breast cancer cell line in vitro re-
vealed that uniquely barcoded subclones maintained diverse
ratios of epithelial and mesenchymal subpopulations, reveal-
ing phenotypic plasticity within each clonal lineage [96]. As
an alternative approach to random integration of lentiviral
barcode libraries, the CRISPR/Cas9 system has been used to
introduce genomic scars, serving as unique lineage barcodes,
at a defined genomic location based on small guide RNA
recognition. Introduction of a complex library of CRISPR
barcodes in the BT474 breast cancer cell line revealed distinct
maintenance of barcoded subpopulations when cells were
grown in vitro or orthotopically xenografted, suggesting sub-
populations of clones harbored an intrinsically distinct in vivo
growth potential [97].

Barcoding has been used to quantitatively monitor devel-
opment of therapy resistance in models of breast cancer. High-
complexity in vivo barcode tracking in orthotopic PDX
models of primary untreated TNBC revealed maintenance of
barcode complexity, rather than a selective bottleneck, follow-
ing treatment of mice with standard front-line chemotherapies.
Rather than genomic evolution, resistance in thesemodels was
found to be mediated by a phenotypic state characterized by a
metabolic and epigenetic adaptations [24]. High-complexity
barcoding of the ER +MCF7 cell line treated with fulvestrant
or tamoxifen in vitro revealed selection for a pre-existing re-
sistant subclone, whereas treatment with an inhibitor of the
KDM5 histone demethylase resulted in no clonal selection
[98]. Together, these data indicate that patterns of clonal dy-
namics are likely specific to the breast cancer subtype and
mechanism of action of therapy.

Barcoding approaches have provided valuable insights into
the natural evolution of primary breast tumor cells as they

metastasize in human and mouse tumor models. In vivo
barcoding with a highly complex library in orthotopic PDX
models of primary untreated TNBC revealed a selective bot-
tleneck when comparing lung, liver, and brain metastases to
primary tumors. The natural occurrence of multi-site metasta-
ses within these models enabled direct comparison of spatially
distinct metastases, revealing enrichment of shared clonal lin-
eages across diverse secondary organ microenvironments.
The high complexity of the barcode library enabled detection
of extremely rare populations of seeding clones that were
maintained at low levels in metastatic sites, further providing
evidence for polyclonal seeding [73]. Similarly, in vivo
barcoding of PDX models with a lower-complexity library
revealed that while chemotherapy had little impact on ITH,
metastasis imparted a selective bottleneck [83]. Retroviral in-
troduction of barcodes into the mouse mammary tumor-
derived 4T1 cell line followed by orthotopic engraftment into
immune-compromisedmice enabled comparison of lymphatic
metastases, CTCs, and blood-borne metastases in the lung,
liver, and brain. Of primary tumor clones, only a subset was
detected in CTCs, a subset of which was detected in blood-
borne metastases. These lineages were largely non-
overlapping with those found in lymph node metastases
[99]. Together, these studies have demonstrated strong shifts
in the spectrum of ITH in multi-site metastases of diverse
breast cancer models. Future clonal tracking studies using
syngeneic mouse models and xenograft models with human-
ized immune systems will enable evaluation of the role of
immune cell populations in the subclonal dynamics of
metastasis.

Developmental Barcoding

Developmental barcoding strategies using engineered
CRISPR/Cas9 systems have been devised to monitor embry-
onic development in a variety of model systems [136–140].
These models will likely yield profound insights into tumor
subpopulation dynamics when crossed with mouse mammary
tumor models. One such study conducted lentiviral injection
of the amniotic cavity of mouse embryos to introduce
barcodes into mammary epithelial progenitor cells, which
were found to have equal likelihood to give rise to
myoepithelial or luminal cells in adult mammary ducts. This
barcoding strategy was then used to screen cancer genes by
introducing a barcoded pooled lentiviral library of shRNAs
and ORFs against putative cancer-related genes into the
Keratin 14-Cre; Pik3caH1047R tumor model following amniot-
ic injection. This approach identified several genes whose
manipulation accelerated tumor formation [68]. Thus, this
novel method enables both neutral barcode-mediated lineage
tracing and high-throughput in vivo screening in an immune-
competent mouse background. Application of this methodol-
ogy to additional breast cancer GEMMs that enable analysis
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of therapy-resistant and metastatic tumors will likely provide
valuable insights into clinically relevant drivers of ITH in
breast cancer.

Single-cell Methods to Assess ITH

Single-cell Genomics and Transcriptomics of Tumor
Biopsies From the Clinic

The development of single-cell technologies has vastly im-
proved our ability to detect and characterize ITH. Single-cell
sequencing overcomes many of the major limitations faced
when sequencing bulk samples, namely that individual
subclones no longer need to be deconvoluted computationally.
A number of single-cell sequencing technologies have been
developed that can assay a range of molecules, including
DNA [141], RNA [142], methylation [143], or chromatin ac-
cessibility [144]. Themain limitation of these approaches is the
cost, which restricts the number of cells that can be profiled,
and thus, the sizes of the cell populations that can be found. To
date, most single-cell sequencing studies have characterized
primary tumor samples. Some of the earliest studies using
single-cell DNA sequencing approaches in ER + and TNBC
specimens and a paired liver metastasis, clearly confirmed
the presence of extensive genomic ITH in each sample.
These studies provided early evidence that tumors may evolve
early in punctuated bursts of CNAs followed by gradual accu-
mulation of mutations [35, 36]. Single-cell genomic sequenc-
ing has also enabled characterization of disseminated breast
tumor cells isolated from bone marrow [37]. A recent study
using single-cell genome sequencing of primary tumors col-
lected from 16 patients revealed pervasive ITH of CNAs, often
differing between two spatially resolved biopsies, highlighting
the importance of performing spatial sampling [38]. Spatially
resolved single-cell DNA sequencing, enabled bymicrodissec-
tion of formalin-fixed paraffin embedded (FFPE) samples of
ductal carcinoma in situ (DCIS), revealed genomic ITH
throughout DCIS progression [39]. Furthermore, single cell
sequencing confirmed that a shared genomic lineage led from
the DCIS to invasive lesions and that the majority of genomic
aberrations occurred in DCIS prior to acquisition of invasive
properties [40]. In recent years, single-cell RNA sequencing
revealed heterogeneity of transcriptomic profiles amongst tu-
mor and stromal cells [41, 42]. Laser capture microdissection
was used to isolate tumor and stroma regions in tissues from
TNBC patients. Microarray gene expression analysis of micro-
dissected regions revealed unique profiles associated with dis-
tinct tumor immune-microenvironment spatial arrangements.
Infiltration of CD8 + T cells within the tumor mass, rather than
being restricted to the tumor periphery, was found to be corre-
lated with good outcome. In contrast, an “immune-cold” mi-
croenvironment was associated with poor outcome [43]. In

addition, single-cell RNA sequencing of tumors collected from
5 TNBC patients enabled resolution of tumor and stromal sub-
populations, revealing extensive ITH of cancer-associated fi-
broblasts (CAFs) and their expression of specific transcription
factors [44].

Single-cell analysis has also provided new insights into
whether drug resistance is caused by the selection of pre-
existing resistant clones or through acquired resistance follow-
ing treatment. Findings from iFISHwith several probes against
frequently amplified chromosomal regions of pre- and post-
NACT tumor biopsies from 47 breast cancer patients (13 lu-
minal A, 11 luminal B, 11 HER2+, and 12 TNBCs) showed
that tumors with complete response had low pre-treatment ge-
netic diversity of chromosomal probes, whereas tumors with
higher genetic diversity only had partial responses to chemo-
therapy. Importantly, patterns of genetic diversity were un-
changed pre- and post-NACT in tumors with partial responses.
However, patterns of ITH based on expression of CSC
markers CD44 and CD24 were altered following NACT, sug-
gesting that cellular phenotypes are adaptable in the absence of
genomic evolution [14]. A study using specific-to-allele PCR-
FISH (STAR-FISH) from treatment-naïve HER2 + samples
revealed that a minor subpopulation of cells with a preexisting
PIK3CA mutation were enriched following chemotherapy.
Furthermore, the spatial distribution of PIK3CA mutant cells
and HER2-amplified cells was predictive of trastuzumab re-
sponses [45]. Single-cell DNA sequencing of longitudinal
samples from TNBC patients before and after chemotherapy
revealed that in some patients, resistant genotypes pre-existed
in tumors prior to treatment. Interestingly, single-cell RNA-
sequencing in a subset of the same samples showed that the
transcriptome profiles of cells pre-treatment and post-treatment
were distinct and that transcriptomic programs found in post-
chemotherapy residual tumors were undetectable before treat-
ment [23, 34]. Together, these studies suggest that
chemoresistance is sometimes associated with both genomic
selection and transcriptomic reprogramming.

Studies of RNA expression profiles in individual CTCs
have demonstrated the existence of transcriptomic ITH in liq-
uid biopsies [53]. Single-cell RNA-sequencing identified that
rare CTC clusters harbored unique gene expression programs
and were more likely to initiate metastasis compared to single
CTCs. A CTC-cluster-enriched gene, plakoglobin, was
expressed heterogeneously in primary and metastatic breast
tumors, suggesting its expression may be restricted to the sub-
population of primary tumor cells harboring metastatic capac-
ity [54]. Profiling CTCs from patients with metastatic breast
cancer revealed development of mutations and alterations
within ESR1 in individual CTCs during endocrine therapy,
suggesting mechanisms of endocrine therapy resistance [55].
Together, these studies have demonstrated that single-cell
analyses enable precise delineation of genotypes and pheno-
types associated with metastasis and therapy resistance.
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Single-cell Proteomic Measures of Tumor Biopsies
From the Clinic

While mass spectrometry proteomics provide high-resolution
analysis of protein levels in bulk samples, these methods are
not yet fully developed for single-cell analyses to appreciate
ITH. Rather, several approaches have been developed to ana-
lyze levels of select proteins using antibody-based detection
on tissues or in cell suspensions. Newly developed mass cy-
tometry approaches, in which cell suspensions or tissues are
stained with heavy metal isotope-conjugated antibodies
against up to ~ 40 different proteins simultaneously, have en-
abled detection of complex proteomic ITH in breast cancer
samples. A study using cell suspension cytometry time of
flight (CyTOF) with tumor and stromal cell-specific antibody
panels revealed extensive proteomic and cell type heterogene-
ity in cell suspensions obtained from 144 tumors of breast
cancer patients and 50 non-tumor tissues. Specifically, high
frequencies of PDL1+ tumor-associated macrophages and
exhausted T cells were found in high-grade ER + and ER-
tumors, highlighting tumor-stroma interactions associated
with immunosuppression and poor prognosis [46]. Spatially
resolved mass cytometry on tissue sections with a panel of 35
biomarkers using imaging mass cytometry (IMC) of 281 pa-
tients revealed 18 novel subgroups of breast cancer associated
with distinct clinical outcomes [47]. By coupling IMC with a
panel of 37 biomarkers and genomic profiles from the
METABRIC cohort [12], a recent study revealed associations
between genomic alterations and proteomic features of tumor
ecosystems, including cellular interactions and neighborhoods
linked to prognosis. In particular, mutations in TP53 were
associated with distinct epithelial and fibroblast phenotypes,
suggesting that somatic genomic aberrations exert influence
over the cellular compositions of both tumor and microenvi-
ronmental populations. Furthermore, epithelial cells that
expressed a marker of hypoxia were associated with copy
number gains of CD274, encoding PD-L1, and heterozygous
deletions of B2M, encoding β2-microglobulin, suggesting
that a hypoxic microenvironment may select genomic alter-
ations that produce immune-tolerance [48]. Thus, ecosystem-
based patient classification may facilitate identification of in-
dividuals for precision medicine approaches targeting the tu-
mor and its unique microenvironment. While these ap-
proaches are providing unprecedented insights into proteomic
and spatial complexity of breast tumors, current technologies
are able to simultaneously assay a limited number of mole-
cules, necessitating the a priori decision to assay pre-defined
pathways or proteins.

Single-cell Approaches in Laboratory Models

Studies focusing on cultured breast cancer cells have identi-
fied extensive genomic ITH within cell lines [86, 87].

Identification of ITH among clones from MDA-MB-231
TNBC cells revealed that differences in gene expression
among distinct clones impacted cytokine- signaling between
cells [85]. Single-cell sequencing of human breast cancer cell
lines has enabled testing of the role of non-genetic ITH in
therapeutic resistance. Single-cell RNA-sequencing revealed
a heterogeneous response to glucocorticoids in a breast cancer
cell line (T47D). Steroid hormone receptors such as the glu-
cocorticoid receptor (GR) mediate transcriptional responses to
hormones and are frequently targeted therapeutically.
However, due to cell-to-cell variability in hormone responses,
individual hormone-treated cells expressed only up to 30% of
the total set of GR target genes. Understanding the basis of this
heterogeneity will be critical for the development of more
precise models of targeting steroid hormone signaling [88].
Single-cell RNA sequencing of the ER +MCF7 cell line re-
vealed transcriptional variability within a rare subpopulation
of therapy pre-adapted cells which underwent further
transcriptomic reprogramming and CNAs to acquire full re-
sistance to endocrine therapy, emphasizing the necessity of
stage-specific biomarkers for studying multi-step models of
therapy resistance development [89].

Single-cell methodologies are beginning to be leveraged in
mouse models as well. Single-cell RNA-sequencing of Neu,
PyMT, and BRCA1-null mouse mammary tumor models re-
vealed that various tumors contained distinct CSC-like sub-
populations driven by different oncogenic pathways [57].
Single-cell RNA-sequencing of the murine M6 allograft mod-
el of low-grade TNBC demonstrated that smoothened inhibi-
tors reversed hedgehog pathway gene expression in CAFs that
were responsive to the Hh ligand. Activated CAFs in turn
provided a supportive niche for neoplastic cells to acquire a
chemoresistant CSC phenotype, suggesting a therapeutic ben-
efit from targeting of CAFs [58]. Recently, a new spatial ap-
proach to isolate and characterize tumor-proximal stromal
cells from the metastatic niche has been demonstrated using
diffusible fluorescence labeling of metastatic tumor cells [69].
Use of PDX models enables ready acquisition of bona fide
human tumor cells in sufficient quantities for single cell anal-
yses. Single cell DNA sequencing of PDX models revealed
extensive genomic ITH, confirming observations made by
bulk DNA sequencing studies. Single-cell targeted gene ex-
pression profiling in FACS-sorted PDX cells from early-stage
(low burden) metastatic tissues, including lung, lymph node
and brain, showed increased expression of genes involved in
CSCs [71] and EMT while advanced lung metastasis cells
were similar to primary tumors in their gene expression pro-
files [75]. Single-cell RNA-sequencing of matched primary
tumors and lung micro-metastases from TNBC PDX models
revealed transcriptomic ITH in primary tumors and lung mi-
cro-metastases. Metastatic tumor cell subpopulations har-
bored distinct levels of activation of gene expression pathways
such as oxidative phosphorylation, highlighting the
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importance of monitoring ITH of gene expression programs to
combat metastasis [76].

The recent development of single-cell analyses to identify
epigenetic ITH has provided previously unachievable insights
into non-genomic mechanisms of therapy resistance. Single
cell methods to analyze epigenetic landscapes, such as single
cell methylation sequencing, are beginning to be leveraged in
other tumor types [145]. These methods have not yet been
broadly applied to breast cancer. One study utilizing single
cell combinatorial indexing Assay for Transposase
Accessible Chromatin sequencing (sciATAC-seq) in PI3K/
mTOR inhibitor-, and MEK inhibitor-treated TNBC cell lines
to assess chromatin accessibility in individual cells revealed
that distinct cell-state transitions arose in the absence of
Darwinian selection of pre-existing subpopulations. Co-
treatment with a PI3K/mTOR inhibitor and the BET inhibitor
prevented the acquisition of a drug-tolerant persister state,
resulting in cell death in vitro and xenograft regression
in vivo [118]. A study using single-cell RNA-sequencing, cel-
lular barcoding, and mathematical modeling demonstrated
that endocrine resistance was due to pre-existing genetically
distinct cells or acquired from alterations in activity of
KDM5A/B, a histone demethylase involved in transcriptional
regulation and DNA repair. In addition to genetic deletion of
KDM5A/B, inhibition of KDM5 activity increased sensitivity
to anti-estrogens by modulating ER signaling [146].
Collectively, these findings highlight the importance of under-
standing phenotypic and epigenetic heterogeneity in therapeu-
tic resistance. Broadened use of single-cell epigenetic analysis
methods is likely to provide valuable insights into mecha-
nisms of therapeutic resistance.

Concluding Remarks

Our understanding of ITH in breast cancer has progressed
dramatically in the past decade and is likely to evolve further
with technological advances and the development of novel
experimental models. One of the most critical remaining ques-
tions is the correlation of ITH with therapeutic response and
metastasis. While a few studies have preliminarily addressed
this strictly at the level of analyzing genomic ITH, this needs
to be addressed in larger cohorts and with methodologies re-
vealing transcriptional, epigenetic, and proteomic ITH. These
findings could provide novel methods with which to stratify
patients, predict outcomes, and personalize therapies.
However, the practical application of many approaches
discussed herein, such as single-cell sequencing, to clinical
decision-making is currently limited due to cost, throughput,
sample availability, and limit of detection for low-abundance
subpopulations (Table 1).

Numerous studies have demonstrated that tumors from lab-
oratory models exhibit patterns of ITH that are similar to those

seen in clinical biopsies. While clinical biopsies will always
the gold standard against which findings from laboratory
models should be compared, models enable functional studies
and use of biological replicates that are impossible in the clin-
ical setting. While each model has drawbacks, each has also
proven useful for monitoring various aspects of ITH and tu-
mor progression. The major benefits of in vitromodels are the
ease of manipulation for large-scale experiments, low time
requirements, and low cost; these benefits come at the expense
of a stromal microenvironment and the complete repertoire of
ITH characteristic of human tumors. GEMMs offer the major
benefit of harboring an intact immune microenvironment.
These models, despite the fact they are mouse and not human
tumors, have captured some aspects of ITH at the level of
DNA aberrations, transcriptomic programs, and CSC pheno-
types. However, these models are usually initiated in a rela-
tively short time scale by one or a few oncogenic insults, thus
narrowing the degree of ITH that can be observed. PDX
models can capture a high degree of complex ITH of the
patient tumor from which they were derived and thus are an
effective model with which to experimentally monitor and
perturb ITH in human tumor cells. As the major limitation
of PDX models is lack of an intact immune system, use of
mice with ‘humanized’ immune systems [147] will help to
overcome this limitation, although these models are not yet
amenable to large-scale studies. Furthermore, utilizing in vitro
patient-derived organoids to increase throughput [148] en-
ables experimentation on bona fide human tumor cells while
sparing the need for large animal cohorts.

The majority of ITH studies using bulk and single-cell
technologies have focused on genomic ITH. These studies
have provided quantitative portraits of breast ITH and its dy-
namics throughout tumor progression. A major area of future
work will entail expanded analyses of matched primary and
multi-site metastatic lesions, as well as therapy-naïve and
therapy-resistant residual tumors, to build upon the limited
number of matched sample sets that have been analyzed thus
far. These studies have the potential to elucidate patterns of
tumor evolution that may be specific to or shared between
distinct secondary organs, as well as patterns that may arise
specifically in residual cells surviving therapies, and thus may
reveal therapeutic targeting opportunities.

Fewer ITH studies have focused on transcriptomic, epige-
netic, metabolic, or proteomic ITH, despite the fact these ele-
ments are likely to shed light on targetable cellular pheno-
types. The full scale of proteomic and spatial ITH in breast
cancer is only beginning to be appreciated, especially in the
context of therapy-resistant and metastatic tumors. Several
recent studies have addressed the possible influence of meta-
bolic ITH in breast tumor biology [24, 149, 150]. The devel-
opment of single cell metabolomic technologies is expected to
provide novel insights into mechanisms driving breast cancer
progression. Further investigation of molecular ITH with
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spatial resolution, such as with IMC, should provide valuable
insights into the phenotypic evolution of resistance and me-
tastasis in breast cancer. It will be vitally important that studies
of these are expanded to include antibody panels testing
a variety of cancer-related pathways relevant to therapy
resistance and metastasis.

To identify approaches to therapeutically target heteroge-
neous tumors, new methods are needed. For instance, combi-
natorial CRISPR-based screens may identify effective means
with which to target ITH in breast tumor samples [151].
Large-scale drug screening platforms, such as those enabling
high-throughput two-drug combination testing in PDX-
derived cells [152], hold promise to identify combinations that
are synergistically cytotoxic across multiple models. Use of
cells that can be subsequently xenografted allows for in vivo
validation of in vitro drug screen hits, further increasing the
probability of clinical translation. Thus, combining knowl-
edge of clinically relevant signatures of ITH with multiplexed
genetic and pharmacologic screening platforms holds
great promise to combat therapy resistance and metasta-
sis in breast cancer.
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