
RESEARCH

Cellular Oncology (2024) 47:1627–1647
https://doi.org/10.1007/s13402-024-00939-5

patients are diagnosed at an advanced stage with a dismal 
prognosis [2, 3]. Advances in sequencing techniques have 
enabled identification of a few molecular subtypes and 
suggested treatment options for certain types of PDACs in 
accordance with genomic and transcriptomic profiles [4]. 

1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the 
most aggressive malignancies with a propensity for early 
metastatic spread [1]. Approximately 80% of PDAC 
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Abstract
Purpose Early dissemination of primary pancreatic ductal adenocarcinoma (PDAC) is the main cause of dismal prognosis 
as it highly limits possible treatment options. A number of PDAC patients experience distant metastasis even after treatment 
due to the metastatic clones. We aimed to demonstrate the molecular architecture of borderline resectable PDAC manifests 
cancer dissemination of PDAC.
Methods Here, 36 organoids isolated from primary tumor masses of PDAC patients with diverse metastatic statues are 
presented. Whole-exome sequencing and RNA sequencing were performed and drug responses to clinically relevant 18 
compounds were assessed.
Results Our results revealed that borderline resectable PDAC organoids exhibited distinct patterns according to their meta-
static potency highlighted by multiple genetic and transcriptional factors and strong variances in drug responses.
Conclusions These data suggest that the presence of metastatic PDAC can be identified by integrating molecular composi-
tions and drug responses of borderline resectable PDAC.
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Nevertheless, molecular characteristics of metastatic PDAC 
remain largely unclear, partially due to low assessment of 
surgical specimens of metastasized PDACs because many 
clinical practice guidelines designate metastatic PDACs 
as typically unresectable [5–7]. Reflecting its poor acces-
sibility, prior large cohort studies using PDACs consisted of 
only subtle portion of metastatic samples [8–11]. Accord-
ingly, pre-clinical models for validating actionable molecu-
lar targets of metastatic PDACs are very few in number as 
well [12].

Researchers studying metastatic PDACs have mostly 
focused on molecular profiles between metastatic deposits 
and early-stage disease in the pancreas as in many other 
solid tumors [13]. This approach has revealed that immu-
nological and transcriptional alterations including cell 
cycle signaling, stem cell signaling and microenvironment 
remodeling are likely to be associated with dissemination 
of pancreatic tumor cells [14]. Genetic aberrations such as 
increasing KRAS mutant population have also been identi-
fied to facilitate metastasis [15]. Nevertheless, unlike other 
solid cancers, metastasis of PDAC can take place during 
initial progression of tumor, even prior to mass formation, 
suggesting that the molecular architecture of primary tumor 
might account for early dissemination of tumor cells [16–
18]. Indeed, primary pancreatic tumor often metastasizes 
even after treatment [19, 20]. Therefore, distinguishing risk 
groups for high metastatic propensity based on molecu-
lar compositions of the primary tumor can benefit PDAC 
patients by providing clues to prevent unwanted progres-
sion. To comprehend molecular discrepancy of primary 
PDACs with potential metastatic capability, we established 
PDAC organoids isolated from primary tumor masses of 
36 patients with diverse metastatic statuses and performed 
multi-omics and pharmacologic analysis. We also inte-
grated actionable molecules in metastatic clones as predic-
tive markers of targeted therapies in patients with metastatic 
progression using organoid models.

2 Results

2.1 Pancreatic tumor organoids from 36 patients 
recapitulate morphologic features of the original 
tumor

We successfully established a living biobank consisting 
of 36 organoids from primary pancreatic adenocarcinoma 
(PDAC) patients with various metastasis statuses. Twenty-
two patients exhibited distant metastases in the liver (n = 14), 
lungs (n = 4), multiple sites (n = 2), and lymph nodes (n = 2). 
Among them, seven patients were initially diagnosed with 
borderline or resectable PDAC that progressed to the 

metastatic stage after treatment. We followed patients for 
a maximum of 24 months. Thirteen patients presented no 
metastasis during the follow-up period. Clinicopathological 
information including treatment regimen of each patient is 
summarized in Table 1. Fingerprinting analysis validated 
that all organoids were unique without cross-contamination 
(Supplementary Table 1). Most organoids were stably culti-
vated after consecutive passaging of 2 or 3 times, and cryo-
preserved at every passage.

Majority of established organoids showed thin-walled 
cystic structure with one or more lumen. Tumors devoid of 
the lumen formed compact organoids without the lumen. 
Hematoxylin-eosin (H&E) staining of formalin-fixed par-
affin-embedded (FFPE) organoid sections revealed that 
most organoids resembled histological structures of original 
tumors regardless of the isolation method. (Figs. 1A, B and 
Supplementary Fig. 1A, B). Although loss of E-cadherin 
is known to initiate dissemination of tumor cells in many 
tumors [21], it was observed only in a subset of metastatic 
PDAC [22]. We selected four representative organoids to 
validate the expressional pattern of E-cadherin in accor-
dance with different metastatic statuses (Fig. 1C). SNU-
3898-TO patient experienced recurrence seven months after 
distal pancreatectomy and the organoid showed a loosely 
aggregated morphology without distinct luminal layers. 
E-cadherin was clearly expressed in most cell junctions 
with varying degrees. Co-localization of E-cadherin with 
actin cytoskeleton was observed. SNU-3923-TO patient had 
no distant metastasis after pylorus preserving pancreatico-
duodenectomy (PPPD) surgery. The organoid had compact 
forms with lumens. E-cadherin was clearly stained along 
with the outmost lining of the luminal layer. SNU-4482 
patient had liver metastasis after total pancreatectomy. The 
organoid derived from this patient displayed heterogeneous 
morphologies with mixed grape-like shapes and compact 
structures showing clear lumens. E-cadherin was sporadi-
cally expressed along with the outer region of the organoid at 
different degrees. SNU-4871-TO patient developed metas-
tasis in lungs and pleura after PPPD surgery, with derived 
organoids showing crypt-like structures, and E-cadherin 
localized in most cell junctions. Overall, in line with previ-
ous reports, cellular expression of E-cadherin in metastatic 
PDAC did not have specific patterns, lowering its value as a 
predictive marker for metastatic potency. We further corre-
lated the level of E-cadherin expression with the metastatic 
status of the organoids as shown in Fig. 1C. SNU-3898-TO 
(recurrence) and SNU-4871-TO (lung metastasis) exhibited 
higher E-cadherin expression compared to SNU-3923-TO 
(non-metastatic), while SNU-4482-TO (liver metastasis) 
demonstrated lower E-cadherin expression relative to SNU-
3923-TO (Supplementary Table 2A and Supplementary 
Fig. 2A).
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KI-67 is present in actively proliferating tumor cells. It 
is a predictive marker for various types of pancreatic cancer 
including neuroendocrine tumors [23] and adenocarcinoma 
[24, 25]. Tumor cells at the inner part of compact organ-
oids with grape-like shapes may experience less oxygen 
and nutrient gradients than those at the outer region, which 
might affect proliferation. We confirmed stable expression 
of KI-67 in the inner region of SNU-4457-TO with grape-
like shape and clear luminal layers in two different pas-
sages. SNU-4863-TO displayed heterogeneous populations 
of compact organoids and cystic organoids within an equiv-
alent linage. Both compact and cystic organoids actively 
expressed KI-67, potentially indication that structure varia-
tions of PDAC organoid would rarely affect proliferation of 
tumor cells (Fig. 1D, Supplementary Table 2B, Supplemen-
tary Fig. 2B). Nevertheless, it should be noted that the KI-67 
indicates whether cells are out of the quiescent state, but it 
does not differentiate between different rates of cell cycle 
progression or cell cycle lengths among different popula-
tions. Structural variations in organoids could still poten-
tially impact factors such as nutrient and oxygen diffusion, 
which in turn could affect cellular metabolism and prolifera-
tion rates differentially across the organoid. Overall, these 
data demonstrate that we have successfully established 
PDAC organoids recapitulating original morphological 
features.

2.2 Mutational profiling of metastatic and 
non-metastatic PDAC organoids identifies VAF-
dependent metastatic potential

We then accessed mutational profiles of PDAC organ-
oids using whole-exome sequencing (WES). Among the 
36 established pancreatic organoids, SNU-2543-TO was 
excluded from the WES analysis due to low DNA integ-
rity. It has been repeatedly reported that organoids can reca-
pitulate genetic alterations of the original tumor [26–28]. 
Since the tumor mass obtained from surgical resection and 
fine needle aspiration biopsy was limited, we selected eight 
tumor tissue-organoid pairs to validate that our PDAC organ-
oids retained most mutations of the original tumor. Overall, 
nearly 90% of mutations were shared between tumor tissues 
and organoids (Supplementary Fig. 3A). We also compared 
variant allele frequencies (VAFs) of each mutation to con-
firm clonal composition was maintained in organoids during 
consecutive cultures. All eight pairs displayed correlation 
coefficient (R) > 0.85, suggesting that the mutational popu-
lation of the original tumor tissue was mostly retained in 
organoids (Supplementary Fig. 3B). Overall scatter patterns 
of VAFs indicated that mutations were getting enriched 
in organoid samples, implying that continuous passaging 
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reported as “Pathogenic” or “Conflicting interpretations of 
pathogenicity” in the Clinvar database.

Primary PDAC organoids with MP had analogous num-
ber of driver mutations per organoid compared to NMP 
PDAC organoids (Fig. 2A, Supplementary Table 3A). In 
parallel with previous findings [30, 31], majority of PDAC 
organoids had mutations in KRAS and TP53 genes regard-
less of their metastatic potency. Most of KRAS mutations 
were glycine substitutions in codon 35: c.35G > A (n = 22) 
and c.35G > T (n = 10) followed by c.34G > C (n = 1), 
c.183A > C (n = 1) and c.340G > A (n = 1). We also com-
pared mutational signatures between MP and NMP organoid 
groups. The composition of point mutation types was highly 
analogous, having predominant C to T transition at CpG site 

might put selective force to prefer certain mutational clones 
(Supplementary Fig. 3C).

Twenty-one genes including KRAS, TP53, SMAD4, and 
CDKN2A frequently involved in tumorigenesis and metas-
tasis of pancreatic tumor [1, 29] were compared between 
organoid groups with metastatic potency (MP, n = 22) and 
non-metastatic potency (NMP, n = 13) (Fig. 2A). Since 
DNAs from matched blood or normal tissue were unavail-
able when WES was performed, we referred to the Clinvar 
database (https://www.ncbi.nlm.nih.gov/clinvar) to exclude 
benign mutations. Mutational pathogenicity of represen-
tative driver genes was manually inspected. All marked 
mutations for calculating the frequency of mutated genes 
in Fig. 2A and Supplementary Table 3A were previously 

Fig. 1 Histopathological Characterization of Pancreatic Ductal Adeno-
carcinoma Organoids. See also Supplementary Figs. 1, 2. Histologi-
cal resemblance of PDAC organoids originated from (A) the surgical 
resection and (B) the fine needle aspiration biopsy. Scale bar = 500 
µM. Most organoids showed thin-walled cystic structure with one or 
more lumen. Tumors devoid of the lumen formed compact organoids. 
Hematoxylin-eosin (H&E) staining of formalin-fixed paraffin-embed-
ded (FFPE) organoid sections confirmed that most organoids resem-

bled histological structures of the original tumors. Most organoid lines 
displayed mixed solid, pebble-like morphologies and cystic, balloon-
like morphologies. Scale bar = 500 µM (C) Expressional patterns of 
E-cadherin in accordance with varying metastatic potency. Scale bar 
= 50 µM (D) Expressional patterns of KI-67 according to heteroge-
neous morphologies of PDAC organoids. For immunocytochemistry, 
organoids in their passages 1–3 were used. Scale bar = 50 µM
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mutation types such as deletion and insertion (Supplemen-
tary Fig. 4A). No specific pattern stood out in parallel with 
previous analysis of point mutation types. We then assigned 
mutational composition of each PDAC organoids to pre-
designated repertoire of mutational processes [32]. Majority 
of organoids showed large portion of signature 1, signature 

in both groups (Fig. 2B and Supplementary Table 3B). The 
relative contribution of each point mutation type remained 
highly similar even after specifying 5’ and 3’ context 
(Fig. 2C and Supplementary Table 3 C), suggesting that spe-
cific type of point mutation could rarely separate MP from 
NMP groups in our PDAC cohort. We also analyzed other 
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our data might suggest a potential association between the 
c.35G > A mutation and the metastatic capacity of PDAC, 
further investigation is required to fully understand the 
implications of KRAS mutations, including c.35G > A and 
c.35G > T, in the context of PDAC progression and metas-
tasis. Few other pathogenic mutations such as KMT2D 
c.7046 C > T, TP53 c.524G > A, and TP53 c.659 A > G had 
VAFs of ∼ 0.5 or 1. There were no feasible differences in 
accordance with metastatic potency, suggesting that those 
mutations took place at the initial progression of pancreatic 
tumor regardless of metastatic potency. Analysis of variance 
(ANOVA) validated that lymph node metastasized organ-
oids had significantly higher site-specific VAFs of KRAS 
c.35G > A mutation than NMP organoids (Fig. 2G).

2.3 Expressional patterns of metastatic and non-
metastatic PDAC organoids reveal distinct pathway 
activation

We also inspected transcriptomic features of PDAC organ-
oids in order to identify distinct expressional patterns of 
PDACs with metastatic potency. We first analyzed differ-
entially expressed genes in MP organoid groups compared 
to NMP organoids using DEseq2, which revealed seven up-
regulated and six down-regulated genes (Fig. 3A). Among 
them, three genes (ALDH3A1, PDZK1, and LINC00520) 
were statistically related to patient survival in the TCGA 
PAAD cohort (Supplementary Fig. 5A-C). Higher mRNA 
expressions of ALDH3A1 and LINC00520 were associ-
ated with poorer overall survival, while a higher level of 
PDZK1 was indicative of better survival rates. We then used 
log2 fold change values and adjusted p-values for all genes 
(21,956 genes), which served as the direct input gene list 
for following pathway analysis. The pathfindR package uti-
lizes both log2 fold change values and adjusted p-values to 
determine enrichment scores, considering both up-regulated 
and down-regulated genes within the specified pathway 
dataset (Supplementary Table 4A). Multiple clusters includ-
ing DNA repair, immune-related, and cell cycle regulations 
were enriched in the MP group (Fig. 3B).

Since supervised approaches indicated that there were 
transcriptional variations between MP and NMP organ-
oids, we re-validated this result using unsupervised meth-
ods. We first compared entire mRNA expression profiles 
(n = 27,656) of each organoid using principle component 
analysis (PCA), which separated MP from NMP organ-
oids based on dimension 1 (9%) (Fig. 3C). Cluster #1 was 
mostly comprised of NMP organoids whereas cluster #2 and 
#3 consisted of MP organoids. We also estimated enriched 
pathway scores using 50 hallmark gene sets from molecu-
lar signature database [35]. We then determined the optimal 
number of clusters using elbow method, and grouped both 

3, and signature 7. However, a distinct mutational pattern 
between MP and NMP groups was not detected (Fig. 2D). 
We also extracted two representative mutational signatures 
by applying non-negative matrix factorization (NMF) based 
on point mutation profiles of our PDAC cohort (Fig. 2E), 
which revealed enriched population of A[T > G]G mutation 
type (Supplementary Fig. 4B). However, the combination 
of point mutation types could not explain characteristics of 
metastatic clones in the primary PDAC.

It has been reported that varying amino acid substitu-
tions in KRAS can result in different aberrations in multi-
ple biological processes of tumor [33, 34]. We compared 
VAFs of two different KRAS mutation types in codon 35 
between MP and NMP organoids groups (Supplementary 
Table 3D). Majority of c.35G > T mutation had VAFs of 
∼ 0.5 or 1 regardless of the metastatic potency, whereas 
VAFs of c.35G > A displayed more sporadic patterns espe-
cially in MP groups (Fig. 2F). In our findings, a number 
of PDAC organoids displaying metastatic potency (MP) 
presented with variant allele frequencies (VAFs) exceeding 
0.5 for the c.35G > A mutation in KRAS, suggesting that 
this mutation may play a prominent role within the tumor’s 
clonal hierarchy at the time of surgical resection. It’s impor-
tant to consider, however, that elevated VAFs could also be 
indicative of genome duplication events or an increase in 
KRAS dosage, both of which are known to contribute to 
the aggressive behavior of tumor biology. Therefore, while 

Fig. 2 Mutational Fraction rather than Mutational Pattern Designates 
Metastatic Potency. See also Supplementary Figs. 3, 4 and Supple-
mentary Table 3. (A) Representative genes that are mostly mutated 
in PDAC were compared between organoids groups with metastatic 
potency (MP, n = 22) and non-metastatic potency (NMP, n = 13). 
Mutational frequency was calculated in both groups. The number of 
mutation per each organoid and gene was indicated with bar plots. 
Each mutation type as well as clinicopathological information are 
marked with representative colors. The passages of organoids used for 
whole exome sequencing analysis were p2– p5. (B) Relative contribu-
tion of the point mutation types was estimated in both groups. Each 
mutation type was indicated with representative colors. (C) Relative 
contribution of the point mutation types was detailed according to the 
3’ and 5’ context. The total number of six representative point mutation 
type was specified. (D) Relative contribution of mutational signatures 
based on pre-designated repertoire of mutational processes was com-
pared between organoids groups with MP and NMP. Each signature 
was indicated with representative colors. (E) Relative contribution of 
two mutational signatures extracted from the point mutation profiles of 
our PDAC cohort was compared between organoids groups with MP 
and NMP. Two signatures were specified with representative colors. 
(F) Density plot presents the variant allele frequencies (VAFs) for five 
representative point mutations. When VAFs are skewed towards 0, as 
observed with the KMT2D c.7046 C > T mutation, the density of VAF 
is high at 0 and is highlighted in red. Conversely, when VAFs are not 
skewed and are more evenly distributed, as with the KRAS c.35G > A 
mutation, the density is lower and is highlighted in green. (G) Disper-
sion of VAF KRAS c.35G > A according to metastasis sites was com-
pared. P value from ANOVA was specified above the bar plot and p 
values from t-test were designated between compared sites
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metastatic cluster displayed enriched proliferation and met-
abolic processes whereas non-metastatic cluster exhibited 
enriched immune and signaling processes. Other processes 
such as cellular component and development were not vis-
ibly grouped with metastatic potency.

organoids and process categories based on k-means (opti-
mal k = 2) (Fig. 3D). The heatmap indicated that organoids 
with MP were likely to be separated in accordance with 
the metastasis status of each patient as well as the mRNA 
cluster from the PCA. In terms of the process category, a 

Fig. 3 Transcriptomic Sub-Classification Revealed Distinct Pattern 
of PDACs with Metastatic Potency. See also Supplementary Table 4. 
(A) Differentially expressed gene (DEG) analysis identified seven up-
regulated (Red) and six down-regulated (Blue) genes (p < 0.05). (B) 
Pathways analysis revealed multiple pathway enrichments of meta-
static potential (MP) group compared to non-metastatic (NMP) poten-
tial group. The fold enrichment of each pathways was scaled on the 
x-axis. The size of dots represents the number of counted genes in the 
dysregulated gene database. The– log transformed p value was indi-
cated by red color. Pathways were clustered according to the number 
of shared genes with representative pathways on the top. (C) Prin-
ciple component analysis (PCA) using 27,656 expressional profiles 

identified three major mRNA clusters separating organoids with MP 
from NMP. Each mRNA cluster and metastatic potency were marked 
with representative colors. (D) The single sample gene set enrichment 
scores (ssGSEA) of each organoid using 50 hallmark gene set database 
were grouped with k-means (k = 2). Metastatic potency and mRNA 
cluster from PCA were specified on the x-axis. The process categories, 
metastatic capacity and mRNA cluster from PCA were designated with 
representative colors. Enrichment score was indicated with represen-
tative colors (Red; up-regulated, Blue; down-regulated). E-H. Wil-
coxon rank sum test indicated that four HALLMARK pathways were 
enriched in organoid groups with metastatic potency
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of the original tumor, which might put strong bias in drug 
responses of organoids. We revealed that FOLFIRINOX 
treatment and subsequent response to Gemcitabine indeed 
implies a potential clustering or pattern within organoid 
group 1 (Fig. 4A). This observation suggests that prior 
exposure to FOLFIRINOX could influence the sensitiv-
ity of organoids to Gemcitabine as previous studies have 
indicated that using Gemcitabine as a second-line treat-
ment for advanced pancreatic adenocarcinoma following 
FOLFIRINOX failure can offer clinical benefits in certain 
patients [36]. Prospective molecular markers accounting for 
metastatic potency were designated under the heatmap to 
visualize association with heterogeneous drug responses. 
As a first validation, metastatic potency and different KRAS 
mutation types were seldom correlated with drug groups, 
underlining further integration of genetic and transcriptomic 
markers with drug responses (Supplementary Table 5A). 
We also estimated gene-drug interactions including muta-
tional status of 14 genes mostly mutated in pancreatic 
tumor (Fig. 2A) and responses to 18 drugs (Fig. 4A) using 
Wilcoxon rank sum test (Supplementary Fig. 6A, Supple-
mentary Table 5B). This revealed two statistically signifi-
cant gene-drug interactions (p < 0.05). This identified two 
statistically significant gene-drug interactions (p < 0.05). A 
mutation in KDM6A was associated with a poorer response 
to the MK5108 drug, and a BRCA1 mutation was linked to 
an improved response to Gemcitabine.

We then applied potential molecular markers in asso-
ciation with metastatic capability to estimate statistical 
correlation with drug responses. Three drugs (Irinotecan, 
Gemcitabine, and Cyclopamine) exhibited negative cor-
relations with three transcriptomic factors (MYC_TAR-
GETS_V1, E2F_TARGETS, and G2M_CHECKPOINT 
pathways). A genomic factor, the VAF of KRAS c.35G > A 
mutation, was directly correlated with fluorouracil and 
inversely associated with sunitinib (Fig. 4B). To interlink 
multi-omics layers, we integrated four representative blocks 
consisting of drug responses, VAF of driver mutations, 
enrichment score of hallmark pathways, and mRNA expres-
sion of drug-related genes [37] using DIABLO r package 
[38] (Fig. 4C). This integrative analysis identified clonal 
population of KRAS c.35G > T, a mutational factor, was 
the key linking the other three factors. The VAFs of KRAS 
c.35G > T was negatively correlated with mRNA expression 
of RRM2 but positively associated with TGF-β signaling 
pathway as well as AUCs of Gemcitabine and Irinotecan 
(Fig. 4C and Supplementary Fig. 6B). Each correlation has 
been previously reported [39–42]. Nevertheless, the detailed 
mutational type of KRAS as the core regulation factor was 
unspecified. In terms of potential metastasis marker, VAFs 
of KRAS c.35G > T presented no statistical association with 
MP, yet mRNA expression of RRM2 was distinctly higher 

We then performed Wilcoxon rank sum test in order 
to pinpoint which hallmark pathways were differently 
enriched, which revealed that four pathways (PI3K_AKT_
MTOR, MYC_TARGETS_V1, G2M_CHECKPOINT and 
E2F_TARGETS) were significantly upregulated in the MP 
organoid group (Fig. 3E-H, Supplementary Table 4B). Con-
nor et al. have reported that cell cycle progression increases 
with sequential inactivation of tumor suppressors, yet 
remains higher in metastases [12]. We further correlated 
genes previously reported to be involved in cell cycle pro-
gression with our pathway analysis. We identified gene 
lists for four target pathways: PI3K_AKT_MTOR_SIG-
NALING, MYC_TARGETS_V1, G2M_CHECKPOINT, 
and E2F_TARGETS. Of the 31 genes, 14 were associated 
with the G2M_CHECKPOINT pathways and 16 with E2F_
TARGETS, corroborating that our findings align with prior 
research. PI3K_AKT_MTOR_SIGNALING and MYC_
TARGETS_V1 shared only single gene with the previously 
reported genes, highlighting them as potential targetable 
pathways in metastatic PDAC (Supplementary Table 4C). 
Our findings suggest that the transcriptomic landscapes of 
PDAC organoids, derived from primary tumors, exhibit 
enriched cell cycle progression patterns akin to those antici-
pated in metastasized clones. This observation implies a 
molecular resemblance between primary PDACs exhibiting 
metastatic potential and the theoretical profiles of metasta-
sized clones, as inferred from their shared expression pat-
terns related to cell proliferation and metabolic pathways. 
Nevertheless, direct sequencing of metastasized clones was 
not part of this study. Therefore, the comparison is specula-
tive and based on the premise that primary tumors with high 
metastatic potency may share key molecular features with 
actual metastatic lesions, warranting further investigation to 
directly compare these entities.

2.4 Molecular features according to metastatic 
potency linearly correlate with responses to 
cytotoxic drugs

We prepared an 18-drug screening library to measure hetero-
geneous drug responses of PDAC organoids. A total of 35 
organoids were successfully screened in duplicate, generat-
ing > 1,200 measurements of drug interactions. The elbow 
method identified two major sub-groups among screened 
organoids and drugs. Organoid group 1 mostly displayed 
good response to drug group 1 consisting of Gemcitabine, 
Paclitaxel, and Mitomycin C. Organoid group 2 exhibited 
heterogeneous responses to these drugs. For drug group 2 
consisting of Irinotecan, Cyclopamine and Sunitinib, organ-
oid group 1 exhibited moderate resistance and organoid 
group 2 showed heterogeneous sensitivities (Fig. 4A). Pre-
operative treatment can directly affect clonal composition 
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raises the possibility that the cellular fraction of KRAS 
c.35G > A mutation might influence drug resistance pat-
terns, notably to 5-FU, in a context-dependent manner, 
particularly within metastatic PDAC clones. However, this 
inference is based on correlational data and requires further 
experimental validation to understand the underlying mech-
anisms fully. Integrating specific metastasis sites revealed 
that majority of liver-metastasized samples (5 out of 7) were 
not plotted within the 95% confidence interval, implying 
that there could be stronger driving force for liver dissemi-
nation than KRAS c.35G > A mutation. Analogous pattern 
was observed with AUCs of irinotecan and enrichment 
score of MYC TARGETS_V1 (Fig. 4E). A reverse corre-
lation between two factors (Fig. 4B) was not presented in 
NMP groups (R = -0.35, p = 0.29). Prior clustering by PCA 
(Fig. 3C) indicated that four MP organoids were grouped 
with NMP cluster (cluster 1). These organoids were plotted 
within 95% confidence interval of MP organoids. In con-
trast, NMP organoids grouped with MP clusters (clusters 2 
and 3) in the PCA were plotted out of 95% interval, high-
lighting the specification of certain transcriptomic pathways 
for better correlation with drug responses. Our findings sug-
gest the potential of utilizing specific molecular markers, 
such as KRAS mutations and RRM2 expression levels, as 
indicators for tailoring first-line therapeutic strategies. For 
instance, the variant allele frequencies of KRAS mutations, 
particularly the c.35G > A and c.35G > T variants, alongside 
RRM2 expression, could inform the selection of targeted 
drugs. These markers might guide the use of chemothera-
peutic agents like Gemcitabine and 5-FU more effectively, 
depending on their association with metastatic potency in 
PDAC. Further research is needed to validate these markers 
as predictive tools for optimizing treatment regimens.

2.5 Machine learning approach enables prediction 
of metastatic potency within primary PDAC using 
drug responses as well as molecular markers

Several studies have reported that patients who were diag-
nosed with primary PDAC are often progressed to meta-
static stage even after the treatment [20]. This implies 
that responses of primary PDAC to certain drugs might be 
used to predict the presence of metastatic clones within the 
primary PDAC. Prior regression models provided direct 
comparisons between two variables, which enabled identi-
fication of potential molecular factors associated with meta-
static potency (Fig. 4B-E). We additionally applied various 
machine learning methods including nearest neighbor, arti-
ficial network, random forest, and decision tree. We esti-
mated the prediction power of each model with area under 
curve (AUC). Most models displayed comparable predic-
tion power except for random forest (Supplementary Table 

in MP organoid groups, which implied the potential role 
of RRM2 as a predictive marker of metastasis in primary 
PDACs. We also divided each factor with two components 
(Supplementary Fig. 6C) and estimated the contribution of 
each block in accordance with MP (Supplementary Fig. 7A, 
B). This revealed that component 1 separated MP from 
NMP groups and provided contributing blocks. In parallel 
with prior analysis, KRAS c.35G > A highly contributed to 
the separation of MP from NMP groups.

We further analyzed effects of MP markers with certain 
drugs by integrating other clinical factors as well as meta-
static conditions. The Pearson correlation previously indi-
cated that cellular fraction of the KRAS c.35G > A mutation 
was positively related to AUC of Fluorouracil (Fig. 4B). In 
our analysis, we observed no significant statistical correla-
tion in the NMP organoid group (R = 0.17, p = 0.62) when 
examining the role of the KRAS c.35G > A mutation, sug-
gesting a differential impact of this mutation across organ-
oids with varying metastatic potencies. This observation 

Fig. 4 Integration of Metastatic Molecular Factors with Heterogeneous 
Drug Responses Reveals Linear Correlation to Cytotoxic Drugs. See 
also Supplementary Figs. 6, 7, Supplementary Table 5. (A) Drug 
responses of PDAC organoids exhibited heterogeneous distribution of 
18 compounds. A total of 35 organoids were successfully screened in 
duplicate, generating > 1,200 measurements of drug interactions. The 
names of compounds are provided on the right. The organoids and 
drugs were k-means clustered based on the AUC values across the 
drug panel. Prospective molecular markers accounting for the meta-
static potency were designated under the heatmap to visualize asso-
ciation with heterogeneous drug responses. AUC values ranging from 
− 2 (Blue; sensitive) to 2 (Red; resistant) and molecular markers were 
marked with representative colors. (B) The linear correlation of meta-
static molecular factors with drug responses is indicated. The name of 
each factor is designated with different colors (Black; VAFs of KRAS 
c.35G > A, Blue; enrichment score of hallmarks pathways, Red; com-
pounds). The Pearson correlation coefficient (R) with p-values between 
the molecular factors and AUC of 11 drugs are represented. (Blue; 
positive correlation, Red; negative correlation). Significance codes: ‘*’ 
p < 0.05. (C) Multi-omics analysis interlinked 4 different omics layers 
(Mutation, mRNA, Hallmark pathway, and drug response) centering 
on VAFs of KRAS c.35G > T. The correlation between two components 
is designated with the color of lines (Red, positive correlation; Blue, 
negative correlation). The correlation coefficient (R) cut-off was 0.77, 
and relative contribution of each component to organoid groups with 
MP and NMP is indicated around the circos plot. Each block is marked 
with representative colors. (D) The linear correlation between the 
VAFs of KRAS c.35G > A and the AUC of Fluorouracil is depicted. The 
Pearson correlation coefficient (R) with p value is calculated accord-
ing to the metastatic potency and marked on the top of the correlation 
graph. Confidence intervals are calculated at a confidence level of 0.95 
for the parameter and indicated by a shading along with the line. The 
specific metastasis sites were marked with different figures. (E) The 
linear correlation between the enrichment score of MYC TARGETS_
V1 and the AUC of Irinotecan is depicted. The Pearson correlation 
coefficient (R) with p value is calculated according to the metastatic 
potency and marked on the top of the correlation graph. Confidence 
intervals are calculated at a confidence level of 0.95 for the parameter 
and indicated by a shading along with the line. The specific mRNA 
clusters were highlighted with different figures
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maintains multiple gene expressions involved in cell motil-
ity [44]. This suggestes the potential role of epigenetic regu-
lation in irinotecan-resistant tumor cells. We visualized the 
predicted metastatic potency using six different machining 
learning models setting G2M_CHECKPOINT as a common 
denominator (Fig. 5B, C), which demonstrated that regres-
sion approach was unable to precisely determine metastatic 
groups even when each factor was identified by the linear 
regression. This revalidated the necessity of using several 
statistical models to integrate multiple molecular factors 
and phenotypical feature to draw generalizable conclusion. 
To validate our prediction model of metastatic potency 
using drug responses and molecular markers, we conducted 
in vitro invasion assays as an indicative of metastatic capa-
bility. Utilizing the prediction model based on responses to 
Irinotecan and Mitomycin C, as well as enrichment scores 
for G2M_CHECKPOINT, we analyzed three metastatic 
potential (MP) organoids (SNU-4158-TO, SNU-4461-TO, 
and SNU-4871-TO) and two non-metastatic potential 
(NMP) organoids (SNU-4354-TO and SNU-5577) for inva-
sion capabilities. Our results demonstrated that two of the 
MP (metastatic potential) organoids showed significant 
invasion into the matrix, whereas none of the NMP (non-
metastatic potential) organoids exhibited invasion (Supple-
mentary Fig. 8A, B and C). Cell proliferation was measured 
concurrently with the 3D spheroid cell invasion assay to dif-
ferentiate invasion ability from growth rate. After 96 h, the 
growth rates among the organoids showed little variation, 

6). The decision tree branched out on the basis of previ-
ously identified expressional factor, enrichment score of the 
G2M_CHECKPOINT. Our analysis revealed that up-regu-
lation of the G2M_CHECKPOINT (NES ≥ -0.266) corre-
lates with a higher metastatic propensity in organoids that 
are sensitive to DNA damage-induced stress, as indicated 
by their response profiles to cytotoxic agents. This suggests 
that the activation of cell cycle checkpoints might serve as 
a biomarker for aggressive disease behavior and potential 
resistance to standard therapies. While Mitomycin C itself is 
not a mainstay in PDAC treatment, this finding underscores 
the importance of targeting cell cycle and DNA repair path-
ways in developing novel therapeutic strategies for PDAC 
with high metastatic potential (Fig. 5A). The overall cor-
relation between high proliferation of tumor cells due to 
activated G2M checkpoint and increased metastatic potency 
was demonstrated in our transcriptomic analysis (Fig. 3G), 
consistent with a previous study [12], which linked good 
responses of Mitomycin C to vulnerabilities of potential 
metastasis. This clinically implies that PDAC patients who 
exhibit good sensitivities to pre-operative Mitomycin C 
should be cautiously watched out for potential dissemina-
tion of tumors. On the contrary, when G2M_CHECKPOINT 
was comparatively down-regulated (NES < -0.266), the 
organoid group which displayed insensitivities to Irinote-
can (AUC ≥ 1.408) had higher metastatic potency (Fig. 5A). 
A prior study has reported that resistance to Irinotecan is 
induced from deregulated acetylation of H4K16 [43] which 

Fig. 5 Machine Learning Approach Integrates Molecular Factors to 
Drug Responses to Predict Metastatic Potency. See also Supplemen-
tary Table 6. (A) Representative guides from the decision tree method 
integrate the expression profile with drug responses to estimate meta-
static potency. The value of each factor separating MP groups from 
NMP groups is indicated along the branches of the tree. Each node 
is divided according to the metastatic potency with the representative 
colors (Purple; MP, Yellow; NMP). (B) Visualization of correlation 

between enrichment scores of G2M CHECKPOINT and AUCs of 
Mitomycin C using six different machine learning methods identified 
aggregating patterns of MP groups. The metastatic potency ranging 
from 0 to 1 was highlighted with red color. (C) Visualization of corre-
lation between enrichment scores of G2M CHECKPOINT and AUCs 
of Irinotecan using six different machine learning methods identified 
aggregating patterns of MP groups. The metastatic potency ranging 
from 0 to 1 was highlighted with red color
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MP-specific molecular factors were linearly correlated with 
cytotoxic drugs. For instance, the variant allele frequencies 
(VAFs) of the KRAS c.35G > A mutation were positively 
correlated with 5-FU sensitivity and negatively correlated 
with Sunitinib sensitivity. Additionally, enrichment scores 
of the E2F_TARGETS and G2M_CHECKPOINT pathways 
were inversely correlated with Cyclopamine, Irinotecan, 
and Gemcitabine sensitivity. In a few cases, Pearson correla-
tions were statistically significant only within MP organoid 
groups, demonstrating their values as actionable therapeutic 
targets of metastasized PDAC. Our multi-omics analysis 
also identified the KRAS c.35G > T mutation as a key fac-
tor linking the drug responses to Gemcitabine and Irinote-
can, as well as the mRNA expression of RRM2. Notably, 
it has been demonstrated that upregulation of RRM2 leads 
to Gemcitabine chemo-resistance in pancreatic cancer (PC) 
cells and human PC xenografts in mice [48]. Additionally, 
the expression level of RRM2 was inversely correlated with 
overall survival (OS) in Gemcitabine-treated PC patients in 
a clinical study [49]. Our multiblock analysis linked the pre-
viously reported correlation of mRNA expression of RRM2 
to Gemcitabine resistance with the KRAS c.35G > T muta-
tion as a key connecting factor. In addition, our machine 
learning models enabled to estimate metastatic potency 
of primary PDAC using heterogeneous drug responses of 
Mitomycin C and Irinotecan.

Few NMP organoids displayed enriched EMT, TGF-beta 
signaling, and KRAS signaling up pathways, which seem-
ingly contradicts their associations with invasive tumor 
features typically observed in more aggressive, metastatic 
cancers. One possible explanation for the enrichment of 
EMT and TGF-beta signaling pathways in NMP organ-
oids could be the presence of a cellular context in which 
these pathways are activated but do not lead to the expected 
invasive behavior, possibly due to the activation of coun-
ter-regulatory mechanisms or the absence of additional 
co-factors required for metastasis initiation. Regarding the 
upregulation of KRAS signaling in NMP organoids, it is 
well-established that KRAS mutations are a hallmark of 
PDAC, promoting tumor growth and survival. The differ-
ential enrichment of KRAS signaling between NMP and 
metastatic potency (MP) organoids may reflect that while 
KRAS activation is necessary for tumorigenesis, its role in 
metastasis could be modulated by other genetic or epigen-
etic factors present in the tumor microenvironment. Further 
investigation is required to understand the implications of 
these findings fully, including detailed functional studies to 
dissect the roles of EMT, TGF-beta, and KRAS signaling in 
the context of PDAC metastasis.

With only 36 organoids from PDAC patients, our study 
may not fully capture the heterogeneity of PDAC, espe-
cially considering the diverse metastatic statuses and 

indicating that the differences in invasion capability were 
not due to the proliferation rate (Supplementary Fig. 8D). 
It should be noted that while in vitro invasion assays can 
provide insights into the potential for metastasis, they do not 
fully model the entire metastatic process.

Additionally, we conducted immunocytochemical analy-
ses to evaluate the expression of markers associated with 
metastatic potential, utilizing anti-Vimentin (red) and anti-
E-cadherin (green) antibodies. The results demonstrated that 
SNU-4458-TO and SNU-4871-TO, characterized by pro-
nounced invasive traits in the invasion assays, manifested 
elevated Vimentin expression across the organoid structure 
(Supplementary Fig. 9A, C). Conversely, SNU-4354-TO 
exhibited greater E-cadherin expression relative to Vimen-
tin (Supplementary Fig. 9B, C). SNU-5577-TO showed 
comparable levels of Vimentin and E-cadherin expression 
(Supplementary Fig. 9B, C).

3 Discussion

Pancreatic ductal adenocarcinoma (PDAC) is a highly 
aggressive disease accompanied by a frequent metastatic 
burden at the time of diagnosis [45]. Early dissemination 
of PDAC mainly causes dismal prognosis, largely limit-
ing available treatment options [46]. Metastatic spread of 
PDAC can be initiated during early phase of tumor for-
mation [18, 47], which implies that borderline resectable 
PDAC comprising metastatic clones might exhibit distin-
guishable molecular patterns.

In this study, we established 36 organoids from primary 
tumor tissues of PDAC patients with varying metastatic sta-
tuses to capture metastatic potency (MP) of primary PDAC. 
All organoids introduced in this study will be bio-banked 
and distributed worldwide. Genetic analysis of these models 
demonstrated that several mutational features were shared 
between MP and NMP organoids. For instance, the muta-
tional frequencies of TP53 in MP and NMP organoids were 
55% and 62%, respectively (Fig. 2A). Additionally, the over-
all mutational signatures were similar between MP and NMP 
organoids (Fig. 2B-E). We focused on the accumulation of 
the KRAS c.35G > A mutation, indicated by higher variant 
allele frequencies (VAFs) in MP organoids compared to 
NMP organoids. Transcriptomic analysis of our models also 
revealed upregulation of cell proliferation and metabolic 
pathways in MP organoids through linear correlation. How-
ever, it should be noted that these pathway analyses were 
solely derived from RNA-sequencing analyses and further 
correlation studies, acknowledging the absence of direct in 
vitro experimental validation for increased cell prolifera-
tion or metabolic signaling in MP versus NMP organoids. 
Our pharmacological analysis demonstrated that several 
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department of biomedical sciences (Korean Cell Line Bank 
at Seoul National University College of Medicine) to facili-
tate the development of pancreatic cancer organoids. The 
aspirated tissue was directly subjected to enzyme digestion.

For the surgically resected tumor, tissues were histo-
logically diagnosed by a pathologist as adenocarcinoma. 
The surgically resected tumor tissue was submerged in 
Opti-MEM supplemented with 1% Penicillin/Streptomy-
cin (GIBCO) and transferred in an ice box directly from 
the operating room to the laboratory. The volume of tissue 
fragments obtained from surgical resections ranged from 
0.2 cm³ to 0.5 cm³ and were finely minced with surgical 
scissors before undergoing enzyme digestion. The success 
rates for establishing organoids from surgical resection and 
EUS-FNA were 37% and 60%, respectively.

Since the size of tumor obtained from both surgical 
resection and EUS-FNA was highly limited, the comparison 
between the original tumor tissue and organoids was per-
formed in eight representative pairs. Detailed information 
about tumor sizes and locations is summarized in Table 1. 
A living biobank of PDAC organoids is cryopreserved at 
Korean Cell Line Bank (KCLB, http://cellbank.snu.ac.kr, 
http://organoid.snu.ac.kr) and will be distributed worldwide.

4.2 Tumor isolation and initial cultivation of 
organoid

Tumors were chopped and incubated with collagenase II 
(1.5 mg/mL) (GIBCO, Cat# 17101-015), hyaluronidase 
(20 µg/mL) (Sigma-Aldrich, MO, USA, Cat# H3506) and 
Ly27632 (10 µM) (Selleckchem, TX, USA, Cat# S1049) for 
30–60 min depending on the size of tumor piece at 37℃ 
on a shaker. Basal culture medium (advanced Dulbecco’s 
Modified Eagle Medium/Ham’s F-12 supplemented with 
1% penicillin and streptomycin, 10 mM HEPES and Glu-
tamax) with 10% FCS was added and the mixture was 
passed through a 100 µM cell strainer to remove debris 
or clumps. Then, red blood cell (RBC) lysis buffer (2–5 
mL) (Sigma-Aldrich, cat# R7757) was added for 1–5 min 
to remove RBCs. Cells were spun down at 1,000 rpm for 
3 min, and re-suspended in BME (GIBCO, Cat# A14132-
02) for seeding in a T-25 flask (Corning, NY, USA, Cat# 
353,108). Approximately 5–7 BME domes (each consisting 
of BME (50 µL) containing 20,000 cells/mL) were seeded 
in a single T-25 flask. The flask was incubated at 37℃ for 
10 min. Once BME had solidified, 5 mL of culture medium 
was added, and cells were incubated in a 37℃ and 5% CO2 
culture incubator. The culture medium consisted of 40% 
W/V basal culture medium, 50% W/V L-WRN conditioned 
medium, 1 x B27 (GIBCO, Cat# 17504-044), human EGF 
(50 ng/mL) (GIBCO, Cat# PHG0313), human FGF-10 (10 
ng/mL) (Peprotech, Cat# 100 − 26), nicotinamide (10 mM) 

genetic backgrounds of the patients. This limitation is criti-
cal in the context of validating the effectiveness of the pre-
diction model, as a larger and more varied clinical cohort 
could provide a more accurate assessment of the model’s 
predictive power across different PDAC subtypes. The lack 
of internal and external validation further compounds this 
issue, suggesting that future research should aim to include 
a larger sample size that encompasses a broader spectrum 
of PDAC cases.

Taken together, our approach provides a prospective 
pancreatic tumor organoid biobank and large-scale omics 
to understand mechanisms by which PDAC cells gain their 
metastatic potency. By capturing genetic and transcrip-
tomic features of PDACs with live sets of organoids, which 
retained histopathological and molecular profiles of human 
PDAC, our data revealed that PDACs even diagnosed with 
resectable or borderline stage harbored distinct molecular 
profiles of metastatic potency, mediating prevalent hetero-
geneous drug responses. Our data also suggest that sole 
molecule-based prediction of PDAC dissemination has 
fundamental drawback. As a potential solution, our data 
emphasize the importance of connecting molecular profiles 
to responses of cytotoxic drugs to defy potential metastasis.

4 Materials and methods

4.1 Sample collection and preparation

We collected a total of 36 specimens of human pancreatic 
ductal adenocarcinoma (PDAC) from 36 different patients 
who underwent surgical resection or endoscopic ultrasound-
guided fine-needle aspiration (EUS-FNA) at Seoul National 
University Hospital (Seoul, Korea).

All EUS-FNA procedures were conducted by a skilled 
echoendoscopist, who annually performs over 100 EUS-
FNA procedures. Utilizing a linear EUS scope (GF-
UCT260; Olympus Medical Systems, Tokyo, Japan) 
equipped with either a 19- or 22-gauge needle (EZ Shot 3 
Plus; Olympus Medical Systems), the choice of needle size 
was at the endoscopist’s discretion. To obtain tissue samples 
for preliminary diagnosis, the needle was moved back and 
forth 15 times during 2 or 3 passes, employing a 20 mL 
suction syringe to ensure the collection of sufficient tissue. 
These samples were then forwarded to the department of 
pathology for the preparation of formalin-fixed paraffin-
embedded tissue blocks and subsequent routine diagnostic 
evaluation. For the specific purpose of creating organoids, 
only one additional pass of the needle was executed. Sam-
ples collected for research were immediately placed in 
Opti-MEM supplemented with 1% Penicillin/Streptomycin 
(GIBCO, CA, USA, Cat#15140-122) and transported to the 

1 3

1640

http://cellbank.snu.ac.kr
http://organoid.snu.ac.kr


Establishment, characterization, and biobanking of 36 pancreatic cancer organoids: prediction of metastasis in…

Sciences, Buckinghamshire, UK) was applied for an hour. 
After organoids were washed with cold DPBS, E-cadherin 
(Abcam, Cambridge, UK) (1:1000), Vimentin (Abcam) 
(1:500) and KI-67 (Abcam) (1:500) diluted in 0.05% of 
PBS.T was applied for 1.5 h at room temperature. Thereaf-
ter, cells were washed with 0.05% of PBS.T, and Alexa 488 
secondary antibodies (Thermo Fisher Scientific) (1:500) 
and Alexa 568 secondary antibodies (Thermo Fisher Sci-
entific) (1:500) diluted in 0.05% of PBS.T were applied for 
an hour at room temperature. DAPI (1:100) and rhodamine-
conjugated phalloidin (Sigma-Aldrich, 1:10) were diluted in 
distilled water and applied for 30 min at room temperature. 
Cells were washed with DPBS three times and placed under 
a confocal microscope. LSM800 Confocal Laser Scanning 
Microscope and ZEN software (Carl Zeiss, Oberkochen, 
Germany) were used to analyze images. Digital resolution, 
scan speed, and the number of pictures averaged were set to 
1024 × 1024, 40 s per one channel, and 8 pictures, respec-
tively. Diverse magnifications were used in accordance with 
growth patterns and sizes of cells. The intensity of each 
channel was fixed for comparing target protein expression 
between samples. The ImageJ plugin “RGB-Measure” was 
utilized to quantify the intensity of each color channel. The 
overall intensity of E-cadherin was normalized by dividing 
the intensity of E-cadherin expression (green channel) by 
the intensity of DAPI expression (blue channel).

4.5 3D organoid cell invasion assay and 
proliferation assay

The organoid invasion assay was performed using the Cultrex 
96-Well 3D BME Cell Invasion Assay kit (Sigma-Aldrich). 
A BME dome containing 20,000 cells/mL was mechanically 
pipetted with 1 mL of organoid culture medium. After cen-
trifugation for 15 s at 100 rpm, the supernatant was gently 
aspirated. This procedure was repeated until the BME gel 
was visibly removed, taking care not to destroy the origi-
nal structure of the organoids. The organoids were resus-
pended in 300 µL of Invasion Matrix included in the Cultrex 
96-Well 3D BME Cell Invasion Assay kit. The 3D Culture 
Qualified 96-Well Plate was placed on ice for 15 min to cool 
the wells. Working on ice, 50 µL of the Invasion Matrix 
containing organoids was added to each well of the 3D Cul-
ture Qualified 96-Well Plate. The plate was centrifuged at 
100×g at 4 °C for 1 min in a swinging bucket rotor to elimi-
nate bubbles and position the organoids within the Invasion 
Matrix towards the middle of the well. The plate was then 
transferred to a tissue culture incubator set at 37 °C for 1 h 
to promote gel formation of the Invasion Matrix. After 1 h, 
200 µL of pre-warmed (37 °C) organoid culture medium 
containing 10% FBS as the chemoattractant was added. The 
organoid in each well was photographed 24 and 96 h after 

(Sigma-Aldrich, Cat# 72,340), N-acetylcysteine (1.25 mM) 
(Sigma-Aldrich, Cat# A7250), A83-01 (500 nM) (Sigma-
Aldrich, Cat# SML0788), and primocin (100 µg/mL) 
(GIBCO, Cat# ant-pm-1).

4.3 Pancreatic cancer organoid cultures and 
passaging

The culture medium was refreshed every two to five days 
depending on growth rate. Organoids were photographed 
at initial passages (p1-p3). For passaging, the BME dome 
was mechanically pipetted using TrypLE Express solution 
(GIBCO, Cat# 12604-021) and organoids were collected in 
a 15 mL conical tube. The BME dome was mechanically 
dissociated with intense pipetting, and the tube containing 
the organoids and BME mixture was incubated at 37 °C for 
approximately 5–10 min. The organoids were centrifuged 
at 1,000 rpm for 3 min, and the supernatant was aspirated. 
Once BME was removed, the cell pellet was resuspended 
with fresh BME, seeded in a T-25 flask and the flask was 
incubated at 37℃ for 10 min. Once BME was solidified, the 
culture medium (5 mL) was added to the flask to overlay the 
BME dome and cells were incubated in a 37℃ and 5% CO2 
culture incubator.

4.4 H&E staining and immunocytochemistry

Tumor tissues were fixed in 10% neutral buffered formalin 
and embedded in paraffin. Then, tissues were sectioned at 
4 μm thickness. For organoids, BME dome was mechani-
cally scraped with a pipet tip. Cold PBS (10 mL) was added 
to collect dissociated BME domes and transferred to a 15 
mL conical tube. After 15 s centrifugation at 100 rpm, the 
supernatant was aspirated. This procedure was repeated 
until the BME gel was visibly removed. Care was taken not 
to destroy the original structure of the organoids. Collected 
organoids were embedded in 2% agarose gel (INTRON 
Biotechnology, Seongnam, Korea). Solidified agarose gel 
was fixed in 10% formalin for 30 min at room temperature 
and sectioned at 4 μm thickness. Sections were subjected to 
H&E as well as immunohistochemical staining. For immu-
nocytochemistry, organoids in their passages 1–3 were 
used. BME dome was mechanically scraped with a pipet 
tip. Cold PBS (10mL) was added to collect dissociated 
BME domes and transferred to a 15 mL conical tube. After 
100 rpm, 15 s centrifugation, the supernatant was aspirated. 
This procedure was repeated until the BME gel was visibly 
removed. Care was taken not to destroy the original struc-
ture of the organoids. Then, organoids were fixed and per-
meabilized with BD Cytofix/Cytoperm (BD Science, CA, 
USA). After cells were washed with washing solution (BD 
Science), DPBS containing 2% FBS (GE Healthcare Life 
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default parameters using tumor-normal mode taking both 
SNVs and short indels into account. We used hg19 as a 
reference genome build. Those variants are annotated by 
SnpEff v4.1 g, to vcf file format, annotating with dbSNP for 
the version of 142 and SNPs from the 1000 genome project. 
Then, SnpEff was applied to annotate additional databases, 
including ESP6500, ClinVar, dbNSFP 2.9. Mutational sig-
natures were calculated using the MutationalPatterns R 
package v.3.4.0 [52] to detect distinct footprints in genomic 
context of somatic SNVs and evaluate mutational mecha-
nisms. The relative contribution of mutational patterns des-
ignated multiple mutational signatures per each sample. The 
algorithm estimating the relative contribution of substitu-
tion patterns was to fit 96 types of substitution into previ-
ously constructed mutational signature. Therefore, a single 
substitution can be assigned to multiple signature, which is 
likely to be interpreted to other signatures.

4.7 Analysis of RNA sequencing

Total RNA was isolated from cell lysate using TRIzol 
(Qiagen, Hilden, Germany) and Qiagen RNeasy Kit (Qia-
gen, Hilden, Germany). Paired-end sequencing reads from 
cDNA libraries (101 bp) were generated with an Illumina 
NovaSeq6000 instrument and the sequence quality was 
verified with FastQC v.0.11.7 (https://www.bioinformat-
ics.babraham.ac.uk/projects/fastqc/). For data preprocess-
ing, low quality bases and adapter sequences in reads were 
trimmed using Trimmomatic v 0.38 [53]. The trimmed reads 
were aligned to the human genome (UCSC hg19) using 
HISAT v2.1.0, a splice-aware aligner [54]. Then, transcripts 
including novel splice variants were assembled with String-
Tie v1.3.4d [55]. The abundance of these transcripts in each 
sample was calculated as read-counts or TPM (Transcript 
per Million mapped reads) values. For each sample, the tran-
script expressions were normalized by dividing read counts 
into lengths of the mapped genes. For Moffitt classification, 
we extracted and normalized the representative 25 Basal-
like and 25 Classical signature genes to a Z-score [56]. 
Total score was calculated by subtracting the total Z-score 
of “Classical” genes from the total Z-score of “Basal-like” 
genes; PDOs with total score ≥ 0 were classified as “Basal-
like” subtype, and PDOs with total score < 0 as “Classical” 
subtype. The comparison between samples with metastatic 
potential (MP) and non-metastatic potential (NMP) was 
performed using the DESeq2 [57] package to compute log2 
fold changes and corresponding p-values for each gene. 
These genes were then utilized to generate an MA-plot 
and conduct pathway analysis with the pathfindR package 
[58]. For principal component analysis (PCA), the Fac-
toMineR and factoextra packages were employed. Utilizing 
the raw read counts of 27,685 transcripts, a single-sample 

initial seeding under a phase contrast microscope (Thermo 
Fisher Scientific). Images were analyzed using ImageJ ver-
sion 1.54 g (http://rsb.info.nih.gov/ij/). Organoid prolifera-
tion was assessed concurrently with the 3D spheroid cell 
invasion assay to distinguish invasion ability from growth 
rate. Organoids were mechanically and enzymatically dis-
sociated into single cells by incubating in TrypLE (Gibco) 
for 5 to 10 min. Suspension (5 µL/well) was dispensed in 
clear-bottomed, white-walled 96-well plates (#3903, Corn-
ing) using an automated repeat pipet and overlaid with 200 
µL of a 1:1 mixture of culture medium and RGF basement 
membrane matrix (Gibco, A14132-02). Plates are incubated 
at 37 °C with 5% CO2 for 15 min to solidify the gel before 
addition of 20 µL of pre-warmed culture medium to each 
well. Proliferation was evaluated using the CellTiter-Glo® 
assay (Promega) in accordance with the manufacturer’s 
instructions after an incubation period of 24–96 h at 37 °C 
and 5% CO2. The entire procedure was independently 
duplicated.

4.6 Whole exome sequencing analysis

The passages of organoids used for whole exome sequenc-
ing analysis were p2– p5. Total DNA was isolated from the 
organoids pellet using QIAamp DNA Mini Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s protocol. 
The Tissue DNA was extracted using QIAamp Fast DNA 
Tissue Kit (Qiagen, Hilden, Germany) according to the 
manufacturer’s protocol. We utilized the 2100 Bioanalyzer 
(Agilent, Part# G2939BA) to assess the degree of frag-
mentation of the genomic DNA sample by measuring the 
distribution of signal intensities across various sizes. SNU-
2543-TO was excluded from the WES analysis due to low 
DNA integrity. Whole-exome capture was performed on all 
samples with the SureSelect Human All Exon V5 Kit (Agi-
lent Technologies, Tokyo, Japan). The captured targets were 
subjected to sequencing using HiSeq 2500 (Illumina, San 
Diego, CA, USA) with the pair-end 100 bp read option for 
organoid samples and 200 bp read option for tissue materi-
als. The sequence data were processed through an in-house 
pipeline. Briefly, paired-end sequences were aligned to the 
human reference genome (UCSC assembly hg19 - original 
GRCh37 from NCBI, 2009) using the mapping program 
BWA (version 0.7.12) [50], and generated a mapping result 
file in BAM format using BWA-MEM. PCR duplicates 
were removed using MarkDuplicates.jar included in Picard 
tools (v. 1.130, https://broadinstitute.github.io/picard/). The 
Genome Analysis Toolkit (GATK, v.3.4.0) [51] was used 
to performed base quality score recalibration (BQSR) and 
local realignment around indels. Somatic mutations were 
identified by providing sequence alignment data of tumor 
and normal to the MuTect (involved in GATK v3.8.0) with 
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Drugs Company Cat 
No.

Stock 
Quan-
tities 
(mg)

Solvent Max 
con-
cen-
tration 
(µM)

Buparlisib 
(BKM120)

Selleckchem S2247 10 DMSO 100

Apitolisib 
(GDC0980)

Selleckchem S2696 10 DMSO 50

Vorinostat 
(SAHA)

Selleckchem S1047 200 DMSO 50

Belinostat 
(PXD101)

Selleckchem S1085 50 DMSO 100

Trametinib 
(GSK1120212)

Selleckchem S2673 10 DMSO 50

Afatinib Selleckchem S1011 10 DMSO 50
Cyclopamine Selleckchem S1146 10 EtOH 50
Foscenvivint 
(ICG-001)

Selleckchem S2662 25 DMSO 100

Olaparib Selleckchem S1060 25 DMSO 50

4.9 ATP detection assay and statistical analysis of 
drug responses

After 72 h of drug treatment, 10 µl of 3D Reagent (Promega 
#G968B) is added to each well followed by 5 min of vig-
orous shaking. After 30 min incubation at room tempera-
ture and an additional minute of shaking, luminescence is 
measured with a Luminoskan Ascent (Thermo Scientific) 
over 1000 ms of integration time. The ATP detection level 
from vehicle-treated samples was used for normalization. 
The responses of the other drugs were calculated as AUC 
values and visualized with k-means clustered heatmap from 
ComplexHeatmap package (v. 2.13.0) from R program ver-
sion 4.2.0 (R Foundation for Statistical Computing, Vienna, 
Austria). Optimal number of clusters for derivatives and 
drugs was calculated with factoextra package (v. 1.0.7) with 
elbow method from R program (R Foundation for Statisti-
cal Computing). For hierarchical cluster analysis on a set of 
dissimilarities, each object was assigned to its own cluster, 
which an algorithm proceeds through iteratively. Two of the 
most similar clusters are joined at each stage until there is 
a single cluster. Euclidian distances between clusters are 
recomputed at each stage by the Lance–Williams dissimilar-
ity update formula according to the single linkage method.

4.10 Multi-omics integration analysis

The drug response data is integrated with variant allele 
frequencies (VAFs) of pathogenic mutations, mRNA 
expressions, and pathway enrichment scores (NES) using 
mixOmics R Bioconductor package [38] with built-in ana-
lyzing and visualization functions. We have limited the con-
struction matrix with 4 parameters: VAFs (6) x mRNA (377) 

enrichment analysis of cell signaling pathways was con-
ducted using GSEA (v4.1.0) and the Molecular Signatures 
Database (MSigDB) hallmark gene sets library [57]. The 
phenotype label was assigned as either metastatic potential 
or non-metastatic potential for the normalized enrichment 
score (NES) of a single sample. Independent NES for the 
sample was calculated using default settings with 1000 
permutations for the phenotype. Results were annotated 
using the NCBI Gene ID and MsigDB v7.4 chip platform. 
Heatmaps of NES values were plotted using the Complex-
Heatmap (v2.2.0) R package, with color variance mapped 
between the minimum and maximum values.

4.8 3D organoids seeding/drug treatment 
procedure

All drug screens were performed two times. We have mainly 
referred to National Cancer Institute (NCI) drug lists for 
pancreatic cancers (https://www.cancer.gov/about-cancer/
treatment/drugs/pancreatic) for constructing the drug screen 
library. We also included fluorouracil and gemcitabine in the 
screening library as most patients received FOLFIRINOX 
(fluorouracil, leucovorin, irinotecan, and oxaliplatin) and 
gemcitabine treatment. Organoids were mechanically and 
enzymatically dissociated into single cells by incubating in 
TrypLE (Gibco) for 5 to 10 min. Suspension (5 µl/well) was 
dispensed in clear-bottomed, white-walled 96-well plates 
(#3903, Corning) using an automated repeat pipet and over-
laid with 200 µl of a 1:1 mixture of culture medium and RGF 
basement membrane matrix (Gibco, A14132-02). Plates are 
incubated at 37 °C with 5% CO2 for 15 min to solidify the 
gel before addition of 20 µl of pre-warmed culture medium 
to each well. 96 h after seeding, 20 µl of drug containing 
solution is added to each well. For the control well, the mix-
ture of culture medium and drug-solvent solution is added. 
The list and detailed information of drugs are listed below.

Drugs Company Cat 
No.

Stock 
Quan-
tities 
(mg)

Solvent Max 
con-
cen-
tration 
(µM)

Everolimus Selleckchem S1120 10 DMSO 100
Paclitaxel Selleckchem S1150 50 DMSO 50
5-FU Sigma-Aldrich F6627 1000 DMSO 50,000
Gemcitabine 
Hydrochloride

Selleckchem S1149 25 DMSO 100

Irinotecan Selleckchem S2217 25 DMSO 100
Mitomycin C Selleckchem S8146 10 DMSO 100
Sunitinib 
Malate

Selleckchem S1042 50 DMSO 100

Erlotinib 
Hydrochloride

Selleckchem S1023 100 DMSO 100

MK-5108 Selleckchem S2770 10 DMSO 100
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x NES (50) x drug responses (18) estimating more than 
two million multi-omics combinations. We focused on the 
expressional profiles of drug-target genes referring to Drug–
Gene Interaction Database (DGIdb 4.0) [37] and DrugBank 
database [59]. We first built a pseudo design matrix utilizing 
multiblock Partial Least Squares (PLS)- Discriminant Anal-
ysis (DA) to identify correlated variables across four differ-
ent input datasets. Each numeric values from VAFs, mRNA, 
NES, and drug responses (latent components or linear com-
binations of variables) were constructed such that the sum 
of covariances between all pairs of datasets is maximized. 
Then, we estimated the relationship structure between the 
various inputted data, where each value (between 0 and 
1) represents the strength of the relationship among three 
given data-frames. All pairwise covariances were weighted 
as indicated by the design matrix. The response variable 
is transformed into a dummy variable internally within 
the function. The regression sGCCA framework from the 
RGCCA package is utilized to deflate each of the datasets. 
The transformed variables were combined for further dis-
crimination and integration.

4.11 Construction of prediction model

All estimation and visualization were performed through R 
packages. Six different machine learning models including 
Decision tree [60], k-Nearest-Neighbor, Logistic regres-
sion, Naïve bayes, Neural network, and Random forest were 
applied to find best performance. Comparison and visual-
ization was done by modelr package. The estimation of 
accuracy and confusion matrix is done by yardstick within 
tidymodels package to quantify how well model fits to a 
data set. Detailed information about input parameters are 
summarized in the code availability section. The genomic 
features to train the machine learning models are selected 
using pathway enrichment score (NES) and variant allele 
frequencies of mutations. We also included the responses of 
18 drugs in the unit of AUC for training models.
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