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Abstract Plasmids remain important microbial components mediating the horizontal gene transfer

(HGT) and dissemination of antimicrobial resistance. To systematically explore the relationship

between mobile genetic elements (MGEs) and antimicrobial resistance genes (ARGs), a novel strat-

egy using single-molecule real-time (SMRT) sequencing was developed. This approach was applied

to pooled conjugative plasmids from clinically isolated multidrug-resistant (MDR) Klebsiella pneu-

moniae from a tertiary referral hospital over a 9-month period. The conjugative plasmid pool was

obtained from transconjugants that acquired antimicrobial resistance after plasmid conjugation

with 53 clinical isolates. The plasmid pool was then subjected to SMRT sequencing, and 82 assem-

bled plasmid fragments were obtained. In total, 124 ARGs (responsible for resistance to b-lactam,

fluoroquinolone, and aminoglycoside, among others) and 317 MGEs [including transposons (Tns),

insertion sequences (ISs), and integrons] were derived from these fragments. Most of these ARGs

were linked to MGEs, allowing for the establishment of a relationship network between MGEs

and/or ARGs that can be used to describe the dissemination of resistance by mobile elements.

Key elements involved in resistance transposition were identified, including IS26, Tn3, IS903B,

ISEcp1, and ISKpn19. As the most predominant IS in the network, a typical IS26-mediated multi-
nces and
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copy composite transposition event was illustrated by tracing its flanking 8-bp target site duplica-

tions (TSDs). The landscape of the pooled plasmid sequences highlights the diversity and complex-

ity of the relationship between MGEs and ARGs, underpinning the clinical value of dominant HGT

profiles.
Introduction

Klebsiella pneumoniae is a major opportunistic pathogen caus-

ing hospital-acquired infections including pneumonia, urinary
tract infections, septicaemia, and soft-tissue infections [1–3].
Broad-spectrum antimicrobials have been intensively used
for the treatment of hospital-acquired infections and linked

to the emergence and domination of K. pneumoniae multidrug
resistance (MDR, resistance to � 3 antimicrobial classes) in
many hospital wards [4]. Indeed, acquisition of novel antimi-

crobial resistance genes (ARGs) frequently occurs in clinically
isolated K. pneumoniae [4,5].

The dissemination of antimicrobial resistance is often medi-

ated by horizontal gene transfer (HGT), in which conjugative
plasmids play an important role [6–8]. These plasmids are often
large in size (> 25 kb) and able to horizontally transmit genes

through conjugation in nosocomial environments. A conjuga-
tive plasmid can act as a ‘‘vehicle”, which carries resistance
genes and other functional modules and transfers resistance
determinants with mobile genetic elements (MGEs), including

integrons, transposons (Tns), and insertion sequences (ISs).
Therefore, conjugative plasmids are now central to the rapid
global emergence of antimicrobial resistance [9–11].

ISs are the simplest mobile elements present in bacterial
genomes and are also frequently found in plasmids derived
from members of Enterobacteriaceae. ISs are typically short

sequences comprising terminal inverted repeats (TIRs) at the
ends and an open reading frame (ORF) which encodes the
transposase essential for mobility [12]. Donor ISs normally
attack the target site to generate a short nucleotide sequence

of direct repeats (target site duplication, TSD) to achieve its
transposition. Most ISs identified to date belong to RNase H
or DDE transposase superfamily. Some ISs undergo transpo-

sition using a cut-and-paste mechanism, whereas others use a
copy-in or so-called replicative transposition mechanism,
whereby a second copy of the IS is utilized at the target site

and the original copy remains intact [12,13].
In this study, we carried out a single-molecule real-time

(SMRT) sequencing assay for pooled conjugative plasmids

representing the landscape of plasmids from a collection of
53 MDR K. pneumoniae clinical isolates. The genetic diversity
of clinical MDR plasmids was analyzed using data from large-
scale sequencing. Horizontally transferred elements in plas-

mids were surveyed to facilitate the discovery of novel path-
ways in transfer of antimicrobial resistance determinants.
The workflow of our study is shown in Figure 1.

Results

The diversity of clinical K. pneumoniae isolates and plasmid size

Pulsed-field gel electrophoresis (PFGE) typing of 53 clinical K.

pneumoniae isolates confirmed the diversity of the bacterial col-
lection used in this study (data not shown). Most isolates
(45/53) were allocated to different PFGE clades, with eight iso-
lates constituting two clades (one with 3 strains and the other
with 5 strains). Notably, isolates of the same clade possessed

conjugative plasmids of different sizes, as revealed by the S1
nuclease digestion assay, and the average plasmid size in all
isolates was approximately 135 kb (in the range of 34 kb to
355 kb) (Figure S1).

Antimicrobial susceptibility profiles of clinical K. pneumoniae

isolates

All 53 K. pneumoniae isolates showed MDR against antimicro-
bial agents of different classes, such as b-lactams, aminoglyco-
sides, and fluoroquinolones (Figure S2). Most of these clinical

isolates (> 90%) were resistant to ampicillin, piperacillin,
cefazolin, cefuroxime, and ampicillin/sulbactam, and able to
transfer their resistance to transconjugants via ampicillin-

selected conjugation.

Replicons, ARGs, and MGEs in pooled plasmid sequencing data

The pool of 53 conjugative plasmids was sequenced using the

SMRT technique, and 50,719 raw reads were received, with a
mean read length of 13,671 bp. The raw reads were assembled
into 394 unitigs, with maximum and N50 unitig lengths of

331,152 bp and 22,800 bp, respectively. After removing recipi-
ent chromosome sequences, 82 unitigs were retained as plasmid
sequence fragments and used for further analysis. Among the

82 unitigs, eight were successfully cyclized into complete plas-
mids. The maximum plasmid unitig length was 281,339 bp
and the N50 plasmid unitig length was 48,395 bp (Table 1).

Sixteen replicons were identified to belong to ten different
classes, including IncL/M, IncFIB(K), IncFII, IncFII(K),
IncA/C2, IncR, IncN, IncI1, IncI2, and IncHI1B, with the
IncFII(K) class most frequently identified.

We successfully revealed 124 ARGs (corresponding to 41
different ARGs), accounting for 3.6% (124/3431) of annotated
ORFs in all plasmid fragments. All these ARGs could be

linked to resistance against antimicrobial agents from 11 dif-
ferent classes, including aminoglycoside, b-lactam, fluoro-
quinolone, fosfomycin, macrolide, phenicol, rifampicin,

sulphonamide, tetracycline, trimethoprim, and streptogramin.
b-lactam resistance genes emerged more frequently than other
resistance genes, in particular blaTEM (21 times) and blaCTX-M

(19 times) (Figure 2).
Additional screening identified 317 MGEs corresponding to

61 different MGEs. These elements belong to either one of 19
IS families or class I integrons. Some of these elements are pre-

sent either as a single copy or only in partial form. In contrast,
numerous copies of IS26, Tn3, IS903B, ISEcp1, and ISKpn19
were found, suggesting that they are transferable and most

likely remain active in different genetic backgrounds. The most
frequently identified IS families included the IS6 family (73
times), Tn3 family (47 times), IS5 family (36 times), IS1380
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Figure 1 Overall strategy and workflow of our study

The strategy developed in our study is shown, from extracting the pooled plasmids of E. coli transconjugants to plasmid sequence analysis

including ARG and MGE relationship network construction. MDR, multidrug resistance; MGE, mobile genetic element; ARG,

antimicrobial resistance gene.

Table 1 SMRT sequencing raw data and assembly metrics

Note: N50 defines a weighted median statistic, i.e., the shortest

sequence length at 50% of the entire assembly. SMRT, single-molecule

real-time; ORF, open reading frame; ARG, antimicrobial resistance

gene; MGE, mobile genetic element; Tn, transposon; IS, insertion

sequence.
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family (32 times), IS1 family (28 times), ISKra4 family (23
times), and IS3 family (21 times). Class I integrons appeared
9 times (Table 2).

Relationship between MGEs and ARGs

The locations of MGEs and ARGs in 82 plasmid unitigs were

determined, and the interval distance between each MGE and/
or ARG was also calculated, which allowed us to depict the
relationship between these MGEs and/or ARGs. Hence, a

relationship is assigned when the interval distance between
two MGEs/ARGs or between an MGE and an ARG is
< 1 kb. This cut-off value was selected because most of the

well-known relationships between previously reported MGEs
and ARGs occur within 1 kb, such as Tn3–blaTEM and
ISEcp1–blaCTX-M [11,14,15]. The interval distribution is shown
in Figure S3.

According to the relationship analysis of our plasmid
sequencing data, 90.3% (112/124) of the identified ARGs (in-
cluding consecutive ARGs) are found close to MGEs, includ-

ing ISs, Tns, and integrons. This result was obtained by
checking the 1-kb flanking sequence of these ARGs. Subse-
quently, we conducted a correlation analysis for all tested

ARGs to evaluate whether such a relationship is a significant
correlation. To this end, we used the actual location of each
ARG and its neighboring MGE on a plasmid, including the

ARG–MGE pairs with an interval of > 1 kb. Pearson’s corre-
lation coefficient (r) value of 0.9992 (P < 0.0001) confirmed a
strong correlation between the tested ARGs and their neigh-



Figure 2 ARGs identified in the plasmid sequence and the related antimicrobial agent classes

aac(60)-Ib-cr (labeled by *) encodes an aminoglycoside acetyltransferase which can also inactivate fluoroquinolones, and thus it also

belongs to fluoroquinolone resistance determinants.
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boring MGEs, suggesting that an MGE is always located near
an ARG.

Network construction for relationships between MGEs and

ARGs

A relationship network was constructed to illustrate MGEs or
ARGs that possessed at least one relationship as a node in a
network map. To do this, 39 different MGEs and 36 different

ARGs were included; their relationships are represented as
lines, and frequency is represented by the line thickness
(Figure 3). In the network, prediction of the most important
MGEs and their related ARGs was possible. For example,

IS26 had up to 64 relationships with other MGEs and ARGs,
incl uding 10 MGEs and 12 ARGs. Tn3, IS903B, ISEcp1, and
ISKpn19 were also active and important in mediating HGT.

MGE–ARG relationships were further examined after
establishment of the network. Those relationships that occur
more frequently (more than twice per pair) are defined as

‘‘clusters”. In Figure 3, nodes connected with lines in the same
colors belong to the same cluster, which facilitates tracing the
dominant combinations or groups of the MGE–ARG relation-

ships. The counts of clusters with more clinical significances in
the network are listed in Table 3. blaKPC-2, the most prevalent
carbapenemase gene reported in China [16], was found 6 times
in the ISKpn6–blaKPC-2–ISKpn27–Tn3–IS26 cluster. The

b-lactamase gene blaTEM-1 (including TEM-1B and TEM-1C
types) was present 21 times in our plasmid sequencing data



Table 2 Families and members of ISs and integrons detected in the

plasmid sequencing data

Note: Counts in parenthesis indicate the times of the presence of

respective family and member of ISs and integrons detected in the

plasmid sequencing data.
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and was linked to the Tn3 transposon 17 of these 21 times.
ISEcp1 is likely an active mobile element linking to several

ARGs and MGEs. In our plasmid sequence analysis, the
transfer of all CTX-M type b-lactamase genes was mediated
by ISEcp1. Notably, one CTX-M subtype group-9

b-lactamase gene (i.e., CTX-M-14) was found in the cluster
ISEcp1–blaCTX-M-14–IS903B; in contrast, all CTX-M subtype
group-1 b-lactamase genes (e.g., CTX-M-3, -15, -55, and -123)

were associated with ISEcp1 only, suggesting different transfer
pathways. Moreover, the plasmid-mediated quinolone
resistance determinant qnrS1 was constantly found in the
ISEcp1–ISKpn19–qnrS1 or ISKpn19–qnrS1 clusters. Interest-

ingly, some ISs were often found to be located close to other
MGEs, such as ISEcp1 and IS1, IS26 and Tn3, and IS26 and
intI1. Moreover, some ARGs could potentially link with other

ARGs to form clusters, such as sul2–strA–strB.

IS26-mediated composite transposition

IS26, a common member of the IS6 family with a full length of
820 bp containing two 14-bp TIRs, was found to be the pre-
dominant MGE in our plasmid sequencing data. IS15DI and

IS6100, the other two IS6 family members with similar
sequences and functions to IS26, were also identified. All of
them have been reported to generate 8-bp TSDs when a trans-
position event occurs. We examined all 8-bp flanking

sequences of the 62 full copies of IS26, IS15DI, and IS6100
in 27 unitigs. 44 of 123 8-bp sequences were found to possess
identical patterns, suggesting that replicative transposition

events had occurred between these unitigs, likely within or
between plasmids (Figure S4).
A typical hallmark of multicopy IS26 was noted for a com-
posite transposition event in unitig 8, one of the largest frag-
ments among our plasmid sequences. We found an

approximately 27-kb multicopy IS26 composite transposon
containing six IS26 copies and five blaSHV-11 genes arranged
in an interlaced order as well as two partial Tn3 fragments.

We attempted to deduce the entire generation process of the
IS26-mediated composite transposon (Figure 4). First, an
IS26 intermolecular replicative transposition event occurred,

whereby an IS26 element from the donor plasmid attacked
the target site ‘‘100 in another plasmid near blaSHV-11, resulting
in the duplication of IS26 and the 8-bp TSD1 (GGGGCTCG,
Figure 4A). Second, IS26 with TSD1 launched another

intramolecular attack and copied itself into the other side of
blaSHV-11, leading to the duplication of the 8-bp TSD2
(AACGCCGG) at the target site ‘‘2” (Figure 4B). Formation

of the IS26 composite transposon produced one to multiple
copies in a row, followed by an unequal crossover combination
(Figure 4C and D). Finally, the multicopy IS26 composite

transposon attacked the target site ‘‘0” within the tnpA gene
(encoding a transposase) of the Tn3 transposon and inserted
the 27-kb fragment within tnpA, along with the duplication

of the 8-bp TSD0 (TTTCACCT) (Figure 4D and E). These
TSDs provided adequate evidence of the complicated transpo-
sition process and IS26-mediated evolution within or between
the plasmids.

Discussion

Plasmids are considered as not only the key vector for genetic
exchange but also an important contributor to the novelty and
evolution of prokaryotic genomes [17]. Using clinically iso-

lated MDR K. pneumoniae strains, this study characterized
the horizontal transfer profile of MGEs and ARGs in conjuga-
tive plasmids using long-read high-throughput sequencing. A
relationship map was constructed for MGEs and ARGs to

describe the manner of resistance dissemination and to track
a composite transposition event.

The 53 K. pneumoniae clinical isolates selected in the current

study presented MDR phenotypes and clonal diversity, har-
bored large and diverse plasmids, and were able to transfer
their plasmids along with antimicrobial resistance profiles to

a recipient via conjugation, guaranteeing the abundant plas-
mid sequence data for genetic analysis. Direct DNA extraction
using mixed broth culture facilitated the acquisition of plasmid

DNA in just one step followed by the sequencing procedure,
which overcomes the high complexity of individual complete
sequencing.

We noticed that 124 ARGs and 317 MGEs occupied a rel-

atively large portion of all annotated ORFs (441/3431, 12.9%)
in the plasmid sequencing data. Most ARGs that present resis-
tance against 11 classes of antimicrobial agents were mediated

by MGEs, exhibiting the high transferability of plasmid-
mediated resistance genes. Moreover, some MGEs, such as
IS26, Tn3, IS903B, ISEcp1, and ISKpn19, appeared frequently

in our tested plasmid pool, demonstrating that these MGEs
are easily transferred or can jump to other sites among plas-
mids or even between plasmid and chromosome, in most cases,
along with ARGs.

Due to the complexity of plasmid annotation, in our MGE
and ARG relationship analysis, rather than solely taking two
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Table 3 Count of clusters presented in the network

Note: Cluster means the MGE and/or ARG relationships that occur

more frequently (more than twice per pair).

544 Genomics Proteomics Bioinformatics 18 (2020) 539–548
consecutive genes to constitute a relationship, we used a 1-kb
interval cut-off between each MGE and/or ARG to define a
relationship that benefited our further analysis. In this way,
we constructed a network map to explore the relationships
between MGEs and/or ARGs in our plasmid sequencing data.

This newly developed method will significantly advance our
understanding of the spread and emergence of antimicrobial
resistance.

It has been known for over 40 years that ARGs are often
associated with MGEs [18]. This has been recently rein-
forced by genome sequencing of clinical isolates [11]. For
instance, blaCTX-M, a gene encoding an extended-spectrum

b-lactamase, is often located downstream of ISEcp1 [14,15].
Among carbapenemase genes, blaKPC is typically carried by
the Tn3 family transposon Tn4401 [19,20]. As expected, our

plasmid sequencing results suggest that the plasmids present
within the clinical environment harbor a diverse array of
MGEs and ARGs. More than 10% of the genes in the plasmid

sequences were transfer- or resistance-related genes. Some
MGEs have been found to play an important role in the dis-
semination of ARGs. For example, IS26 is easily inserted into
other plasmid locations, making it possible to exchange large



Figure 4 The entire process of multicopy IS26 composite transposon generation deduced based on tracing the 8-bp TSD distribution

A. First, an IS26 intermolecular replicative transposition event occurs, whereby IS26 from the donor plasmid attacks the target site ‘‘1” in

another plasmid near blaSHV-11, resulting in duplication of IS26 and the 8-bp TSD1 (GGGGCTCG). B. Second, IS26 with TSD1 launches

another intramolecular attack and copies itself to the other side of blaSHV-11, leading to the duplication of the 8-bp (TSD2, AACGCCGG)

at the target site ‘‘2”. C. The unequal crossover combination occurs, producing a copy of the IS26 composite transposon. D. The

formation of the IS26 composite transposon with multiple copies in a row. E. Finally, the multicopy IS26 composite transposon attacks

the target site ‘‘0” within the transposase (tnpA) gene of the Tn3 transposon and inserts the 27-kb fragment along with the duplication of

the 8-bp TSD0 (TTTCACCT). TSD, target site duplication.
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fragments between two plasmids or between a plasmid and a
chromosome via multicopy IS26 element recombination [21].
In the current study, IS26 was found to be associated with
many other MGEs, such as Tn3 and intI1, and with many dif-

ferent ARGs, such as blaSHV, fosA, aph(3
0)-Ia, and catA2. The

Tn3 transposon generally consists of a Tn3 transposase, a resol-
vase, and a TEM b-lactamase, which mediates b-lactam antibi-

otic resistance dissemination. In China, the carbapenemase
gene blaKPC-2 is usually located within a Tn3–Tn4401
composite transposon in a consecutive gene order

ISKpn6–blaKPC-2–ISKpn27–Tn3–IS26 [22]. Similarly, the
b-lactamase gene blaCTX-M is transferred by ISEcp1 or
IS903B [14,15]. We also noticed that two large subtypes

(groups 1 and 9) of CTX-M types utilize different transposi-
tion pathways. CTX-M subtype group-1 (CTX-M-3, -15, -55
as prevalent members) is solely mediated by ISEcp1, whereas
CTX-M subtype group-9 (e.g., CTX-M-14) is often transferred
by ISEcp1 and IS903 together. By constructing the
MGE–ARG network, this study is the first to report some

new MGE–ARG relationships, such as ISKpn19–qnrS1,
ISEcp1–IS1, IS26–Tn3, IS26–intI1, sul2–strA–strB, and
IS26–blaSHV. Among these new relationships, the most preva-

lent plasmid-mediated quinolone resistance determinant qnrS1
should be given more attention with regard to its rapid trans-
position mediated by the active ISKpn19 element.

Many different ARGs were found in compound trans-
posons bound by IS26 on a plasmid, and multiple and exten-
sively resistant Gram-negative bacteria often simultaneously

carry several ARGs and multiple copies of IS26. The transpo-
sition mechanism of IS26 is generally regarded to involve
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replicative transposition and cointegrate formation. Indeed,
the high copy number observed in this study reflects the high
activity of IS26, which is consistent with previous reports on

other clinical Enterobacteriaceae isolates [23,24]. In this study,
8-bp TSDs flanking IS26 were used to investigate the transpo-
sition pathway of mobile elements. TSDs are genomic signa-

tures of transposition events mediated by DDE transposases,
and their length is a characteristic property of the transposon.
The entire likely process of IS26-mediated generation of mul-

ticopy composite transposons was deduced to illustrate how
to track the evolution of resistance plasmids based on TSD
patterns.

A major limitation of our study, like many others, is the lack

of systemic evaluation and validation of this new analytic
methodology for data processing. The findings reported in this
study are based on a novel pooled long-read sequencing

method. The presence of plasmids with similar structures might
have induced assembly artefacts and consequently obscured the
results. To address this issue, we have employed diverse and

deliberate sequence analysis and hope to draw a rough network
map of MGEs and ARGs, which can facilitate a further under-
standing of the novel HGT aspect in a clinical environment.

Materials and methods

Bacterial isolates

K. pneumoniae MDR strains were isolated from 38 wards of 21

departments in a tertiary referral hospital (The First Affiliated
Hospital, Zhejiang University School of Medicine) in Hang-
zhou, China, over a 9-month period in 2009. Identification

of bacterial species was carried out using a Vitek II system
(BioMerieux, Marcy, France), and 53 of 84 collected isolates
were able to transfer their plasmids to transconjugants and
used for further analysis.

Plasmid conjugation

Plasmid conjugation was carried out via filter mating assays.

Rifampin-resistant Escherichia coli EC600 was used as the
recipient strain. Exponential-phase LB broth cultures of the
donor and recipient strains were mixed at a volumetric ratio

of 1:1. A 20-ll aliquot of this mixture was then transferred
to the surface of a 0.22-lm GSWP-type nitrocellulose mem-
brane (Millipore, Tullagreen, Ireland) and incubated at 35 �
C for 18 h. Transconjugants harboring the donor plasmids
were selected on Mueller-Hinton agar plates (MH, Oxoid, Bas-
ingstoke, UK) supplemented with ampicillin (50 lg/ml) and
rifampin (700 lg/ml).

PFGE typing

After digestion with XbaI (Takara, Kusatsu, Japan), a PFGE

assay was carried out on the clinical isolates using the contour-
clamped homogenous electric field (CHEF; Bio-Rad, Hercules,
CA) technique [25]. Briefly, bacterial DNA was separated by

electrophoresis through 1% agarose III (Sangon, Shanghai,
China) using 0.5� Tris-borate-EDTA buffer for 22 h. The elec-
trophoresis was conducted at 14 �C, 6 V/cm with alternating

pulses at a 120� angle and in a 5–35-s pulse time gradient.
Salmonella enterica serotype Braenderup H9812 was used as
a control and size marker [26].

S1 nuclease digestion assay

An S1 nuclease digestion assay was performed on the
transconjugants to estimate the size of the plasmids in the

absence of genomic DNA using PFGE. Agarose gel plugs con-
taining bacterial cells were incubated for 50 min with 20 U of
S1 nuclease (Takara, Shiga, Japan). The digested plugs were

then processed by PFGE using the CHEF apparatus with a
2.16–63.8-s pulse time gradient for 20 h.

Antimicrobial susceptibility testing

The antimicrobial susceptibility profiles of the original clinical
isolates and their E. coli transconjugants were determined
using the K-B agar diffusion method, following the Clinical

and Laboratory Standards Institute (CLSI) guidelines [27].
The antimicrobial agents tested in the assay included ampi-
cillin, ampicillin/sulbactam, piperacillin, piperacillin/tazobac-

tam, cefazolin, cefuroxime, ceftazidime, cefotaxime, cefepime,
cefoxitin, amoxicillin/clavulanic acid, cefoperazone/sulbactam,
meropenem, imipenem, aztreonam, ciprofloxacin, gentamicin,

amikacin, trimethoprim-sulphamethoxazole, and tetracycline.
E. coli ATCC25922 was used as the quality control.

Pooled plasmid sequencing

Each transconjugant was cultured overnight in LB broth and
adjusted to OD = 1.0 at a wavelength of 600 nm. Then,
5 ml of broth was collected from each isolate and mixed up

before commencing plasmid DNA extraction using a Plasmid
Midi Kit (Qiagen, Hilden, Germany). A pool of conjugative
plasmid DNA acquired from an E. coli transconjugant mixture

was sequenced via the SMRT technique using the PacBio RS
II platform (Pacific Biosciences, Menlo Park, CA) and assem-
bled with its affiliated assembly tool. The assembled fragments

designated as unitigs were annotated using the prokaryotic
gene prediction tool Prokka [28] and BLAST (https://www.
ncbi.nlm.nig.gov/blast). The complete genome of E. coli strain
DH1 was employed to filter assembled unitigs of transconju-

gant chromosome sequences. The remaining unitigs were
deemed conjugative plasmid fragments and double-checked
based on their gene annotation. Some plasmid fragments with

flanking repetitive sequences were cyclized, and redundant
sequences were deleted. The plasmid unitigs were then scanned
for ARGs and plasmid replicons using ResFinder 2.1 (https://

cge.cbs.dtu.dk/services/ResFinder/) [29] and PlasmidFinder
1.3 (https://cge.cbs.dtu.dk/services/PlasmidFinder/) [30],
respectively, on the Center for Genomic Epidemiology

(CGE) server. Transposon and IS elements were scanned using
the ISFinder database (http://www-is.biotoul.fr/) [31]. The
integrase genes of integron type I, II, and III elements were
scanned with BLAST tools.

ARG–MGE correlation analysis

To evaluate correlations between ARGs and MGEs, we used

the actual location of each ARG and its neighboring MGE

https://www.ncbi.nlm.nig.gov/blast
https://www.ncbi.nlm.nig.gov/blast
https://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/PlasmidFinder/
http://www-is.biotoul.fr/
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on a plasmid, including the ARG–MGE pairs with an interval
of more than 1 kb for the Pearson’s correlation coefficient (r).
An r value of 0–0.09 suggested no correlation; r = 0.1–0.5 for

low correlation; r = 0.5–0.8 for high correlation; and r = 0.9–
1 for a very strong correlation. If an MGE is constantly found
to be located near an ARG, they are considered correlated.

GraphPad Prism 7.0 (La Jolla, CA) was utilized for the corre-
lation analysis. A two-tailed Student’s t-test was employed to
calculate the significance of the correlation analysis above,

where P < 0.001 indicates strong evidence to reject the null
hypothesis (r = 0).
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