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Constitutional biological processes involve the generation of DNA double-strand breaks (DSBs). The production
of such breaks and their subsequent resolution are also highly relevant to neurodegenerative diseases and cancer,
in which extensive DNA fragmentation has been described Stephens et al. (2011), Blondet et al. (2001).
Tchurikov et al. Tchurikov et al. (2011, 2013) have reported previously that frequent sites of DSBs occur in chro-
mosomal domains involved in the co-ordinated expression of genes. This group report that hot spots of DSBs in
human HEK293T cells often coincide with H3K4me3 marks, associated with active transcription Kravatsky et al.
(2015) and that frequent sites of DNA double-strand breakage are likely to be relevant to cancer genomics
Tchurikov et al. (2013, 2016) . Recently, they applied a RAFT (rapid amplification of forum termini) protocol
that selects for blunt-ended DSB sites andmapped these to the human genomewithin defined co-ordinate ‘win-
dows’. In this paper, we re-analyse public RAFT data to derive sites of DSBs at the single-nucleotide level across
the built genome for human HEK293T cells (https://figshare.com/s/35220b2b79eaaaf64ed8). This refined map-
ping, combinedwith accessory ENCODE data tracks and ribosomal DNA-related sequence annotations, will likely
be of value for the design of clinically relevant targeted assays such as those for cancer susceptibility, diagnosis,
treatment-matching and prognostication.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Direct link to deposited data

https://figshare.com/s/35220b2b79eaaaf64ed8
2. Experimental design, materials and methods

2.1. Sequencing data

The FASTQ file for Illumina Genome Analyzer IIx (GAIIx) run acces-
sion SRR944107 (single-end reads) was downloaded from http://
www.ebi.ac.uk/ena/data/view/SRR944107, having sourced the acces-
sion code via http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE49302. The origins of these data have been reported previously [12].

Briefly, HEK293T cells were suspended in 1% low-melt agarose prior
to lysis. DNAwas then fractionated by gel electrophoresis and collected
by electroelution. Free DNA ends (sites of DSBs) were ligated to a
double-stranded biotinylated adapter oligonucleotide before digestion
with the restriction endonuclease Sau3AI. DSB site-containing termini
were phase-purified using streptavidin paramagnetic particles, eluted
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via EcoRI restriction endonuclease digestion and then subjected to
Sau3AI site adapter ligation and PCR amplification. PCR products were
ligated to Illumina adapters, allowing them to be represented in either
orientation. Library fragments of ~200–400 bp (insert plus adapter
and PCR primer sequences) were band isolated from agarose gels and
the purified libraries were sequenced in single-ended fashion using
the Illumina Genome Analyzer IIx sequencing platform.

2.2. Data processing

Fig. 1 provides a schematic representation of our bioinformatic analysis
pipeline. Specifications are summarised in Table 1. In thefirst step, we used
our custom software
to produce a modified representation of

. This tool
is available at https://github.com/djpark1974/raft_hotspots_se. Briefly, it
filters reads based on the observation of expected arrangements of adapt-
er sequences, with the stringent requirement that both adapters be evi-
dent in a given read. Reads exhibiting evidence of ligation artefacts or
insufficient evidence of expected adapter sequences were removed. Ac-
cepted reads were processed to trim adapter sequences, and those with
library inserts greater than or equal to 25 nucleotides in length were
retained and transformed to orient the DSB site at the start.
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Fig. 1. Schematic illustration of our bioinformatic analysis pipeline to derive counts ofDSBs
by co-ordinate across genome-build hg19 concatenated with rDNA contiguous sequence
U13369.1.

Fig. 2. Circos plot depicting relative DSB counts by co-ordinate for chromosome 19 of
human genome-build hg19. The outer numbers indicate co-ordinates in megabases
along the chromosome. Black bars indicate gene regions. The red portion indicates
centromeric DNA.
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The concatenated sequences of plus human refer-
ence genome build , represented as , were
indexed using BWA (version 0.7.5a) [4] using the command:

Reads of the transformed FASTQ file were then mapped to
using BWA, thus:
Table 1
Materials, data, tools and resources employed in the present study.

Systems and resources Specifications

Sequencing platform GAIIx single-read (SRR944107.fastq)
Cell line Human HEK293T cells
Sequencing library RAFT-seq

Reference files

hg19.fa;
U13369.1.fa;
ENCFF001TDO.bed;
hg19_rmsk.bed;
hg19_GATC5.bed

Data processing software

raft_fastq_2sites_parse.py;
bwa (0.7.5a);
samtools (1.3.1);
bedtools (2.17.0);
raft_bed_2sites_parse.py
SAMtools (version 1.3.1) [5] was used to convert from SAM file for-
mat to BAM file format and to sort the resulting BAM file with the fol-
lowing command:
BEDtools (version 2.17.0) [7] was then employed to produce a BED
file representing the mapping, including CIGAR string information and
mapping orientation, with the following command:
To reduce false positives resulting from mapping artefacts,
we filtered out reads that overlapped with ENCODE project [3]
blacklist regions and RepeatMasker-derived repetitive regions as
follows ( represents a file created by
sorting a concatenation of the hg19 co-ordinate-associated files

and ):
We then used our custom software
(available at https://github.

com/djpark1974/raft_hotspots_se) to further filter the data and to
count the number of observations of DSBs at co-ordinates in

https://github.com/djpark1974/raft_hotspots_se
https://github.com/djpark1974/raft_hotspots_se
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(yielding
). Briefly, this

tool assesses the orientation of mapping for each read. Since we pre-
sented the DSB at the beginning of each read prior to mapping, we can
determine the exact location of the DSB at the single nucleotide level
for each read. This tool also performs additional filtering steps. Reads
that mapped in either orientationwere treated as likely to be erroneous
if the CIGAR string showed evidence of clipping at either terminus. Ad-
ditionally, we required reads to exhibit mapping qualities (MQs) of
greater than 40 for them to be included in our DSB site counting.

For increased specificity, we removed DSB sites
located within 5 base pairs of a Sau3AI consensus site (GATC),
thus ( was derived via a custom python script):
To enable detailed downstream analyses, we have supplemented
the co-ordinate-DSB-count data with annotation derived from the
ENCODE project and BLAST alignment scores derived from aligning
U13369.1 to the human genome. ENCODE annotations are recorded
with the identity and proximity of respective ENCODE elements and
BLAST alignment scores provide the highest scoring sequence similarity
match for a contiguous sequence spanning a given co-ordinate. Fig. 2 il-
lustrates the frequency of DSBs at single nucleotide resolution sites
across the hg19 reference human genome.

3. Discussion

Here, we present the relative frequencies of DSBs across the human
reference genome for HEK293T cells, at single nucleotide resolution.
Since DNA strand breakage and genomic rearrangements are highly
relevant to cancer and other diseases [2,8,14], it is probable that our
new data will have utility for the development of clinically important
diagnostic tests.

The highest ranking DSB regions reported by Tchurikov et al. [12] for
the SRR944107.fastq dataset predominantly relate to regions that
would be likely to present problems to short read mapping software,
such as satellite sequences. In an attempt to reducemapping-related ar-
tefacts, we have elected to remove regions known to result in low-
confidence mapping from our analysis. Top ranking single nucleotide-
resolved DSB sites resulting from our analysis relate to regions listed
previously as enriched for DSBs, albeit to a lesser extent than reported
for numerous low-complexity (and low confidence) sequence regions.

Our data relate to a particular subgroup of DSBs. The RAFT protocol
from which our data are derived is theoretically enriched for blunt-
ended forum domain termini, previously shown to be associated with
transcriptional control [6,10,11]. They will be biased towards termini
that occur within a particular range of genomic distances from a
Sau3AI restriction endonuclease site. Future protocols that make use
of multiple restriction endonucleases for cleavage following the initial
ligation step, as alternatives to (and as well as) Sau3AI, should mitigate
this to a large extent. Our data are further biased towards genomic
regions that can be mapped unambiguously. We have applied high-
stringency thresholding on mapping quality as part of our algorithm
and discarded library elements that could not be uniquely assigned to
a single genomic location with high confidence and, as such, repetitive
genomic elements harbouring DSB sites will not be represented.

It should be noted that the data we present relate to human
HEK293T cells. Other cell-types will likely exhibit differences in
their RAFT-detectable DSB profiles due to variations in higher-order
chromosomal architecture and DNA cleavage-inducing enzyme activity.
These differences will be elucidated with the expansion of studies to a
range of cell and tissue types.

We have supplemented the profiling of the relative frequency of DSB
sites in HEK293T cells with ENCODE-derived annotation [3], including
regional information pertaining to important transcription factor bind-
ing sites and other marks of gene regulation, regions of DNaseI hyper-
sensitivity and repetitive elements. Further, we provide annotation in
the form of sequence similarity scores, derived from BLAST analysis
[1], for sites that occur in regions with high similarity to human ribo-
somal DNA, since such sequences are known to include hot spots for
DSBs and present particular mapping challenges due to their represen-
tation at high copy number at multiple sites in the genome. This
information should assist with the selection of suitable targets for
diagnostic test design, allowing the user optionally to avoid sites that
present excessive mapping difficulties or to focus on regions associated
with particular genomic marks, for example.

The refined characterisation of the propensity for particular types of
DSBs, such as those identified by the RAFT procedure, across the human
genomewill likely allowmore efficient assessment of genomic ‘scarring’
for an individual. This should be highly relevant to clinical management
approaches such as risk stratification for particular types of cancer and
treatment response prediction. As such, the use of these data has the
potential to be beneficial to the reduction of disease associated mortal-
ity and morbidity.
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