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Introduction

The SARS COV2 and other SARS viruses employ a heavily glycosy-

lated spike S protein (Watanabe et al. 2020; Shajahan et al. 2020a) to

bind to the ACE2 cellular receptor, also heavily glycosylated (Shaja-

han et al. 2020b), on host cells. Historically, there is abundant infor-

mation of glycosylation inhibitors for antiviral activity to stimulate

their investigation for COVID19 treatment. While there are certain

to be side effects by interfering systematically with glycosylation, a

short-term dose of primers, decoys or glycosylation inhibitors might

be sufficient to stop or slow the COVID19 infection cycle with mini-

mal or temporary side effects. For example, castanospermine deriva-

tive celgosivir (6-O-butanoylcastanospermine) (Sels et al. 1999) and

Miglitol, Miglustat (N-butyl −1-deoxynojirimycin) (Campo et al.

2013; Zamoner et al. 2019) are already FDA approved for type 2

diabetes and Gaucher’s disease (Rosenbloom and Weinreb 2013),

passing safety and effectivity phases. This article is to stimulate

repurpose testing of these already-approved compounds and others

for COVID19 therapeutics.

Previously reported efficacy of antiviral activities

Copious literature suggests that glycosylation inhibitors are potent

antivirals for enveloped viruses with a coat or spike protein. In the

1970s and 1980s, a number of investigators examined interference

with glycan synthesis on viral coat proteins as a mode for viral

inhibition. Compans showed in 1971, D-glucosamine and 2-deoxy-

D-glucose inhibited glycoprotein maturation in Sindbis virus (Com-

pans 1971). Several other studies used these two compounds for

inhibition of Semliki Forest virus (Kaluza et al. 1972), enveloped

RNA viruses (Kaluza et al. 1973), Influenza (Klenk et al. 1972), VSV,

Newcastle disease (Scholtissek et al. 1974) and enveloped viruses in

general (Scholtissek et al. 1975). In 1973, Okayama et al. showed

that ß-xylosides could stimulate free GAG chains and inhibit GAG

formation on proteoglycan core proteins (Okayama et al. 1973).

Later, a number of researchers showed that GAGs were important as

cellular receptors in HSV and HCV and that ß-xylosides could inhibit

viral infectivity by sidetracking GAG synthesis to soluble saccharides

(see below).

Schwartz reported, in 1974, tunicamycin inhibition of glycosy-

lation of influenza virus hemagglutinin (Schwartz et al. 1974) and

in 1976 showed that tunicamycin, which inhibits the formation of

N-acetylglucosamine-lipid intermediates in N-linked glycan synthesis

(Lennarz 1975), suppressed glycoprotein synthesis in Semliki Forest,

influenza and avian sarcoma virus (Schwarz et al. 1976). Kornfeld

et al. (1977) examined the effect of tunicamycin (Leavitt et al. 1977a)

on growth of Sindbis and VSV in BHK cells and found at 500 ng/ml,

99.9% inhibition of replication without detection of non-infectious

particles (Leavitt et al. 1977b). Viral proteins were synthesized, but

glycoproteins were under-glycosylated (Leavitt et al. 1977b) and

temperature sensitive (Gibson et al. 1979). Their conclusion was that

in enveloped viruses, glycosylation was essential for normal viral

particle assembly.Morrison et al. (1978) found that tunicamycin had

no effect on glycoprotein attachment to intracellular membranes or

protein transport to the endoplasmic reticulum lumen, but instead

prevented glycoprotein migration from the rough to smooth. Korn-

feld et al. (1979) found that VSV non-glycosylated glycoprotein

underwent intracellular aggregation upon tunicamycin treatment

(Gibson et al. 1979), an indication of improper folding or exposure

of hydrophobic peptide due to pauciglycosylation. Diggelman (1979)

showed biosynthesis of an unglycosylated envelope glycoprotein of

Rous sarcoma virus in the presence of tunicamycin. Pizer et al.

(1980) showed that tunicamycin inhibited production of infectious

herpes simplex virus-1 (HSV1). Blocking addition of carbohydrate to

glycoprotein precursors with tunicamycin resulted in disappearance



2 R A Laine

of proteins, postulated due to degradation of unglycosylated polypep-

tides. They concluded that the glycans either stabilize the envelope

proteins or provide proper structure for processing of the proteins

necessary for infectivity. Stallcup and Fields (1981) inhibited measles

virus with tunicamycin (24).

Holmes et al. (1981) showed that a corona virus, mouse hep-

atitis virus, MHV, had a glycoprotein E1 glycosylated normally in

the presence of tunicamycin. This indicated that E1 bore O-linked

instead of N-linked glycans. The “peplomeric glycoprotein E2 was

not detectable upon tunicamycin treatment,” indicating its synthesis

was interdicted or its degradation was facilitated by lack of N-linked

glycosylation and was improperly processed (Holmes et al. 1981).

E2 may be analogous to the S-spike glycoprotein. Viral particles

were produced with tunicamycin treatment but were noninfective,

lacking E2, which was required for attachment to viral receptors

on cells, probably analogous ACE2 by today’s knowledge. At that

time, no drug was known to inhibit O-glycosylation, such as α-

benzyl-GalNAc, in use today. Because of these observations, either

N-linked orO-linked glycosylation interferencemay potentially inter-

dict SARS-Cov2 infectivity.

Tunicamycin was employed in antiviral tests and was very effec-

tive, but it was considered too toxic by most investigators to be

developed as a drug at the concentrations used. However, Banerjee

et al. (2011), in cancer treatment, found a safe concentration of

a purified tunicamycin and dosage in mice (250 µg/kg oral twice

a week for 4 weeks) that inhibited MDA-MB0231 triple negative

breast-cancer tumor formation in live mice, without overt toxicity

and involved the unfolded protein response. Nanoformulations were

effective (Banerjee et al. 2013). Recent articles define the detailed

basis for tunicamycin’s activity (Hakulinen et al. 2017; Yoo et al.

2018). Tunicamycins should be tested now for infectivity assays with

SARS COV2 alone or in combinations with other inhibitors.

Elbein et al. (1982) showed swainsonine, an α-mannosidase

inhibitor, to inhibit processing of oligosaccharides on influenza

viral hemagglutinin, and in 1983 showed its effect on vesicular

stomatitis virus (Kang and Elbein 1983). In 1983, he showed

castanospermine, an α-glucosidase inhibitor, inhibited influenza

hemagglutinin expression (Pan et al. 1983). Both inhibited N-

glycan processing. Tyms et al. (1987) showed castanospermine

and other plant alkaloid glucosidase inhibitors to block HIV

growth. Sunkara et al. (1987) tested castanospermine and 1-

deoxynojirimycin (Duvoglustat) showing anti-retroviral activity.

Dwek et al. (1998) later suggested α-glucosidase inhibitors as

general antiviral agents (Mehta et al. 1998). Chapel et al. (2006)

showed antiviral effects of α-glucosidase inhibitors on hepatitis C

virus. Chang et al. (2013a) reported that iminosugar α-glucosidase

inhibitors related to 1-deoxynojirimycin (that interfered with N-

linked glycan maturation in the calnexin-mediated folding pathway)

were also effective as antivirals for Arenaviridae, Bunyaviridae,

Filoviridae and Flaviviridae including hemorrhagic fever Marburg

and Ebola in mice. 1-Deoxynojirimycin (Duvoglustat) suppresses

postprandial blood glucose and is used for treatment of diabetics

in doses of 20-110 mg/kg (Gao et al. 2016, Tong et al. 2018). Qu

et al. (2011), inhibitors of endoplasmic reticulum α-glucosidases

potently suppress hepatitis C virus virion assembly and release.

Howe et al. (2013) applied similar compounds to HCV and BVDV.

Castanospermine and its O- and N-butyl derivatives were tested in

many viral systems with positive results and FDA approval for type

2 diabetes and Gaucher’s treatments as described below. Off-label,

repurposing treatments for COVID19 should be considered.

Celgosivir (6-O-butanoyl castanospermine), an approved α-

glucosidase inhibitor drug for type 2 diabetes and Gaucher’s disease,

inhibits all four Dengue, DENV serotypes (Sayce et al. 2010;

Rathore et al. 2011). “Fluorescence microscopy showed that the

antiviral mechanism of Celgosivir, is in part, due to misfolding

and accumulation of DENV non-structural protein 1 (NS1) in the

endoplasmic reticulum” (Lachmann 2003). Moreover, Celgosivir

modulates the host’s unfolded protein response (UPR) for its antiviral

action. Significantly, Celgosivir is effective in lethal challenge mouse

models that recapitulate primary or secondary antibody-dependent

enhanced DENV infection. Celgosivir-treated mice showed enhanced

survival, reduced viremia and robust immune response, as reflected

by serum cytokine analysis. Importantly, survival increased even

after treatment was delayed till 2 days post-infection.” (Rathore

et al. 2011). Together, this suggests that Celgosivir, which has been

clinically determined to be safe in humans, may be a valuable

candidate for clinical testing in COVID19 patients. (Ibid).

Safety

Celgosivir has passed safety studies in humans (Sels et al. 1999;

Rathore et al. 2011). N-butyl-deoxynojirimycin (Miglustat) has been

approved for clinical use since 2002 for Gaucher’s disease (Cox et al.

2000; Lachmann 2003), after tests in 2000 to show its activity was

to decrease substrate biosynthesis. This safety data suggests that both

should be investigated repurposed off-label for COVID19 infectivity,

since safety, PK and dosage has already been established. Also,

long-term, 24-month studies of Miglustat have established safety

and efficacy (Pastores et al. 2005), where COVID19 treatment may

require very brief application. Chang et al. (2013b) and Pérez-García

et al. (2017) reviewed and recommended the use of ER glycosylation

inhibitors as potential targets for viral therapeutics. Main side effects

were GI, manageable by diet and anti-propulsives. Duvoglustat, (1-

deoxymannojirimycin) (Fuhrmann et al. 1984) amphomycin and

related compounds should also be tested. Considering the seriousness

of this pandemic, researchers with access to these and other glycosy-

lation inhibitors should collaborate with virology labs that can test

the infectivity cycle of SARS COV2.

Following Okayama’s earlier work (1973), Schwartz et al. (1974)

showed stimulation of synthesis of free chondroitin sulfate chains

by ß-D-xylosides in cultured cells. Esko and Montgomery (1995),

following Okayama’s and Schwartz’s earlier work, described xyloside

“primers” of glycans that could be employed in tissue culture to

prevent sugars from attaching to proteins, proteoglycans and glycol-

ipids. They found ß-D-xylosides initiate glycosaminoglycan (GAG)

synthesis by substituting for endogenous xylosylated core proteins.

Xylosides will also prime oligosaccharides that resemble glycol-

ipids. N-acetyl-α-D-galactosaminides initiate O-linked oligosaccha-

ride synthesis found on mucins and other glycoproteins and can

be used to disrupt O-glycosylation. Disaccharides, (e.g. peracety-

lated N-acetyllactosaminide), can act as primers. Competing with

endogenous substrates, they interdict proteoglycan and glycoprotein

glycosylation.Esko used acetylated xylose derivatives where PNP-Xyl

treatment decreased heparan sulfate expression on the cell surface

of Syndecan 4 cells and abrogated the HCV transmission in a

concentration-dependent manner (Shieh et al. 1992; Fritz et al. 1994;

Fritz and Esko 2001). Xylosides and thioxylosides should be tested

in SARS COV2 infectivity studies.
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E-selectin/ligand interdiction for inflammation

in the ARDS symptoms in COVID19

E-selectin is a key to the first step in inflammation where E-selectin

ligand Sialyl LeX binds E-selectin on capillary endothelium for

neutrophil extravasation. Mulligan et al. (1993) early showed in

a mouse lung inflammation model of ARDS that oligosaccharides

containing Sialyl LeX inhibited neutrophils from causing the pneu-

monic symptoms. Glycomimetics, Inc., under John Magnani’s scien-

tific direction, has developed pan-selectin inhibitors and follow-on

compounds that may also be effective in interdiction of the ARDS

pathology (Chang et al. 2010). Magnani et al. developed a potent

anti-inflammatory Sialyl LeX analog that interdicted inflammation

in sickle cell anemia (Chang et al. 2010), and this and follow-on

compounds from glycomimetics could be employed to test COVID19

lung and cardiac inflammation. Neelamegham, Matta et al. (Wang

et al. 2018) reported using thioglycoside N-glycosylation decoys to

hijack E-selectin ligand glycosylation, such that neutrophils treated

with acetylated GlcNAc-S-NAP are 90% inhibited in rolling and teth-

ering, and 90% inhibited in extravasation in a mouse ex-vivo model.

Experiments with lung inflammation mouse models such as used by

Mulligan et al. (1993) should be pursued toward finding drugs for

the deadly pneumonic phase of COVID19 that is responsible for most

fatalities.

It seems a reasonable approach that interfering with host gly-

cosylation systems hijacked by SARS COV2, plus interfering with

the ACE2 receptor glycosylation may combine to 1) interdict infec-

tivity and 2) glycosylation interference with Sialyl LeX can inhibit

E-selectin-based inflammatory responses, mitigating the Covid19

ARDS pathology. Important here is that decoys of glycosylation

address the host enzyme systems; therefore, the virus cannot perform

a simple mutation to overcome the interdiction, as in vaccines, like

influenza. In addition, several of the compounds are FDA approved

for other indications, which could be repurposed and tested off-label.

Heparinoid efficacy

Coagulopathies and heparin treatment are the subject of several

articles regarding the pathology of COVID19 (Becker 2020; Por-

fidia and Pola 2020), and heparan sulfate derivatives and sulfated

oligosaccharides appear from several laboratories to play a role in

the binding of spike protein to the ACE2 receptor (Clausen et al.

2020; Kim et al. 2020; Kwon et al. 2020; Mycroft-West et al. 2020;

Tandon et al. 2020; Zhang et al. 2020). Thus, heparan sulfate derived

or sulfated nonanticoagulant and anticoagulant oligosaccharides and

derivatives may be effective interdictors of both viral infectivity and

coagulopathies, and FDA-approved heparinoid products should be

considered for repurposing for COVID19.

Summary

Glycobiologists with access to any of the compounds mentioned

herein or related to glycosylation interdictors are encouraged to

send their samples for testing to virology labs conducting SARS

COV2/ACE2-binding studies, spike glycoprotein fusion tests, or

infectivity assays.Repurposing of already approved drugs, and testing

others with low toxicity may uncover other avenues from a solid

glycobiology antiviral background for a much-needed development

of COVID19 therapeutics. There are also outstanding opportunities

for selectin anti-inflammatory and heparinoid anticoagulation

approaches for COVID19 ARDS.
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