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Abstract

Modern electrophysiological recordings and optical imaging techniques have revealed a

diverse spectrum of spatiotemporal neural activities underlying fundamental cognitive pro-

cessing. Oscillations, traveling waves and other complex population dynamical patterns are

often concomitant with sensory processing, information transfer, decision making and mem-

ory consolidation. While neural population models such as neural mass, population density

and kinetic theoretical models have been used to capture a wide range of the experimentally

observed dynamics, a full account of how the multi-scale dynamics emerges from the

detailed biophysical properties of individual neurons and the network architecture remains

elusive. Here we apply a recently developed coarse-graining framework for reduced-dimen-

sional descriptions of neuronal networks to model visual cortical dynamics. We show that,

without introducing any new parameters, how a sequence of models culminating in an aug-

mented system of spatially-coupled ODEs can effectively model a wide range of the

observed cortical dynamics, ranging from visual stimulus orientation dynamics to traveling

waves induced by visual illusory stimuli. In addition to an efficient simulation method, this

framework also offers an analytic approach to studying large-scale network dynamics. As

such, the dimensional reduction naturally leads to mesoscopic variables that capture the

interplay between neuronal population stochasticity and network architecture that we

believe to underlie many emergent cortical phenomena.

Author summary

Emergent nonlinear dynamics in the primary visual cortex (V1) may influence informa-

tion processing in the early visual pathway and has been shown to affect visual perception.

A major goal of systems neuroscience is to understand how complex brain functions can

arise from the collective nonlinear dynamics of the underlying neuronal network. This

challenge has been partly met through electrophysiological recordings, optical imaging

and neural population models. However, a full account of how the multi-scale population
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dynamics emerges from the detailed biophysical properties of individual neurons and the

network architecture remains elusive. Previously, working on a homogeneously-coupled

network, we derived a series of population dynamics models, ranging from Master equa-

tions, to Fokker-Planck equations, and culminating in an augmented system of spatially-

coupled ODEs. Here we present an application of this reduction method to a heteroge-

neously coupled neuronal network that models a spatially-extended portion of V1. We

found that the temporal dynamics of individual V1 patches can be well captured by a low-

dimensional set of voltage moments. At the same time, the spatially-coupled system can

recapitulate the cortical wave generation and propagation induced by many visual stimuli,

including those that induce motion illusions. Furthermore, this coarse-graining reveals

the importance of the temporal differences between on-/off-pathways, that may account

for the directional motion perception from darks to brights.

Introduction

Multi-channel recordings and optical imaging have revealed a vast repertoire of spatiotempo-

ral activity patterns in the brain. This rich hierarchy ranges from localized activation to travel-

ing waves, to dynamically switching cortical states [1–4]. The activities can be stimulus-driven

or internally generated and are shown to affect information processing, sensory perception

and cognitive tasks [5–11]. Mathematically, the emergence of the many spatial and temporal

scales in cortical dynamics presents a tremendous challenge for modelers and theoreticians.

The rapid development in computational power has allowed us to study very large networks,

and a combination of large-scale network simulations [12–15], reduced dimensional models

(e.g., neural field models, mean-field populations models, and kinetic theories [3, 6, 9, 16–19]),

and machine learning [20–22] have been used to successfully describe many experimental phe-

nomena. The principal mechanism underlying the diverse spectrum of network activities is

likely to be the strong competition between excitatory and inhibitory neuronal populations.

However, a theoretical account of how the detailed biophysical properties of individual neu-

rons, the local network properties and cortical architecture can lead to the observed emergent

multi-scale dynamics is lacking. Here we make progress towards such a theoretical model by

making use of a coarse-graining formalism that has been successful at capturing the rich reper-

toire of heterogeneous dynamics that exists even in a small homogeneous neuronal network.

Recently, working on a small, idealized network of linear integrate-and-fire neurons, through

using a partitioned-ensemble-average (PEA), we derived a sequence of population dynamics

models, ranging from Master equations, to Fokker-Planck models, and finally to an aug-

mented system of ODEs that explicitly accounts for the interaction between neuronal spiking

activity and internal neuronal voltages [23].

In [23] (hereafter ZSRT19), from the Fokker-Planck description of neuronal population

dynamics, we derived an augmented low-dimensional ODE system by introducing a hierarchy

of neuronal voltage moments and a maximum entropy closure. We showed that, by carefully

introducing the PEA into our simulation algorithms, our dimensional reduced population

models could faithfully capture highly heterogeneous network dynamics, ranging from tran-

sient to sustained, from driven to self-organized, from oscillatory to nearly synchronous net-

work activity in the form of multiple-firing events. More importantly, the PEA formalism

provided a conceptual framework to mathematically coarse-grain the emergent network

dynamics from first principles. However, so far, the applications have been restricted to small

networks with homogeneous connectivities, which is an idealization that is met in but the
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smallest of local cortical networks. Here we extend our methodology to networks with slowly

varying spatial inhomogeneities and apply it to study the emergent dynamics of the primary

visual cortex (V1).

The mammalian V1 is of particular interest to many neuroscientists owing to its fundamen-

tal role in visual processing and the common belief that understanding network functions in

V1 will advance our understanding of other areas of the mammalian brain. While individual

V1 neurons show preference to orientation of a visual stimulus by elevated firing rates, optical

imaging experiments show that orientation preference is distributed in pinwheel-like hyper-

columns that tile the cortical surface. Recent optical imaging techniques, particularly, voltage-

sensitive dye (VSD) imaging, can capture V1 network dynamics with high spatial and tempo-

ral resolution and revealed the important interplay between visual stimulus, subthreshold pop-

ulation dynamics and large-scale, coherent activities [1, 2, 24–26].

The application of the ZSRT19 formalism to V1 naturally produces a spatially-coupled

ODE system, consistent with locally organized visual feature maps. By examining local net-

work patches smaller than orientation hypercolumns, we show that sub-hypercolumn tempo-

ral dynamics can be well captured by a low-dimensional set of voltage moments. By adding

orientation specific couplings between orientation hypercolumns, we were able to recapitulate

the cortical wave generation and propagation induced by visual illusory stimuli. Finally, by

modeling the temporal difference between On- and Off-visual pathways as temporal differ-

ences of the respective inputs into V1, our reduced-dimensional model can account for the

induction of propagating voltage waves from darks to brights.

Results

The effectiveness and accuracy of our coarse-graining framework has been well investigated in

various aspects, see [23, 27]. Here we begin with validating our moment closure by applying it

to model the network response to a rotating drifting-grating stimulus. Here, the visual stimu-

lus is a sinusoidally modulated grating, drifting at 4 Hz and rotating at 20˚/sec. We numerically

simulate one single orientation hypercolumn (see Fig 1A and Methods). Fig 2 shows, over one

rotation period, the temporal dynamics of the total synaptic inputs (Fig 2A), which consist of

the external (i.e., LGN) input (Fig 2B), excitatory cortical input (Fig 2C) and inhibitory cortical

input (Fig 2D). (The faster oscillations correspond to the drift rate of the sinusoidally modu-

lated grating.) Each panel plots the dynamics at two locations with respect to the pinwheel cen-

ter, with red/blue representing neuronal populations far from/near the pinwheel center,

respectively. Clearly, the neurons away from the pinwheel center (in the so-called iso-orienta-

tion domain) have flatter temporal responses compared to neurons near the pinwheel center.

Since the grating is also slowly rotating, the envelope of the temporal response curve can be

used to estimate the orientation tuning of each neuronal population. Fig 2E displays the popu-

lation-averaged membrane potentials and slaving-voltages (see Methods) of individual patches

(marked in Fig 2F–2H); red/blue solid lines are population-averaged membrane potentials of

neurons away/near the pinwheel center; pink/cyan dash lines are corresponding slaving-volt-

ages. Fig 2F–2H are spatial patterns of population-averaged membrane potential and popula-

tion firing rate at t = 3475ms. From Fig 2E–2H we can infer that the neurons near the

pinwheel center are more selective to stimulus orientation while the neurons far from the pin-

wheel center are less selective, consistent with the network models of McLaughlin & Rangan

[28].

Population activity in cortex forms characteristic clusters both in space and time. While the

processing of local, small-scale stimulus orientation appears to be performed within individual

orientation hypercolumns, the integration and processing of more global features are believed
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to be functions of a network organization on scales spanning multiple hypercolumns. Further-

more, many experimental studies have revealed the existence of spatially separated On- and

Off-visual pathways [29–31], in addition to temporal differences, originating from the RGCs

and persisting to V1. On the scale of single neurons, the well-known spatial arrangement of

LGN inputs shapes individual V1 receptive fields. The temporal asymmetry between these

pathways was revealed by comparing the neuronal responses to brightened versus darkened

stimuli [29].

Recently, using VSD optical imaging, Rekauzke et al showed that the temporal difference in

the On-/Off-visual pathways can lead to propagating subthreshold cortical activity, possibly

contributing to motion perception [26]. In their experiments, Rekauzke et al used darkening

and brightening square stimuli to probe the difference between the On-/Off-visual pathways.

The darkening square stimulus is an initially bright square on a uniformly dark background

that is changed to grey, and the brightening square stimulus is an initially grey square switched

to bright (the leftmost vertical rows in Fig 3A and 3B). VSD imaging captured the cortical

Fig 1. Schematic diagrams of network architectures used in simulations. (A) shows a single-hypercolum structure used in the first simulation.

Neuronal populations in these four layers are nearly identical, except for their preferred phases. (B) shows the second network structure in the

simulation. The reduced model contains 5×3 hypercolumns (red, dashed circle), each of which has 4×4 CG patches. The patch contains both the

excitatory (red) and inhibitory (blue) subpopulations, thus can be described by 4 voltage moments (upper right). These patches are colored

according to their preferred orientations (PO) and connected via short-range as well as long-range couplings. The short-range couplings are

isotropic and constrained within a single hypercolumn (the 1st part in the bottom right panel), while the long-range couplings are NMDA-type,

excitatory and orientation-dependent (red, dashed arc in the left panel and the 2nd part in the bottom right panel). LGN input and corresponding

temporal profiles are shown in the top. See Methods for more details.

https://doi.org/10.1371/journal.pcbi.1007265.g001
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activities aroused in the directly stimulated location before nearly isotropically spreading via

horizontal connections (the top lines of the right panels in Fig 3A and 3B). They also found

that responses to the off stimulus (darkened square) arrived ~10 ms before the on stimulus

(brightened square), thus confirming the existence of temporal differences between On-/Off-

processing.

Using simultaneously darkening and brightening squares at adjacent locations (so-called

counterchanging stimulus; see the leftmost vertical row in Fig 3C), Rekauzke et al found prop-

agating cortical activity flowing from the darkened area towards the brightened location. This

propagating activity is similar to the wave-like response to a moving square stimulus, suggest-

ing the temporal asymmetries in the On-/Off-visual pathways can lead to motion signals in

higher-order visual perception, a hypothesis corroborated by psychophysics experiments.

To generate a physiologically plausible model of the cortex, we use these experimentally

recorded VSD data to calibrate our large-scale I&F neuronal network. First, using the results

from single darkening and brightening square stimulus, we adjust the LGN input strengths,

the On-/Off-LGN temporal kernels, and the strengths of local connectivities. Using the wave

propagation properties revealed in the counterchanging stimulus, we calibrate the strengths of

long-range connections.

We applied this large-scale I&F model to study the dynamical responses of a realistic cortex,

which comprises Oð101Þ hypercolumns and Oð105Þ neurons. Individual neurons and massive,

Fig 2. Responses of our CG moment model to rotating drifting-gratings. The stimulus is a rotating sinusoidal drifting-grating at the optimal spatial

frequency, with a drift rate of 4 Hz per sec and a rotation rate of 20˚per sec. we simulate one single orientation hypercolumn with idealized ‘pinwheel’ structure

for 6000 ms. Overall and constituent current inputs for neurons located far from a pinwheel center and near the pinwheel are summarized. Plotted are A, Total

synaptic current inputs, B, external (i.e., LGN) current inputs, C, excitatory cortical current inputs, and D, inhibitory cortical current inputs for the near (blue)

and far (red) patch of neurons. E summarizes the temporal dynamics of population-averaged membrane potentials for near (blue) and far (red) neuron patches,

and the temporal dynamics of population slaving voltage (total current input divided by leakage conductance) for the same near (cyan dotted) and far (pink

dotted) neuron patches. The panel G shown is population firing-rate for near (blue) and far (red) neuron patches. The panels F, H are spatial patterns of

population-averaged membrane potential and population firing rate at the same time point (t = 3475 ms).

https://doi.org/10.1371/journal.pcbi.1007265.g002
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Fig 3. Comparison of activity patterns between data and models. Spatiotemporal activity patterns of experimental VSD data (Rekauzke

et al JNS 2016), our large-scale integrate-and-fire neuron model and our CG moment model responding to different stimulus paradigms,

these stimuli are all involved in On- and Off- temporal processing. For plots A-C, left rows, the first and second rectangles represent

visual stimuli at two time points, t1 and t2, where t2>t1. In plot A, the upper square turns dark, in plot B, the bottom square turns bright

and in plot C, the upper square turns dark whereas the bottom square turns bright simultaneously. Right part of each plot, in the first

lines, frames show spatiotemporal (10 ms time interval, from 50–80 ms) plots of VSD data, in the second lines, frames show simulated

results of our large-scale I&F model, and in the third lines, frames show results of our CG moment model under corresponding stimulus

paradigms. D describes another spatiotemporal representation for cortical activity pattern, which is derived from frames of two-

dimensional spatial activity patterns. These frames are averaged along the horizontal axis (shorter axis) to reduce the 2D spatial patterns

to 1D. These 1D patterns are arranged from left to right in time order (i.e., 85ms, 105ms, 125ms 2D spatial activity patterns in top and

corresponding 1D vertical lines in the bottom) and aligned in spatial position to obtain the spatiotemporal activity pattern (bottom).

Horizontal lines in bottom represent aligned positions and different colors represent different vertical positions. E, represents a novel

version of the LMI stimulus paradigm, which combines features of the On-/Off-counterchanged square stimulus paradigm of Rekauzke

et al. with the standard Hikosaka LMI paradigm, and we call it ON-/OFF-LMI. The stimulus starts with a cue of a small, darkened

stationary white square, displays in the first two frames, followed a few milliseconds (about 10–30 ms until the third frame) later by a

brightened stationary bar at an adjacent location, which occurs at the fourth frame. F, Results of our large-scale and CG moment models

under novel ON-/OFF-LMI stimulus paradigm. Top line depicts aggregated and constituent membrane potentials, from left to right, the

panel shown are spatiotemporal profiles of population-averaged membrane potentials of an excitatory subpopulation, inhibitory

subpopulation, aggregated membrane potentials obtained by CG moment model simulation and aggregated membrane potentials

obtained by large-scale I&F model. Left plot in the bottom is time courses of population-averaged responses of CG moment model to

ON-/OFF-LMI stimulus paradigm, line colors match the horizontal lines in D, represent 7 consecutive adjacent positions spaced at about

0.11 mm intervals within 1.12–1.80 mm, middle panel shows the wave front position (distance from the top of model cortex, 8 adjacent

positions from about 1.12 to 1.91 mm) as a function of time (the moment when activity reaches 80% of its maximum amplitude), using

results of CG moment model, the velocity is 0.040 = (1.91–1.12)/ (117–97) (mm/ms) [24]. The right panel shows the wave front position

of time, but using results of large-scale I&F model, the velocity is 0.038 = (4.2–3.2)/ (116–91) (mm/ms). A color bar that indicates the

activity scales is shown in the upper left in (F) and spatial scale is in the right side of the third frame in the identical line.

https://doi.org/10.1371/journal.pcbi.1007265.g003
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complex inter-connections are the essential network elements in this model. Although the net-

work dynamics can be accurately traced by a set of ordinary differential equations (ODEs),

direct simulations of such a large-scale I&F neuron model is computationally expensive (con-

sidering the large number of neurons and the many stochastic realizations of network dynam-

ics that may be required). Furthermore, because of the dimensionality of the network, it is

difficult for mathematical analysis.

In matching the dynamical responses of our large-scale I&F model cortex, we found that

the illusory phenomenon can be appropriately captured and modeled as the complex collective

activities of the cortical circuit, and is crucially dependent on the interaction of neuronal popu-

lations. So here, we perform a reduction of the large-scale I&F model, organize neurons with

similar properties into spatially coarse-grained subpopulations.

For our coarse-grained, augmented ODE model, we take the parameters directly from the

large-scale I&F model. Although a direct comparison between the large-scale I&F model and

the CG model shows slightly different spatial activity patterns, the essential wave propagation,

from darks to brights, can be reproduced (right panels in Fig 3C). (See Methods for a detailed

description for parameter calibration.)

To illustrate our dimensional reduction to capture spatiotemporal cortical activity in gen-

eral, we stimulate our moment model with a novel version of the LMI stimulus paradigm. In

Fig 3E, we combine features of the On-/Off-counterchanging square of Rekauzke et al with the

original Hikosaka LMI into a new visual stimulus, which we call the ON-/OFF-LMI. The stim-

ulus starts with a cue of a small, stationary bright square that switches OFF followed a few mil-

liseconds (~10–30 ms) later by a grey stationary bar that turns ON to bright at an adjacent

location.

To compare the stimulus-generated neuronal activities between the large-scale I&F network

model with our CG results, in Fig 3F, we display activity patterns in a spatially one-dimen-

sional representation (see Fig 3D for details). Excitatory, inhibitory, aggregated population-

averaged membrane potentials of patches in the CG model and membrane potentials of point

neurons in the large-scale I&F model are displayed from left to right. The membrane potentials

initially arise in patches receiving the darkened square stimulus—the earliest responses (cyan/

green) appear on the upper left corner of each panel, before spreading isotropically, while the

amplitudes gradually increase (yellow/red). In the second stage, after the bar stimulus turns

ON to bright, a gradual wave-like propagation of population-averaged membrane potentials

emerges. This wave propagation emerges in the region between the middle and bottom por-

tions (white rectangle in Fig 3F) of the activity which receives brightening bar stimulus. The

moment in time when the population activities of CG patches reach a particular level (here we

chose 80% of the maximum activity) shows a continuous shift in time, i.e., the farther the

patch is from the initial stimulus, the later the activity reaches this level. The counterclockwise

tilting contours (activities with the same amplitude/color) in the corresponding region intui-

tively reflect this phenomenon (upper line in Fig 3F). Lower left sub-plot in Fig 3F summarizes

the temporal traces of population-averaged membrane potentials at seven evenly spaced loca-

tions within the area receiving bar stimulus; we observe a rightward time shift (time delay)

along the direction away from the initial stimulus occurring before subthreshold neuronal

responses corresponding to the brightening bar stimulus (about 50 ms). Lower right two sub-

plots in Fig 3F show the measurement of the propagating wave position as a function of time,

from the CG model (left) and large-scale I&F model (right). Both of which have a wave speed

of about 0.05 m/s, consistent with experimental results [24].

ON-/OFF-LMI reveals two nontrivial temporal properties: first, the time delay of about 20

ms, inherited from the intrinsic time-latency between On-/Off-visual pathways, and the sec-

ond is the time difference of about 30 ms between the appearance of the cue-square and the
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long bar. The combination of these two timing differences ‘primes’ the cortical network and

initiates a traveling cortical wave when a second stimulus immediately appears in a nearby

location [14]. Our CG model indicates that the V1 network can integrate and make full use of

these two types of temporal differences, to induce a ‘priming’ effect, so that an appropriately

placed second stimulus triggers cortical voltage propagation. The spatiotemporal activity pat-

terns from the CG model are presented in Fig 3F; as we see, the activities closely resemble the

I&F model (rightmost panels in Fig 3F).

We note that the traveling wave is largely independent of the cue contrast. In Fig 4 we plot

the trajectory of the propagating wave (in the region marked by white rectangle in Fig 3F) as a

function of time. Reducing the darken square’s contrast from 100% to 50%, we observe a

lagged initiation of the wave. In addition, under these circumstances with different cue con-

trasts, every point on the trajectory of the traveling wave, shifts by roughly the same period of

time (shifts along the x-axis). Fig 4 indicates that after an initial transient, the induced traveling

wave reaches a steady state velocity of about 0.05 mm/ms, independent of cue contrast. This

speed is roughly consistent with the wave speed induced by the Hikosaka Line-Motion Illusion

paradigm.

In Fig 5, we show the CG results from 1) the Hikosaka LMI stimulus (Fig 5A), 2) a moving

square (Fig 5D and S1L Fig), 3) two types of drawn-out squares, one directly drawn out to bar

length (Fig 5G and S1I Fig), and another starting out as the Hikosaka LMI, with a priming

square that vanishes, followed by a drawn-out square (Fig 5J). VSD signals evoked by these sti-

muli are presented in Fig 5B, 5E and 5H (lacking VSD data for the second type drawn out

stimulus); corresponding CG model results are displayed in Fig 5C, 5F and 5I.

We note that in the cases with VSD imaging data, our CG model results reproduce the

main features of cortical wave propagation. For instance, in the LMI of Fig 5C, the initial

square stimulus activates cortical neurons after about 40 ms, with a persistence of neuronal

activity even after the disappearance of the square stimulus (t = 48 ms or 5Δ). Now, at about 60

ms, a bar is flashed. The neuronal patches (VSD or our CG model) in the region near the previ-

ous firing build up activities after ~20ms, before spreading to the right. We compare this to a

physically moving square stimulus (Fig 5D–5F) to demonstrate that the wave-like cortical

activity pattern under LMI is very similar to the activity induced by a square moving at the

appropriate speed. The blue line in Fig 5D denotes the trajectory of the head of the moving

square stimulus, and the slope of the blue line indicates its speed (~32 deg/sec).

Discussion

Information processing in the brain is often reflected by organized, coherent activity patterns

that are distributed across almost the entire cortex [11, 24, 32, 33]. This population-level neu-

ronal activity is often thought of as an emergent property of strongly coupled recurrent net-

works [6, 34–36]. Furthermore, it is believed that the information is embedded in the

spatiotemporal patterns arising from the collaborations and competitions between the external

stimulus, the intrinsic neuronal dynamics and the network architecture. Modern experimental

techniques (such as VSD imaging) are capable of capturing this phenomenon with high spatial

and temporal resolution [1]. However, the attempt to understand the network mechanisms

underlying the generation and maintenance of neuronal population activity has been mainly

addressed through large-scale numerical simulations, and a mathematical framework to

extract simplified representations remains a major theoretical challenge [15, 28, 35, 37].

The mammalian early visual pathway is a complex system whose functions emerge from

interactions that take place simultaneously on a vast range of spatial and temporal scales. Opti-

cal imaging experiments of V1 reveal visual feature preferences organized into mm-scale
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hypercolumns that tessellate the V1 network. While local connectivities on the hypercolumn

scale appear to be isotropic, longer range, reciprocal connections are excitatory-only and ori-

entation-specific [38–41]. These long-range horizontal connections are likely to be responsible

for the synchronization of gamma-band oscillations that signal visual processing beyond sin-

gle-cell receptive fields. Voltage-sensitive dye imaging has also revealed the interaction

between various spatial and temporal scales to produce visual illusions, such as the line-motion

illusion.

Standard ensemble averages of neuronal network dynamics lead naturally to Masters equa-

tions, Fokker-Planck systems, and other types of kinetic theories [12, 16, 17, 42–47]. The clas-

sic formulation of the neuronal network dynamics on the population level, i.e., population/

ensemble density models or Wilson-Cowan models, evolves according to the conservation of

probability density flux and represents the population activity of a cortical region by one or

multiple variables.

While these reductions are effective descriptions of coherent population dynamics, they

yield systems of partial differential equations that are not always easily amenable to analysis.

Mean-field approximations replace the ensemble density with the expected value of the

Fig 4. Effect of cue-contrast dependence on temporal properties of population activity patterns under ON-/OFF-LMI

stimulus paradigm. Y-axis represents the distance from this position to the edge of the model cortex (edge near the

position of the stimulus initiation), and x-axis records the moment when the activity of this position reaches 80% of its

maximum amplitude. We summarize the results of traveling wave positions as a function of time under identical ON-/

OFF-LMI stimulus paradigm, except for the contrast of the initial cue-square, which reduces from 100% to 50% of the

contrast fed into the model in Fig 3F. Arrow represents the direction of contrast decreasing in 10% steps (100%/ black,

90%/ blue, 80%/ cyan, 70%/green, 60%/ pink, 50%/ red).

https://doi.org/10.1371/journal.pcbi.1007265.g004

PLOS COMPUTATIONAL BIOLOGY Dimensional reduction of emergent spatiotemporal cortical dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007265 June 9, 2020 9 / 24

https://doi.org/10.1371/journal.pcbi.1007265.g004
https://doi.org/10.1371/journal.pcbi.1007265


network state variables. Further improvements [3, 9] take the fluctuations of neuronal activity

into consideration, by introducing ad hocGaussian noise terms. Recently, a Master equation

formalism proposed by Boustani and Destexhe, allows for a ‘mesoscopic’ level description of

population dynamics. Their model can be used beyond stability analysis, but needed to make

use of a phenomenologically fitted f-I curve. Other theoretical studies have focused on the

dimensional reduction of complex neuronal network exhibiting heterogeneous dynamics. In

particular, various studies [16, 48–55] have developed models with conductance moments.

This leads to an infinite hierarchy of moments, where the dynamics of lower-order conditional

moments depend on higher-order moments, necessitating moment closure assumptions.

Here we use a different method for reduction [19] which was previously shown to be effec-

tive for homogeneous I&F networks. In this framework, we obtained a system of ODEs of volt-

age moments, where the lower-order moments do not depend on higher-order moments.

However, at each moment in time, the population firing rate is needed to evolve the system of

ODEs. And, in order to compute the population firing rates, we need to compute the full prob-

ability distribution function, which cannot be constructed uniquely from a finite set of voltage

moments. Therefore, we need a different closure scheme and we choose to use a maximum

Fig 5. Comparison of response patterns of CG moment model and experiment under various illusory motion stimulus

paradigms. (A-C) Standard Hikosaka LMI stimulus, (A) visual input, (B) experimental VSD images of cat primary visual cortex, (C)

membrane potential pattern of CG moment model are shown in an alignment. (D-F) Moving square stimulus, (D) visual input, blue

line denotes the trajectory of the head of this moving square stimulus, the slope reflects its moving speed (1.5˚×3�140ms�32˚/sec),

(E) experimental VSD images of cat primary visual cortex, (F) membrane potential pattern of CG moment model are shown in

alignment. (G-I) The first type drawn-out stimulus, (G) the first type drawn-out visual input, blue line with the same slope as that in

D represents the stimulus is drawn out to full bar length at a speed of 32˚/sec, (H) experimental VSD images of cat primary visual

cortex, (I) membrane potential pattern of CG moment model are shown in alignment. (J, K) The second type of drawn-out stimulus,

(J) the second type drawn-out visual input, this stimulus pattern is identical to Hikosaka LMI in the first 50 ms, then the square

stimulus is drawn out to the bar length and the final pattern is identical to the bar stimulus in Hikosaka LMI, (K) membrane potential

pattern of CG moment model are shown in alignment. The time dimension is on the left ordinate, the color bar indicates levels of

membrane potentials.

https://doi.org/10.1371/journal.pcbi.1007265.g005
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entropy assumption. (Technically, we did not maximize the Shannon entropy of the distribu-

tion, given the constraints of the time-dependent voltage moments. Instead we maximized the

relative entropy between the distribution and the stationary distribution, given the moments.

Or, as one of the reviewers pointed out, we minimized the Kullback-Leibler divergence. We

are working on understanding the differences in this context and hope to report back soon.)

In this paper, we extend and apply this formalism towards modeling and analyzing large-

scale coherent cortical activity in V1. First, we focus on a single V1 orientation hypercolumn

before using it to model an extended network that spans roughly 5×3 orientation hypercol-

umns in V1, an area that contains ~ Oð105Þ neurons. On this scale, VSD imaging of cat V1

revealed coherent wave propagation that may underlie motion perception [26].

While systems of PDEs derived from various kinetic theories [16, 48, 49, 51, 52, 54, 55] are

not time consuming to solve, there is a general hope that we can construct a theory of emer-

gent network dynamics in terms of a few dominant, lower order models. Through a maximum

entropy voltage moment closure, our dimensional reduction highlights the reduced-dimen-

sional dynamics of the (subthreshold) membrane potential distribution and makes explicit its

effects on the dynamics of other neuronal populations. Mathematically, this reduction can be

applied to any one-dimensional density distribution. Therefore, we do not need the diffusion

approximation (FP equations) per se and can incorporate the effects of finite-size synapses [16,

53–56] and other cellular effects, e.g., adaption and short-term depression [7–9]. However, we

note that these moment equations simplify greatly in linear I&F networks (a case where all the

coefficients of the ODE system can be computed analytically from system parameters). Fur-

thermore, because of the time-scale separation between the fast AMPA and the slow NMDA

synapses, asymptotically we can treat the effects of the NMDA synapses as slow currents, keep-

ing our probability distribution function one-dimensional (see S2 Appendix).

In surveying the rich repertoire of cortical dynamics, a natural question arises: what con-

cise, unified characterization can capture the co-existence of diverse, heterogeneous dynamical

states in highly recurrent neuronal networks. It is believed that large-scale neuronal informa-

tion processing emerges from the interaction between the external input, individual neuronal

dynamics and cortical architecture. Many studies have been carried out to analyze the dynam-

ical effects of different types of mechanisms [43, 57, 58]. Here we showed how effective a sys-

tem of voltage moments can be used naturally to model various VSD imaging experiments.

Furthermore, our coarse-grained representations can be used to assess the importance of vari-

ous mechanisms and facilitate our understanding of the rich dynamic states within the mam-

malian brain. Future work will focus on the incorporation of higher-order network motifs,

which are responsible for higher-order correlations beyond the mean-field approximation,

and are likely to have important consequences for information processing.

Materials and methods

A large-scale V1 model

An integrate-and-fire neuronal network. We model individual V1 neurons (excitatory

and inhibitory) as current-based, linear, integrate-and-fire (I&F) point neurons, whose mem-

brane potentials evolve by

d
dt
VQ
j ¼ �

1

tV
ðVQ

j � VRÞ þ I
QY
j þ I

QE
j � I

QI
j ; ð1Þ

where the superscript Q2{E,I} represents the type (excitatory or inhibitory) of each neuron,

the subscript j indexes the spatial location of the neuron within the V1 network, and τV = 20

ms is the leakage timescale of the membrane potential. We normalize the membrane potentials
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VQ
j by setting the spiking voltage threshold VT = 1 and the rest (leak) potential VR = 0. In I&F

dynamics, the voltage VQ
j evolves continuously until it reaches a threshold VT after which it is

immediately reset to rest for an absolute refractory period (t = 2−3 ms). Individual neuron’s

VQ
j is driven by its synaptic currents, arising from feedforward input through the LGN (IQYj ),

and also from recurrent network activities of excitatory (IQEj ) and inhibitory populations (IQIj ).

The I&F neuron model has become a widely-used model for the description of spiking neu-

rons, because of its relative ease for mathematical analysis, and yet its dynamics is sufficiently

rich to capture diverse neural processing. The I&F model describes the membrane potential of

a neuron in terms of the synaptic current inputs it received, either from cortico-cortical recur-

rent interactions or from external injections. The various synaptic inputs are as follows:

The feedforward LGN input. Our modeling starts with the LGN module. The LGN cells

come in two polarities, “On-” and “Off-” cells, each V1 cell receives synaptic inputs from a col-

lection of both On- and Off-LGN cells, with these two types of LGNs segregated spatially into

2D Gabor-like patterns [13, 59, 60]. In the most detailed large-scale I&F model, we randomly

sample about Oð101Þ LGN cells within the 2D Gabor envelope and connect them to the same

V1 neuron. Nlgn LGN cells connected to the jth V1 neurons create a sequence of spikes at times

fTYi;kg, which is a Poisson process. Each spike causes a synaptic current of synaptic strength

SQY, so then the total external LGN input IQYj can be modeled as,

IQYj ¼ S
QY
XNlgn

i¼1

X

k

aextðt � T
Y
i;kÞ ¼ S

QY
XNlgn

i¼1

X

k

dðt � TYi;kÞ: ð2Þ

The temporal kernel αext is an α-function and models the time course of the synaptic current

induced by each LGN spike (each TYi;k) [60, 61]. In the following coarse-graining reduction, the

time scale of αext is assumed to be infinitely fast and model each spike as a delta function,

dðt � TYi;kÞ. (Here we are explicitly modeling phenomena slower than AMPA and GABA but

faster than NMDA time-scales.)

Our first coarse-graining approximation is to use continuous rate Zextj ðtÞ rather than dis-

crete Poisson spikes dðt � TYi;kÞ to describe the total external input into the jth V1 neuron arri-

ves from Nlgn LGN cells [13, 62], so we let

IQYj ¼ S
QY � Zextj ðtÞ: ð3Þ

According to different spatiotemporal patterns of visual stimuli, the continuous, time-depen-

dent rate of the Poisson process Zextj ðtÞ varies.

For the rotating drifting grating stimulus used in the first experiment, the visual stimulus is

an intensity pattern I(X,t) given by

IðX; tÞ ¼ I0½1þ � sinðk � X � ot þ φÞ�; ð4Þ

where φ describes the stimulus spatial phase and k = |k|(cosθt, sinθt) reflects the spatial fre-

quency and instantaneous orientation at time t. The response of each cell in the LGN module

can be modeled as a rectified, linear spatiotemporal convolution of the visual stimuli, where

spatial and temporal kernels are constrained by experiments[42, 59]. Then, following Shelley

& McLaughlin [61], the total, continuous current input into the jth cortical neuron is approxi-

mated by

Zextj ¼ C� 1þ
1

2
ð1þ cos2ðyj � ytÞÞsinðot � ðφj � φÞÞ

� �

; ð5Þ
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where θj reflects preferred orientation and φj the preferred phase of the jth cortical neuron.

Note that, in the large-scale I&F model, the index j labels single neuron, but in the coarse-

grained network model (see below), we assume the V1 neurons within one coarse-grained

patch are homogeneous, so the index j can also index each individual neurons in the jth homo-

geneous patch.

In our second experiment, transient On- and Off-visual stimuli were used to probe the

dynamics of the On- and Off-visual pathways. The On- and Off-visual pathways already

exhibit differences at the LGN [63–66], such as spatially segregated On- and Off- afferent cou-

plings from the RGCs, different response times of the On- and Off-visual pathways and so on.

Here we use an α-function to describe the total, temporal responses of a collection of LGN

cells to transient On- and Off-stimuli. So, the continuous, external current input under this

condition is

Z
ext;OnðOff Þ
j ðtÞ ¼

t
t2

1

exp �
t
t1

� �

�
t
t2

2

exp �
t
t2

� �

: ð6Þ

We use two sets of parameters ({τ1,τ2} in Eq (6)) for Z
ext;On
j and Z

ext;Off
j to model the On- and

Off-LGN feedforward time courses, respectively (Fig 1B).

Cortical Architecture. To study the dynamics of a patch of a layer of V1, we construct a

2-dimensional network with spatially structured synaptic connections, through which V1

excitatory and inhibitory neurons recurrently interact. These recurrent cortical connections

are represented by the third and fourth terms in Eq (1).

In our first experiment, a single orientation hypercolumn with multiple orientation

domains was modeled and only local cortical interactions (<500 μm) were included in the

simulations. Therefore, we regard the network as an idealized two-dimensional neuronal net-

work, with all-to-all, isotropic cortical connections. The strengths of these synaptic couplings

fall off as the spatial separation between two neurons [67–69].

In the more complicated, second experiment, we model a larger patch of V1, with a spatial

range of 2.5×1.5 mm2 and containing 5×3 orientation hypercolumns. On this scale, it is crucial

to include long-range synaptic connections in the model. The strengths of long-range

(>1000 μm) horizontal synaptic connections specifically depend on orientation preferences of

the pre- and post-synaptic neurons [38, 40, 41]:

IQEj ¼
X

j02E

X

k

SQEfastK
QE
AMPAðjcj � cj0 jÞaAMPAðt � TEj0 ;kÞ

þ
X

j02E

X

k

SQEslowK
QE
NMDAðjcj � cj0 jÞaNMDAðt � TEj0 ;kÞ;

ð7Þ

IQIj ¼
X

j02I

X

k

SQIfastK
QI
GABAðjcj � cj0 jÞaGABAðt � T

I
j0 ;kÞ; ð8Þ

where the excitatory and inhibitory synaptic currents have the form (Eqs 7 and 8), where Q2
{E,I}. Here TE=Ij0;k denotes the time of the kth spike of the j0th excitatory/ inhibitory neuron. We

include slow NMDA synaptic currents in addition to the fast excitatory synaptic currents

mediated by AMPA and the fast inhibitory synaptic currents mediated by GABA [1, 38, 39, 41,

46]. The normalized spatial profile of the cortical coupling strengths (KQQ
0

(d)), i.e., both short-

range local connections and long-range horizontal connections, are modeled as normalized

2D Gaussian functions (Eq (9)) of the cortical distance between two neurons (or two coarse-

graining populations) d ¼ jcj � cj0j: L
QQ0
P denotes the spatial length-scale of the corresponding
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type of connections. The spatial kernels are normalized by AQQ0P , as described in previous stud-

ies [67, 70]

KQQ0
P ðdÞ ¼ A

QQ0
P exp �

d2

ðLQQ0P Þ
2

 !

: ð9Þ

Time courses due to individual spikes at the time {Tj0,k} of the cortical recurrent input can be

expressed in the form of alpha functions,

aPðtÞ ¼ AmaxB exp
� ðt � Tj0;kÞ

t1

� �

� exp
� ðt � Tj0 ;kÞ

t2

� �� �

; ð10Þ

B ¼
t2

t1

� �tr=t1

�
t2

t1

� �tr=t2
 !� 1

; ð11Þ

where αP(t), P2{AMPA, NMDA, GABA}, τ1>τ2 and B is a normalization factor that assures

the peak value Amax, with a different rise- (τr = τ1τ2/(τ1−τ2)) and decay- (τd = τ1) time con-

stants (Eqs 10 and 11). In our theoretical model below, we model the synaptic time courses of

fast excitatory (AMPA) and inhibitory (GABA) synapses with an instantaneous rise-time and

an infinitely fast decay-time. Therefore, once a cortical neuron fires, the fast synaptic cortical

currents create an instantaneous jump in the membrane potential of the post-synaptic neuron.

We model the effect of the slow NMDA-type current with nearly instantaneous rise-time

tEr;NMDA � 2 ms and a decay-time tEd;NMDA � 80 � 130 ms. Thus, the recurrent, cortical synaptic

inputs are given by

IQEj ¼ I
QE
j;fast þ I

QE
j;slow; ð12Þ

IQEj;fast ¼
X

j02E

X

k

SQEfastK
QE
AMPAðjcj � cj0 jÞdðt � T

E
j0 ;kÞ; ð13Þ

IQEj;slow ¼
X

j02E

X

k

SQEslowK
QE
NMDAðjcj � cj0 jÞaNMDAðt � T

E
j0 ;kÞ; ð14Þ

IQIj;fast ¼
X

j02I

X

k

SQIfastK
QI
GABAðjcj � cj0 jÞdðt � T

I
j0 ;kÞ: ð15Þ

Fast/slow excitatory recurrent synaptic strengths associated with excitatory- and inhibitory-

type postsynaptic neurons are SEEfast=slow and SIEfast=slow, respectively. Similarly, the fast-inhibitory

synaptic strengths associated with excitatory- and inhibitory-type postsynaptic neurons are

represented by SEIfast and SIIfast. Because all spatial kernels are normalized, these parameters label

the strengths and relationships of synaptic couplings.

Thus, our model is an idealization of the experimentally observed connectivities of a V1

layer, the strengths and spatiotemporal properties of the synaptic connections depend on the

neuronal types, on orientation preferences, and whether they lie in the same orientation

hypercolumn.

A coarse-grained neuronal network. Intensive studies have suggested that cortical func-

tional maps, such as orientation pinwheel structure, phase preference, spatial frequency prefer-

ence, are arranged in regular, organized spatial patterns across visual cortex. Therefore, we

partitioned the 2D cortical network into small patches, each of which is large enough to
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contain a large number of neurons, but still small enough to ensure that functional (i.e., physi-

ological) properties, like orientation preferences, are roughly constant within one single patch.

Specifically, in the first experiment, only one hypercolumn was simulated to model the cor-

tical responses to rotating drifting-grating. In the primary visual cortex, the cortical responses

of cells show sensitivity to orientation through elevated firing rates, and the spatial phases,

which depend on the position of the grating stimulus. Orientation preference is arranged in

pinwheel while spatial phase preference is distributed randomly. To ensure neuronal popula-

tions contain disordered, well-sampled preferred spatial phases, we designed 4 similar cortical

patches covering every single hypercolumn, but with different preferred spatial phases (0˚, 90˚,

180˚, 270˚) (see Fig 1). Each hypercolumn has regular pinwheel-structured orientation map

and further coarse-grained (CG) into 6×6 CG patches. Individual CG patch with a particular

preferred spatial phase consists of 58 neurons, these neurons located in clusters and held simi-

lar orientation preference. Furthermore, single hypercolumn simulated in this model sug-

gested that only local cortical interactions (<500 μm) were included in the model, and these

interactions were all-to-all connected and assumed to be isotropic.

In the second experiment, a larger cortical area comprising many hypercolumns, was mod-

eled. Thus, the synaptic connections of this simulating model consisted of isotropic short-

range connections and long-range horizontal synaptic connections, which were known to

depend on orientation preference. In order to capture the population dynamics of this large

cortical area and emphasize the significant role of long-range orientation-dependent connec-

tions, we structured our model, to divide each hypercolumn into 4×4 CG patches. According

to their positions in the pinwheel-structured orientation map, these CG patches belonged to 4

different orientation clusters. In addition to local isotropic short-range connections similar to

those in the first experiment, long-range horizontal connections across different hypercol-

umns were also considered. In summary, this model had 5×3 hypercolumns, each of which

further divided into 4×4 CG patches. The specific space-time settings of population dynamic

framework studied in this work, are shown in Fig 1.

Coarse-grained network model. Once the full I&F model network configuration is set

up, we can start to coarse-grain. As it is commonly used in population density methods, we

consider two biophysically relevant mesoscopic quantities–the firing-rate and the distribution

of neuronal membrane potentials.

The voltage distribution rQj ðv; tÞ of finding a neuron whose membrane potential is in volt-

age bin (v,v+dv) at time point t within a given ensemble (labeled by j and Q), is governed by a

Master equation:

drQj ðv; tÞ
dt

¼ gL@v v � VR �
IQEj;slowðtÞ
gL

 !

rQj ðv; tÞ

" #

þ ZQj rQj ðv � f
Q
j ; tÞ � r

Q
j ðv; tÞ

h i

þ NE

X

i

mE
i ðtÞ½r

Q
j ðv � S

QE
fastK

QE
fastðjcj � cijÞ; tÞ � r

Q
j ðv; tÞ�

þ NI

X

i

mI
iðtÞ½r

Q
j ðvþ S

QI
fastK

QI
fastðjcj � cijÞ; tÞ � r

Q
j ðv; tÞ�;

ð16Þ

wheremE/I(t) is the excitatory and inhibitory population-averaged mean firing rate of each

neuron as a function of time. Note that this equation has already related the two relevant meso-

scopic quantities, firing rate and distribution of membrane potential.

We first focus on the evolution of voltage probability distribution induced by various syn-

aptic inputs. Therefore, we define the probability flux JQj ½r
Q
j ðv; tÞ�, which, conventionally, rep-

resents the probability crossing a voltage point v at time point t. In the Master equation Eq
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(16), there are one type of streaming flux due to the relaxation dynamics and another type of

spike-driven flux induced by voltage jumps once receiving an input spike. Various researchers

have utilized the Master equation combining with the probability flux to analytically or numer-

ically solve the evolution of voltage probability density and treat the network dynamics (e.g.,

[16, 50, 55, 56]).

For further simplification and theoretical analysis, we try to do some rational approxima-

tions. We assume that the voltage jumps due to the external Poisson spikes as well as the recur-

rent network spikes are small, so the Master equation Eq (16) can be approximated by a

standard Fokker-Planck type equation

drQj ðv; tÞ
dt

þ gL@vJ
Q
j ½r

Q
j ðv; tÞ� ¼ 0; for v 2 ½VR;VTÞ; ð17Þ

where the probability flux JQj ½r
Q
j ðv; tÞ� is of a simpler form,

JQj ½r
Q
j ðv; tÞ� ¼ � ðv � m

Q
j Þr

Q
j ðv; tÞ �

ðsQj Þ
2

2
@vr

Q
j ðv; tÞ; ð18Þ

with drift and diffusion terms. The drift and diffusion coefficients mQj (also called slaving-volt-

age) and sQj depend on the spatiotemporal network couplings as well as cortical activitiesmE=I
i ,

and can be written as

mQj ¼ ðVRgL þ f
Q
j Z

Q
j þ NES

QE
fast

X

i

KQE
fastðjcj � cijÞmE

i

� NIS
QI
fast

X

i

KQI
fastðjcj � cijÞmI

i þ I
QE
j;slowÞ=gL;

ð19Þ

ðsQj Þ
2
¼ ððf Qj Þ

2
ZQj þ NE

X

i

ðSQEfastK
QE
fastðjcj � cijÞÞ

2mE
i

þNI
X

i

ðSQIfastK
QI
fastðjcj � cijÞÞ

2mI
iÞ=gL:

ð20Þ

The detailed derivations are in S1 Appendix, and some relevant references can be found in [16,

19, 51, 52, 71].

Now we discuss the boundary conditions. Note that rQj ðv; tÞ ¼ 0 when (v!−1) and the

neuron can only fire by receiving an excitatory spike and cannot stream up to cross the voltage

threshold. A negative flux at threshold VT is impossible and it can only reset once it arrives at

the voltage threshold. Therefore, we have boundary conditions

rQj ðVT; tÞ ¼ r
Q
j ð� 1; tÞ ¼ 0: ð21Þ

We then consider a transient reset dynamics of the I&F type neurons in our model. Once the

voltage crosses the voltage threshold VT, it immediately resets to rest voltage VR without any

refractory-period. Therefore, to ensure the continuity of voltage distribution, we have

JQj ½r
Q
j ðVT; tÞ� ¼ J

Q
j ½r

Q
j ðV

þ

R ; tÞ� � J
Q
j ½r

Q
j ðV

�

R ; tÞ�: ð22Þ

One of the most important statistical characterizations of neuronal networks is the firing

rate, which reflects the suprathreshold network dynamics. The firing ratemQ
j ðtÞ is related to
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the probability through the spiking threshold, which is given by

mQ
j ðtÞ ¼ gLJ

Q
j ½r

Q
j ðVT; tÞ� ¼ �

gLðs
Q
j Þ

2

2
@vr

Q
j ðVT; tÞ ð23Þ

under the boundary condition rQj ðVT; tÞ ¼ 0. Thus, using the continuity of the voltage proba-

bility distribution Eq (22), we then have

JQj ½r
Q
j ðV

þ

R ; tÞ� � J
Q
j ½r

Q
j ðV

�

R ; tÞ� ¼
mQ
j ðtÞ
gL

: ð24Þ

In the evolution of this system, we can determine the firing ratemQ
j ðtÞ via Eq (23) once we

know the solution of the full probability distribution function rQj ðv; tÞ. However, (Eqs 17–20)

show that the voltage probability distribution function is specified with mQj and sQj , which are,

in turn, functions of the firing ratemQ
i ðtÞ. Therefore, Eq (17) is a nonlinear partial differential

equation.

As we showed previously, further dimensional reduction can be achieved [27].

First, let us define the kth-order voltage moments w
Q;k
j ðtÞ of rQj ðv; tÞ by:

wQ;kj ðtÞ ¼
Z VT

� 1

vkrQj ðv; tÞdv: ð25Þ

According the definition Eq (25) of the voltage moments, multiplying vk by both sides of the

original Fokker-Planck equation Eq (17), and taking integration by part over interval (−1,

VT), we then have that the voltage moments w
Q;k
j ðtÞ evolve over time as

d
dt
wQ;kj ðtÞ ¼ � m

Q
j ðtÞ � gL½w

Q;k
j � m

Q
j � for k ¼ 1; ð26Þ

d
dt
wQ;kj ðtÞ ¼ � m

Q
j ðtÞV

k
T � kgL w

Q;k
j � m

Q
j w

Q;k� 1

j �
k � 1

2
ðsQj Þ

2
wQ;k� 2

j

� �

for k > 1: ð27Þ

The evolution of the ODE system (Eqs 26 and 27) depends on mQj ; s
Q
j and the firing rate

mQ
j ðtÞ, but does not explicitly depend on the higher-order moments. Noting that the computa-

tion of the firing rate from Eq (23) requires the information of full voltage probability rQj ðv; tÞ.
And the rQj ðv; tÞ cannot be determined exactly by the full-moments, hence we say the ODE

system (Eqs 26 and 27) is not closed. To close the system of ODEs, we now use a maximum-

entropy solution to approximate rQj ðv; tÞ (more details are given in S4 Appendix). For com-

pleteness, we briefly review the basic idea of the maximum-entropy formulation as follows.

For the given a finite set of moments fw
Q;k
j ðtÞg; k ¼ 1; 2; . . . ;M and the terms mQj and sQj

on the right-hand-side of ODEs (Eqs 26 and 27), there are many possible voltage distributions

rQj ðv; tÞ which are compatible with the entire information we have in, i.e., fw
Q;k
j ðtÞg; m

Q
j and

sQj . From amongst all possibilities, we choose the one that lies closest to the equilibrium solu-

tion rQj;EqðvÞ that the system would adopt. The derivation of the equilibrium solution rQj;EqðvÞ
for given mQj and sQj is in S3 Appendix.

To determine how ‘close’ any particular voltage distribution rQj ðv; tÞ is to the stationary

solution rQj;EqðvÞ, we turn to the dynamics of Eq (17). If we were to assume that mQj and sQj were

fixed, we have the equilibrium solution of Eq (17), given in Eq.(C.3) in S3 Appendix. More spe-

cifically, we can reconstruct the ‘most likely’ underlying distribution rQj ðv; tÞ by maximizing
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the entropy:

maximize HðrQj Þ ¼ �
Z VT

� 1

rQj ðv; tÞlog
rQj ðv; tÞ
rQj;EqðvÞ

 !

dv;

subject to wQ;kj ðtÞ ¼
Z VT

� 1

vkrQj ðv; tÞdv: ð28Þ

Set λQ
j ¼ ½l

Q
j;0; l

Q
j;1; . . . ; l

Q
j;M�

t
to be a set of Lagrange multipliers for the jth population, corre-

sponding toM-order moments. The solution to the optimization problem described by Eq

(28) can be written as

rQj ðv; tÞ ¼ r
Q
j;EqðvÞexpð

XM

k¼0

l
Q
j;kv

k � 1Þ; ð29Þ

which is the most probable voltage distribution we need. Thus, from Eq (23), we can use

rQj ðv; tÞ to calculate the firing ratemQ
j ðtÞ at time t by

mQ
j ðtÞ ¼ �

gLðs
Q
j Þ

2

2
@vr

Q
j ðVT; tÞ ¼

gLs
Q
j

2C
expð

XM

k¼0

l
Q
j;kV

k
T � 1Þ; ð30Þ

where C is the normalization factor.

Combining with Eq (30), the ODE system (Eqs 26 and 27) has a closure with the maximum

entropy principle. This ODE system is also called by an augmented ODE system in the previ-

ous works [19, 27, 71]. We found that in the simulations performed here, good performance

can be achieved with only 4 augmented variables fw
E;1
j ðtÞ; w

E;2
j ðtÞ; w

I;1
j ðtÞ; w

I;2
j ðtÞg for each CG

patch.

Parameter calibration. First, we choose the strength of external, feedforward input (i.e.,

LGN input) based on observations under a single square stimulus. Single darkening/brighten-

ing stimulus generates moderate population activity (i.e., subthreshold membrane potential

and suprathreshold firing-rate), we specifically change the external driving strength SQY so

that the voltage component generated by the external input is greater than the voltage thresh-

old, which means that the external input can trigger population firing event in the directly

stimulated regions at the initial stage. This initial population firing event is one of the condi-

tions for the succeeding isotropically spreading activity. Second, we choose a larger strength

for excitatory local connection than inhibitory one, to ensure the local spreading (recruit-

ment). Furthermore, based on the observed differences in the initial time of the responses to

On-/Off-stimulus, we select different time parameters {τ1,τ2} (Eq (5)) to model the different

feedforward time kernels of the On-/Off-visual pathways.

Considering experimentally observed VSD data under visual stimulus with more complex

spatiotemporal structure, i.e., counterchanging On-/Off-stimulus, Hikosaka LMI stimulus, the

propagating wavelike population activity pattern suggests the critical role of long-range

NMDA-type synaptic connection [72, 73]. We then choose the strengths of the long-range

connections within our model, so that our simulation results could reproduce the traveling

wave population activity pattern, qualitatively matching the wave speeds in the experimental

data.
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S2 Appendix. B. Reduction process for the slow current Isi .
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S3 Appendix. C. Derivation of the stationary solution ρEq.
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S4 Appendix. D. Maximum Entropy approximation.
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S1 Additional Evidence. (Additional supporting evidence for the Results).
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S1 Fig. Response patterns of CG moment model under other stimulus paradigms and

using other parameter sets. (L, M) Moving square stimulus moving at another speed, (L)

visual input, which is identical to the previous one shown in Fig 5D except for a slower moving

speed, red line denotes this slower moving speed of about 20˚/sec, blue dash-line represents

the previous moving speed 32˚/sec, (M) membrane potential pattern of CG moment model. (I,

O) The first type drawn-out stimulus, stimulus is drawn out to full bar length at another speed,

(I) visual input, which is identical to the previous one shown in Fig 5G except for a slower

drawn-out speed, red line denotes this slower speed of about 20˚/sec, (O) membrane potential

pattern of CG moment model. (P, Q) Reversed drawn-out stimulus, (P) visual input, this stim-

ulus paradigm is the same as Hikosaka LMI in the initial time period, but after 60 ms, it initi-

ates from the right area and is drawn inward, (Q) membrane potential pattern of CG moment

model. (R, S) Hikosaka LMI paradigm stimulates CG moment model with very strong local

inhibition, (R) visual input (Hikosaka LMI stimulus paradigm), (S) membrane potential pat-

terns of CG moment model with strong local inhibition, the new local inhibitory connections

SQInew ¼ S
QI
old � 1E1� SQE. (T-V) Single bar stimulus, (T) visual input, (U) experimental VSD

images of cat primary visual cortex, (V) membrane potential pattern of CG moment model

(original).

(TIF)

S2 Fig. Another spatiotemporal diagram and more results of simulation responses under

different stimulus paradigms. (A) Response to Hikosaka LMI stimulus, the first line shows

spatiotemporal diagrams of population-averaged membrane potential of excitatory subpopula-

tion (left), inhibitory subpopulation (middle) and aggregated result (right), Left plot in the bot-

tom is time courses of population-averaged membrane potentials (same conventions as in the

bottom left plot of Fig 3F), right panel shows the wave position as a function of time (same

conventions as in the bottom middle and right plots of Fig 3F), the velocity is 0.042 = (1.91–

1.12)/ (109–90) (mm/ms). (B) Responses to moving square stimuli at three different speeds.

The first line shows spatiotemporal diagrams of population-averaged membrane potential

under moving square stimulus at a speed of 64˚/sec (left), 32˚/sec (middle, corresponding to

Fig 5D–5F), and 20˚/sec (right, corresponding to S1L Fig), the bottom plot summarizes the

temporal functions of wave position at a speed of 64˚/sec (black), 32˚/sec (blue), and 20˚/sec
(red), corresponding result under Hikosaka LMI (green dash-line) is plotted for comparison.

(C, D) Results under the first type drawn-out stimuli, (C) stimulus is drawn-out at a speed of

about 32˚/sec (corresponding to Fig 5G–5I), the velocity of traveling wave is 0.049 = (1.91–

1.12)/ (126–110) (mm/ms) (D) stimulus is drawn-out at a speed of about 20˚/sec
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(corresponding to S1I and S1O Fig), the velocity of traveling wave is 0.029 = (1.91–1.12)/

(149–122) (mm/ms). (E) Results under reversed drawn-out stimulus (corresponding to S1P

and S1Q Fig). (F) Results under Hikosaka LMI stimulus, using CG moment model with strong

inhibition (corresponding to S1R and S1S Fig). Detailed descriptions for each subplot in (C-F)

are in the same conventions as in (A). Color bar and spatial scales are in the same conventions

as in Fig 3F.

(TIF)
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