
sensors

Article

Assessment of Biomechanical Response to Fatigue through
Wearable Sensors in Semi-Professional Football Referees

Luigi Truppa 1,2,*, Michelangelo Guaitolini 1,2, Pietro Garofalo 3, Carlo Castagna 4,5 and Andrea Mannini 1,2,6

����������
�������

Citation: Truppa, L.; Guaitolini, M.;

Garofalo, P.; Castagna, C.; Mannini, A.

Assessment of Biomechanical Response

to Fatigue through Wearable Sensors

in Semi-Professional Football Referees.

Sensors 2021, 21, 66. https://dx.doi.

org/10.3390/s21010066

Received: 16 November 2020

Accepted: 21 December 2020

Published: 24 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 The BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
michelangelo.guaitolini@santannapisa.it (M.G.); a.mannini@santannapisa.it (A.M.)

2 Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
3 TuringSense EU Lab s.r.l., 47121 Forlì, Italy; pietro.garofalo@turingsense.com
4 School of Sport and Exercise Sciences, Università di Tor Vergata, 00118 Rome, Italy; castagnac@libero.it
5 Italian Football Federation (FIGC) Technical Department, Football Training and Biomechanics Laboratory,

50135 Firenze, Italy
6 IRCCS Fondazione don Carlo Gnocchi, 50143 Firenze, Italy
* Correspondence: luigi.truppa@santannapisa.it

Abstract: Quantifying muscle fatigue is a key aspect of everyday sport practice. A reliable and
objective solution that can fulfil this task would be deeply important for two main reasons: (i) it would
grant an objective indicator to adjust the daily training load for each player and (ii) it would provide
an innovative tool to reduce the risk of fatigue-related injuries. Available solutions for objectively
quantifying the fatigue level of fatigue can be invasive for the athlete; they could alter the performance
or they are not compatible with daily practice on the playground. Building on previous findings
that identified fatigue-related parameters in the kinematic of the counter-movement jump (CMJ),
this study evaluates the physical response to a fatigue protocol (i.e., Yo-Yo Intermittent Recovery
Test Level 1) in 16 football referees, by monitoring CMJ performance with wearable magneto-inertial
measurement units (MIMU). Nineteen kinematic parameters were selected as suitable indicators
for fatigue detection. The analysis of their variations allowed us to distinguish two opposites but
coherent responses to the fatigue protocol. Indeed, eight out of sixteen athletes showed reduced
performance (e.g., an effective fatigue condition), while the other eight athletes experienced an
improvement of the execution likely due to the so-called Post-Activation Potentiation. In both cases,
the above parameters were significantly influenced by the fatigue protocol (p < 0.05), confirming
their validity for fatigue monitoring. Interesting correlations between several kinematic parameters
and muscular mass were highlighted in the fatigued group. Finally, a “fatigue approximation index”
was proposed and validated as fatigue quantifier.

Keywords: fatigue detection; counter-movement jump; wearable inertial sensors; football; biomechanics

1. Introduction

Muscle response after a preload stimulus is the result of its adaptability. Indeed, mus-
cles are characterized by an intrinsic plasticity that allows them to conveniently calibrate
their force, endurance and contractile speed according to the effort they are subjected to.
This phenomenon is particularly evident in sport, where the specific adaptation of the
muscle tissue after consecutive training sessions allows the athlete’s performance to be
maximized [1] (i.e., improved jumps [2]). In addition to a long-term plasticity, the muscles
are able to perform a temporary adaptation during and after endurance exercises and
activities involving high speed and power (i.e., a football match) by recruiting an increased
number of higher order motor units [3]. This process is called Post-Activation Potentiation
(PAP), and it generally causes an increase in the low-frequency force exerted by the athlete
during an endurance exercise, but it can also increase the force at higher frequencies in
concentric versus isometric contractions (e.g., jumping, swimming and cycling) [4]. On the
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other hand, since muscles cannot rely on boundless sources of energy, they undergo a
process of fatigue, which goes against the positive effects of PAP. Indeed, fatigue is defined
as the inability to keep the athletic performance above a certain level as the result of an
excessive workload due a gradual loss of muscular force [5,6]. Therefore, total muscular
response during an endurance exercise is determined by the balance between these two
opposite but simultaneous phenomena [3]. Even though scientific literature assumes that
the above balance is affected by training experience, rest period length and intensity of the
conditioning exercise performed, the topic remains still open and ambiguous [3].

While Post-Activation Potentiation produces temporary benefits in the athlete’s per-
formance, fatigue could lead to severe muscle damages. According to Ekstrand et al.,
fatigue-related injuries constitute 31% of all injuries, causing more than 27% of total injury
absence in the club considered in their study [7]. Since muscle injuries tend to occur mostly
at the end of the two halves of a football match ([7,8]) and they are more frequent during
the matches than in training sessions [7], fatigue could be reasonably included among
the first causes of an increased risk of injury. Moreover, susceptibility to muscle strain
injury is greater during explosive ballistic actions (i.e., acceleration and deceleration during
sprinting) [8]. In this context, the prior recognition of fatigue could play a key role in
injuries prevention.

Several methods were used to quantify training load, such as questionnaires, diaries,
physiological monitoring and direct observation [9]. Questionnaires and diaries allow
data to be obtained by directly interviewing athletes (i.e., the session Rate of Perceived
Exertion [10]). They are easy to manage, cost effective and compatible with training,
but they are extremely subjective (as well as direct observations), thus limiting their
effectiveness. More objective methods could be physiological measures (i.e., heart rate,
oxygen consumption, lactate concentration, electromyography (EMG) and critical power),
but they strongly depend on environmental conditions, diurnal changes, hydration status,
altitude, age and medications [9]. In addition, even though measurement equipment
is becoming increasingly miniaturized, the physiological monitoring still remains not
very practical to carry out during training session. Moreover, surface EMG, which can
provide real time measurements, fails to give certain information about the nature of
muscle adjustments due to fatigue in vertical jump [11]. Another technique used in fatigue
monitoring is muscle biopsy, which is highly invasive, painful, time consuming and
expensive [12]. Alternatively, movement analysis based on various technologies (i.e., video-
based analysis systems, semiautomatic multiple camera systems and global positioning
systems) could be used [13], but it turns out to be time consuming and unfitting for daily
fatigue monitoring.

Previous works suggested the possibility to identify fatigue markers in a non-invasive
way by studying the athlete’s performance in counter-movement jump (CMJ), which is
a well-established practice in sports providing information on both the fatigue in the
athlete and his supercompensation due to a periodic training path [5,14–16]. Indeed,
several studies on professional athletes have shown that fatigue condition influences both
kinematics and performing strategy of the CMJ, inducing compensatory movements [17].
Starting from this, this work focused on the kinematic characterization of the eccentric
phase of the jump, in which muscles exert a greater force, and the alteration could be more
significant [18].

Specifically, the aim of this work is to study variations in human kinematic parameters
after a football-specific fatigue protocol (e.g., Yo-Yo Intermittent Recovery Test Level 1—
YYIR1) using wearable sensors and to analyse these variations so as to detect and quantify
the fatigue condition in athletes. In other terms, the main hypothesis of the present study
is that fatigue could alter kinematic parameters in semi-professional athletes during the
execution of a simple gesture, such as the Counter-Movement Jump, and that wearables
can be used to track their variation. In order to achieve this objective, a body sensor
network based on a magneto-inertial measurement unit (MIMU) was used. MIMUs and
wearables in general, in our view, are the key enabling technologies for an in-field fatigue
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assessment, which is extremely important in the daily practice of athletes and coaches.
MIMUs are very versatile, cheap and small in size sensors. They can be used in uncontrolled
environments too (enabling the possibility to test methods directly on the playground),
but they are characterized by a minor accuracy compared to optoelectronic methods. For
this reason, they require particular care with regard to computational strategies to extract
reliable information from them. Nevertheless, previous studies validated MIMUs for jump
kinematic analysis, proving that there is no statistical differences between the accuracy
of these units and that of an optoelectronic system in parameters extracted during this
specific gesture [19].

2. Materials and Methods
2.1. Subjects

Sixteen semi-professional male football referees (Sezione Associazione Italiana Ar-
bitri di Firenze, Firenze, Italy. Age: 22.9 ± 3.9 years, height: 179.9 ± 7.6 cm, weight:
75.3 ± 8.7 kg, years of previous training: 12.9 ± 4.9 years) were involved in testing. Ath-
letes, in accordance with the Helsinki protocol, signed an informed consent form and
filled out a questionnaire to take part in the tests. No subject had a record of cardiovascu-
lar/respiratory disease or evidence of neuromuscular diseases in the twelve months prior
this study. This study was approved by the Joint Ethics Committee of the Scuola Normale
Superiore and Scuola Superiore Sant’Anna (Approval no. 4/2020).

2.2. Experimental Procedures

The acquisition protocol was conducted in a controlled environment (e.g., Italian
Football Federation gymnasium in Coverciano, FI, Italy), and it consisted of the following
steps:

I. A 5 min warm-up phase of jogging on treadmill at fixed speed (i.e., 10 km/h);
II. Pre-fatigue acquisition, in which MIMUs were placed on the participant’s body

using elastic bands, and the athlete performed one series of 5 CMJs separated by a
10 s of rest time (at the end of this acquisition sensors were removed to facilitate
the following phase);

III. Fatigue phase induced in athletes by using the YYIR1 (which consisted of 2 × 20 m
shuttle runs at increasing speeds, with a 10 s period of active recovery, allowing us
to quantify the individual’s capacity to perform repeated intense exercise and to
examine changes in performance [20]);

IV. Post-fatigue acquisitions in which the same CMJ test conducted in the pre-fatigue
acquisition (i.e., 5 CMJs separated by a 10 s of rest time) was repeated after 5 min
from the end of fatigue exercises.

Pre- and post-fatigue parameters were estimated from the most similar four jumps
in terms of body centre of mass acceleration traces (by signals visual inspection) and then
averaged of the relative series. The pre-fatigue acquisitions were used as a baseline to
compare data from post-fatigue measurements. Data were acquired using a body sen-
sor network of four MIMUs (TuringSense, Santa Clara, CA, USA. Acquisition frequency:
100 Hz) laterally placed on the right foot, right thigh, right leg and pelvis (Figure 1). The
foot sensor was placed directly on the participants’ shoe. The right thigh and right leg
MIMUs were placed in the middle point of the corresponding body segment directly on the
skin. In order to limit the soft-skin and muscle contraction artifacts, these three sensors were
placed laterally with elastic bands solidly tied. Finally, the pelvis unit was placed in corre-
spondence to the fifth lumbar vertebrae using again an elastic band. MIMUs on the right
lower limb were aligned with the corresponding body segment by exploiting a preliminary
flex-extension movement [21] (i.e., functional calibration). This flex-extension movement
allowed us to define the horizontal axis of the sensor by measuring the mean outputs
of the gyroscopes and, then, to align it with the flex-extension axis of the corresponding
body segment. As concerns the vertical axis of the sensors, it was estimated as the gravity
vector measured during an N-pose and, then, aligned with the longitudinal axis of the
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corresponding body segment. Since most of CMJ outputs refer to the human body centre of
mass (COM), the pelvis sensor was placed in correspondence to the fifth lumbar vertebra
(L5), which represents a reasonable approximation of the human barycentre [14,22]. In
addition to the kinematic parameters, physiological and anthropometric parameters were
also measured (i.e., height, weight, blood lactate after fatigue induction) together with the
distance covered during the YYIR1. Moreover, muscular mass was evaluated by exploiting
James’ formula [23]. Given the existing variability among participants, the muscular mass
was calculated to investigate its possible correlations with the proposed set of kinematic
parameters. The blood lactate level was measured using the Accutrend Plus interferometer
(Roche, Basilea, Switzerland).

Figure 1. Magneto-inertial measurement units (MIMUs) placement sites.

2.3. Segmentation of the Jump

In order to estimate the correct acceleration of the body centre of mass, a preliminary
alignment of the sensor with the gravity vector was performed by using the quaternions
provided by the inertial unit located on the pelvis. After this initial alignment, gravity
was subtracted from the acceleration of the body centre of mass to obtain its inertial accel-
eration. All the above parameters were estimated starting from this inertial acceleration
and neglecting the influence of the gravity. This procedure allowed us to isolate only the
contribution of the countermovement to the COM kinematic parameters.

The typical trace of the body centre of mass inertial acceleration in the vertical direction
is shown in Figure 2: when the subject is still, his inertial acceleration is zero, then, when he
performs the counter-movement, the inertial acceleration starts to decrease (it is negative).
The eccentric phase of the jumps ends when the velocity of the centre of mass is zero
(the subject is loading the following boost phase), while the concentric phase of the jump
starts immediately after the eccentric one and ends when the feet rise from the ground.
To understand when the feet detach from the ground, the MIMU on the right foot is used.
Indeed, its acceleration is characterized by a peak when the foot takes off. Therefore, the
jump was segmented as follows on “Matlab” (Mathworks, Natick, MA, USA)

i. The start of the eccentric phase was identified by analysing the acceleration curve
and automatically finding when it goes below a specific threshold (i.e., mean +3
standard deviations of the first 100 samples);

ii. The end of the eccentric phase corresponds to the zero crossing of the velocity
(second red line in Figure 2);

iii. The end of the concentric jump coincides with the peak in the acceleration curve of
the foot sensor. The peak of the curve was automatically detected by finding the
maximum value of the acceleration.
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Figure 2. (a) Segmentation of the jump from acceleration and velocity of the body centre of mass. tecc and tconc are the
eccentric and concentric phases duration, respectively. The red dotted lines limit the eccentric phase of the jump, while
the black one delimits the concentric phase. (b) Acceleration traces of the right foot, which is characterized by a peak in
correspondence to the take off. The two negative peaks in the acceleration trace correspond to an extension movement of the
foot immediately after the take off and before the landing, respectively. In particular, the first movement is the consequence
of the boost phase that precedes the take-off, while the second one is an anticipatory movement carried out by the athlete
for better landing on the ground.

2.4. Measurements

Fifteen of the nineteen considered parameters were classified as COM kinematic, while
the remaining four as articular joint kinematic. The differentiation between the two kinds
of parameters was carried out by considering the equations used for determining the above
parameters: those coming from the integration/differentiation of the pelvis acceleration
(Table 1) were classified as “COM kinematic” because they do not refer directly to the
lower-limb joints analysis, while those obtained from the sensors quaternions (Equation (1))
were classified as “articular joint kinematic” because they refer directly to joint analysis
(i.e., joints angles and angular velocities).

In turn, the COM kinematic parameters could be divided into four main groups:

i. Displacement parameters: the mean displacement of the centre of mass during the ec-
centric phase (i.e., jump depth) is analysed in this work. In our opinion, monitoring
the mean position of the barycentre could be useful to understand how much the
athlete is loading the jump due to fatigue.

ii. Power and energy parameters: allow us to quantify the lower-limb explosive ability,
resulting in extremely important indicators for fatigue detection. An in-depth anal-
ysis of the scientific literature allowed us to find the following parameters [5,17,24]:
minimum and maximum relative power exerted, mean relative power over time,
mean power velocity (MPV), mean and minimum energy.

iii. Velocity parameters [17,24]: useful to understand how easily and quickly the athlete
performs the exercise. Minimum and mean velocity, velocity at negative power peak
(VNPP), velocity at positive power peak (VPPP) and area under the force-velocity
(AFV) curve were analysed.

iv. Time parameters [17,24]: allow us to pinpoint specific events in time during the
execution of the exercise (i.e., when the maximum power is exerted or how long
the athlete stays in contact with the ground). Therefore, negative power peak
time (NPPT), positive power peak time (PPPT) and the total duration of the entire
eccentric phase (tecc) were reported in this study.



Sensors 2021, 21, 66 6 of 15

Table 1. Main formulas for parameters estimation.

Physical Quantities MIMU

Measured quantity aINERTIAL = aMIMU − g

Velocity (v(t)) v(t) =
∫

aINERTIAL ∗ dt

Relative power ( P(t)
m )

m = mass
P(t)

m = aINERTIAL ∗ v(t)

Mean relative power over time (
(

P(t)
m

)
mean

)
m = mass (

P(t)
m )mean =

P(t)
m

tecc

Mean power velocity
(
vp
)

mean
(
vp
)

mean = mean( d
dt

P(t)
m )

Relative energy (
U(t)

m )
m = mass

U(t)
m =

∫ P(t)
m ∗ dt

Distance (x(t)) x(t) =
∫ ∫

aINERTIAL ∗ dt2

Angular velocities (wFE) wFE = d
dt θFE

TSI TSI =
∣∣∣ tconc−tecc

tconc+tecc

∣∣∣
Eccentric % %ecc =

∣∣∣ tecc
tconc+tecc

∣∣∣
MIMU = Magneto-Inertial Measurement Unit, TSI = temporal symmetry index.

Concerning articular joint kinematic parameters, since the main muscles involved in
vertical jumping are hip and knee flexors/extensors, the knee and hip mean flex-extension
angular velocities were considered. Similarly to velocity parameters, joint angular velocities
could quantify the effort encountered by the athlete during the exercise. In addition,
temporal symmetry index (TSI) and duration of the eccentric phase as a percentage of
the counter-movement total duration (Eccentric %) were included to monitor how the
temporal symmetry of the gesture (eccentric vs. concentric phase) is influenced by fatigue.
Although the abovementioned studies estimated the parameters for all the phases of the
jump (eccentric + concentric) [13,16], this work focuses on their variation only in the
eccentric phase, because it is more susceptible to fatigue and risk injury [25]. Furthermore,
as mentioned before, the COM kinematic parameters were estimated starting from the
inertial acceleration only (see Table 1) to extract the contribution of the countermovement,
neglecting the influence of gravity. This correction led to a different definition of the
relative eccentric power curve, which was estimated from the inertial acceleration only. The
difference between the commonly adopted power curve and the modified version proposed
here is shown in Figure 3. Removing the gravitational component introduces two “bumps”,
a negative and a positive one in the curve, with zero crossings in correspondence to the
points with either zero velocity or zero acceleration in the eccentric phase (see Figure 2a).

As previously mentioned, two categories of parameters were considered: COM kine-
matic, which refers to the centre of mass of the athlete’s body, and articular joint kinematic
(Table 1).

COM kinematic parameters were estimated by processing on “Matlab” (Mathworks,
Natick, MA, USA), the measurement of acceleration of the MIMU placed in correspondence
of the fifth lumbar vertebra using formulas reported in Table 1. As concerns the articular
joint kinematic parameters, output quaternions of the MIMUs were considered. Once the
orientations of each segment were defined, the quaternions associated to the lower limb
joints were estimated as the Hamilton product between the distal segment quaternion
and the conjugate of the proximal one (1). Finally, joint cardan angles were obtained from
the joint quaternion using the relations introduced in [26]. Joint angular velocities were
estimated as the temporal derivative of joint cardan angles.

qjoint = (qdistal)⊗ (qproximal)
−1 (1)
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Figure 3. Difference between relative eccentric power (in blue) and modified relative eccentric power
(in orange), from which the aforementioned parameters were estimated.

A preliminary comparison of modified power parameters before and after fatigue
induction allowed us to understand if the subject was either in the fatigue or in the PAP
group: participants who showed a reduction in the relative power exerted (symptom of a
decreased performance) were grouped as fatigued, while those that showed an increase in
the power exerted (e.g., improved performance) were grouped as potentiated (Figure 4).
Such grouping at a very early stage of the analysis allowed us to study separately the
two groups with opposite behaviour. Relative power was selected as the discriminatory
parameter because by definition it is calculated on two quantities that should be more
influenced by fatigue [27]: relative force and velocity (see Table 1). Indeed, we can notice
in Figure 4, which reports the power traces of a representative subject of each group, that
the differences between the power curves before and after the YYIR1 are evident, allowing
the classification of the two groups. Since one of the objectives of this study is also to
quantify the inducted fatigue, a “fatigue approximation index” (FAI) can be proposed by
the following definition:

FAI =
ppost

ppre
(2)

with:
ppre = Max powerpre −Min powerpre (3)

ppost = Max powerpost −Min powerpost (4)

where Max power and Min power are the power positive and negative peaks in the eccentric
phase of the jump, respectively (Figure 4). In other words, FAI could be interpreted as the
ratio between the range of the exerted power (lower-body explosive ability) before and
after fatigue induction.

After this initial partition, normalized differences (i.e., post − pre
pre ) in parameters before

and after fatigue induction were calculated. Once the non-normality distribution of the
parameters was verified by using the Kolmogorov–Smirnov test, the one-sample Wilcoxon
signed rank test was carried out on the normalized variations to verify their statistical
significance. Finally, the Cliff’s Delta (e.g., an effect size test for non-normal distributions)
was used to understand the relevance of fatigue influence on performance. The Spearman’s
correlation coefficient between FAI and the aforementioned normalized variations of
parameters in the fatigued group was calculated to verify if this index could be used as
fatigue quantifier. Indeed, the presence of a significant and relevant correlation could give
useful information on how the FAI is able to correctly represent the parameter variations
and, therefore, if it could be used for fatigue assessment ion behalf of the above-mentioned
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parameters. In order to find possible correlations between variations of the kinematic
parameters and physiological/anthropometric features, Spearman’s correlation coefficient
for non-normal distributions was used. The aforementioned tests were carried out with
the software “Matlab” (The Mathworks Inc., Natick, MA, USA) assuming a significance
threshold α = 0.05.

Figure 4. Power traces of a fatigued group (a) and Post-Activation Potentiation (PAP) group (b) participants.

3. Results

Preliminary analysis on power parameters showed that eight out of sixteen athletes
presumably underwent in a fatigue condition after the YYIR1, while the remaining partici-
pants presumably underwent performance potentiation (PAP). For all the tested parameters
in both groups, the Kolmogorov–Smirnov test rejected the null hypothesis that they came
from a standard normal distribution for all the sixteen participants. The effects of the YYIR1
test on the two groups (e.g., fatigue group and PAP group) is reported separately in the
text below.

3.1. Fatigue Group

Eight out of sixteen athletes showed a reduction in the jump performance. In terms of
parameter variations, the execution of a heavy conditioning exercise caused a reduction in
counter-movement velocity, exerted power, released energy and articular joint velocities
and an increase in execution and contact times (Table 2, Figure 5) as a result. In other
words, the athlete was slower and weaker after the YYIR1. All the above parameters had
statistically significant variations (p < 0.05). According to Cliff’s Delta test, a heavy exercise
had generally medium effects (M) on kinematic parameters. Parameter variations are
reported in Table 2, together with the FAI Spearman’s correlation coefficient (Figure 6).
As stated before, the power parameter variations were wider than in other parameters:
a mean absolute normalized variation of 20.5% was detected. Finally, the correlation
coefficients resulting from our analysis between anthropometric and kinematic parameters
are reported in Table 3. Furthermore, no significant correlations between blood lactate level
and kinematic parameters were detected.
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Figure 5. Normalized variations for all the parameters of the fatigued group. MPV = mean power velocity, VNPP = velocity
at negative power peak, VPPP = velocity at positive power peak, AFV = area under the force-velocity curve, NPPT = negative
power peak time, PPPT = positive power peak time, TSI = temporal symmetry index.

Table 2. Kinematic parameters (fatigued group).

Parameters
PRE POST Wilcoxon Signed

Rank Test
Significance

Normalized
Variations (%)

FAI
Spearman
Coefficient

Cliff’s
Delta ES

Median (iqr) Median (iqr) Median (iqr)

Mean distance (m) −1.85 (0.54) −1.76 (0.46) 0.04 * −4.27 (4.80) 0.12 0.19 (T↓)

Minimum power
(
W·kg−1) −4.92 (5.42) −3.33 (3.30) <0.01 ** −34.4 (19.76) 0.98 ** 0.38 (M↓)

Maximum power
(
W·kg−1) 5.42 (5.85) 3.84 (4.56) <0.01 ** −26.4 (28.8) 0.93 ** −0.34 (M↓)

Mean power over time
(
W·s−1) 0.26 (0.62) 0.15 (0.34) <0.01 ** −29.8 (38.2) 0.90 ** −0.38 (M↓)

MPV
(
W ·s−1) −28.3 (39.0) −15.5 (21.4) <0.01 ** −44.3 (28.0) 0.86 ** 0.47 (M↓)

Mean energy (J·kg−1) −3.57 (0.62) −2.93 (0.74) <0.01 ** −21.9 (18.3) 0.98 ** 0.37 (M↓)
Minimum energy (J·kg−1) −7.88 (5.12) −5.97 (5.00) <0.01 ** −22.1 (19.1) 0.95 ** 0.34 (M↓)

Minimum velocity
(
m·s−1) −1.24 (0.18) −1.08 (0.44) <0.01 ** −12.7 (11.3) 0.95 ** 0.34 (M↓)

Mean velocity
(
m·s−1) −0.70 (0.16) −0.64 (0.22) <0.01 ** −11.1 (9.84) 0.98 ** 0.44 (M↓)

VNPP
(
m·s−1) −0.91 (0.38) −0.82 (0.36) <0.01 ** −8.37 (14.7) 0.74 * 0.28 (S↓)

VPPP
(
m·s−1) −0.82 (0.38) −0.64 (0.34) <0.01 ** −17.2 (12.9) 0.95 ** 0.31 (M↓)

AFV
(
N·m·s−1·kg−1) −15.00

(15.9)
−10.10
(11.4) <0.01 ** −26.0 (27.2) 0.90 ** 0.34 (M↓)

NPPT (ms) 20.25 (5.44) 23.25 (3.38) 0.04 * 14.2 (19.98) −0.19 0.5 (L↑)
PPPT (ms) 47.75 (15.8) 57.75 (15.9) <0.01 ** 9.53 (14.4) −0.88 ** 0.25 (S↑)

tecc (ms) 55.00 (15.8) 60.00 (16.1) <0.01 ** 7.32 (17.8) −0.98 ** 0.28 (S↑)

Knee mean angular velocity
(deg/s) 113.9 (31.8) 107.8 (29.2) 0.02 * −7.23 (9.20) 0.79 * −0.39 (M↓)

Hip mean angular velocity
(deg/s) 114.7 (56.2) 101.9 (28.2) 0.02 * −16.2 (13.2) 0.21 −0.55 (L↓)

TSI 0.419 (0.10) 0.488 (0.18) 0.02 * 6.04 (18.5) −0.57 0.43 (M↑)
Eccentric % 0.711 (0.04) 0.744 (0.08) 0.02 * 1.51 (5.04) −0.43 0.43 (M↑)

* = p < 0.05, ** = p < 0.01, iqr = interquartile range, ES = effect size, T = trivial, S = small, M = moderate, L = large. FAI = fatigue approximation
index, MPV = mean power velocity, VNPP = velocity at negative power peak, VPPP = velocity at positive power peak, AFV = area under
the force-velocity curve, NPPT = negative power peak time, PPPT = positive power peak time, TSI = temporal symmetry index.
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Table 3. Correlations between centre of mass (COM) kinematic parameters and anthropometric ones.

Parameters Weight Muscular Mass

Maximum power - 0.83 *

Minimum energy 0.79 * 0.88 **

Minimum velocity 0.79 * 0.88 **

VPPP - 0.82 *

VNPP 0.86 * 0.83 **
* = p < 0.05, ** = p < 0.01. VNPP = velocity at negative power peak, VPPP = velocity at positive power peak.

Figure 6. Correlation between fatigue approximation index (FAI) and parameter variations.

3.2. PAP Group

The remaining eight participants were characterized by a potentiation. The increase
in counter-movement velocity, exerted power, released energy and articular joint veloc-
ities and the decrease in execution and contact times were registered (Table 4, Figure 7).
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Therefore, muscle activation was stronger and faster after the exercise. Here again, all the
parameters had statistically significant variations (p < 0.05), validating them as indicative
factors for performance monitoring, while Cliff’s Delta test revealed generally large effects
(L) on kinematic parameters. A mean absolute normalized variation of 34.4% was regis-
tered. No significant correlations were observed between anthropometric parameters and
kinematic parameters.

Table 4. Kinematic parameters (PAP group).

Parameters
PRE POST Wilcoxon Signed

Rank Test
Significance

Normalized
Variations (%) Cliff’s

Delta ES
Median (iqr) Median (iqr) Median (iqr)

Mean distance (m) −1.27 (0.30) −1.31 (0.32) 0.08 7.98 (13.8) −0.19 (T↑)

Minimum power (W) −2.77 (1.38) −4.34 (1.96) <0.01 ** 66.4 (52.6) −0.78 (L↑))
Maximum power (W) 3.47 (1.26) 4.66 (1.74) <0.01 ** 36.3 (44.2) 0.72 (L↑)

Mean power over time
(
W·dt−1) 0.16 (0.08) 0.34 (0.20) <0.01 ** 94.8 (57.0) 0.72 (L↑)

MPV
(
W·dt−1) −14.37 (6.80) −28.83 (14.0) <0.01 ** 91.6 (56.6) −0.81 (L↑)

Mean energy (J) −2.02 (0.66) −2.49 (0.378) <0.01 ** 39.4 (42.6) −0.62 (L↑)
Minimum energy (J) −4.36 (1.62) −5.43 (1.76) <0.01 ** 37.8 (50.4) −0.59 (L↑)

Minimum velocity
(
m·s−1) −0.92 (0.18) −1.03 (0.16) <0.01 ** 16.9 (20.8) −0.59 (L↑)

Mean velocity
(
m·s−1) −0.54 (0.08) −0.58 (0.10) <0.01 ** 16.2 (14.9) −0.69 (L↑)

VNPP
(
m·s−1) −0.71 (0.16) −0.78 (0.12) <0.01 ** 13.9 (28.8) −0.58 (L↑)

VPPP
(
m·s−1) −0.60 (0.14) −0.67 (0.16) <0.01 ** 18.5 (42.0) −0.63 (L↑)

AFV
(
N·m·s−1) −9.55 (3.06) −13.13 (4.64) <0.01 ** 43.6 (52.2) −0.84 (L↑)

NPPT (ms) 20.38 (3.76) 17.38 (4.50) 0.02 * −17.0 (11.1) −0.56 (L↓)
PPPT (ms) 44.50 (6.76) 38.88 (11.0) <0.01 ** −12.9 (9.96) −0.40 (M↓)

tecc (ms) 50.88 (0.08) 45.25 (10.0) <0.01 ** −9.92 (5.66) −0.34 (M↓)

Knee mean angular velocity (◦/sec) 108.5 (20.5) 124.6 (29.6) <0.01 ** 27.1 (33.4) 0.81 (L↑)
Hip mean angular velocity (◦/sec) 108.7 (22.8) 131.8 (38.4) <0.01 ** 27.0 (27.2) 0.68 (L↑)

TSI 0.486 (0.08) 0.407 (0.12) <0.01 ** −14.5 (15.6) −0.50 (L↓)
Eccentric % 0.743 (0.04) 0.691 (0.80) <0.01 ** −5.48 (5.54) −0.56 (L↑)

* = p < 0.05, ** = p <0.01, iqr = interquartile range, ES = effect size, T = trivial, S = small, M = moderate, L = large. PAP = post-activation
potentiation, FAI = fatigue approximation index, MPV = mean power velocity, VNPP = velocity at negative power peak, VPPP = velocity at
positive power peak, AFV = area under the force-velocity curve, NPPT = negative power peak time, PPPT = positive power peak time,
TSI = temporal symmetry index.

Figure 7. Normalized variations for all the parameters of the PAP group.
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4. Discussion and Conclusions

The comparison of the values of nineteen kinematic parameters before and after a
football-specific fatigue protocol (e.g., YYIR1) confirmed our hypothesis. The Wilcoxon
signed rank verified that all the parameters were significantly influenced by the execution
of heavy exercise, suggesting that they can be used in a fatigue monitoring solution
based on wearable sensors. As mentioned in the Introduction section, two opposites but
coherent responses to the fatigue protocol were distinguished. Such differentiation is in
accordance with the scientific literature, in which the muscular response is modelled as
the contrast between fatigue and potentiation [3]. Therefore, this method successfully
allowed us to understand if the athlete was under the positive effect of PAP (e.g., better
performance and increased effort tolerance) or under the negative influence of fatigue
(e.g., increased risk injury) by only exploiting four wearable sensor (MIMU) and a simple
jump test (CMJ). These results are in accordance with those found by Picerno et al. [14],
which also validated the Magneto-Inertial technology for vertical jump monitoring. In
addition, MIMUs was also used by Chan et al. to detect fatigue conditions by analysing
ten kinematic variables of the spine [28] from two inertial units. Similarly to our study,
they proposed an index based on the aforementioned ten kinematic variables (Spine
Motion Composite Index-SMCI) for spine motion analysis after a fatigue protocol. They
found strong correlations between SMCI and objective fatigue measures, showing that
MIMUs were a reliable support technology for the detection of variation in spine motion
due to muscle fatigue. The same result (i.e., MIMUs as reliable technology for fatigue
monitoring in vertical jump) were found in this study as concerns the lower limb, although
the correlation with a more objective method (i.e., surface electromyography (sEMG)) is
required to validate the FAI as an actual reliable index. Rodacki et al. [11] mainly exploited
force plates and electromyography to assess the performance in the vertical jump. They
found that peak joint angular velocity, peak joint net moment, and power around the knee
were reduced and occurred earlier in comparison with the non-fatigued jumps. In addition,
the electromyographic data indicated that the countermovement jumps were performed
similarly, so no compensatory movements occurred. sEMG was exploited also by Rahnama
et al. [29] to estimate fatigue in athletes after a soccer-specific exercise. It was found that
the Root Mean Square (RMS) values of the EMG signals after the fatigue protocol were
significantly lower for most of the main lower limb muscles (i.e., rectus femoris, tibialis
anterior and biceps femoris). These results confirmed the hypothesis that fatigue induced
a reduction in the muscle activation and, therefore, in the exerted force. Nevertheless,
considering our specific testing scenario, in which an exhaustive fatigue exercise was
proposed, sweat artifacts on EMG data would significantly alter the signal [30], making
it impossible to determine if the change in the signal is due to a sweat-related change
in electrodes impedance. Among all the above-mentioned studies, Gathercole et al. [17]
found variations in the parameters similar to those we found in this work. Similarly to us,
they studied the variations in the vertical jump performance in snowboard cross athletes
using different technologies, such as a ballistic measurement system, force plates and
position transducers. They found that an acute fatigue protocol caused a reduction in the
exerted force and an increase in the duration of the jump. We assessed similar results
using wearable MIMUs. Indeed, as expected, fatigued athletes showed a reduction in the
lower-body explosive ability [24,31], which causes a decreased exerted power, velocity
and released energy and increased executions times. In addition, the decrease in joint
angular velocities and the resulting increment of the TSI suggest that the athlete is not able
to maintain the gesture symmetry due to muscular fatigue. Indeed, the greater duration of
the eccentric phase suggests that the athlete requires more time for loading the jump. This
phenomenon could be explained by the fact that the fatigue process did not allow us to fully
exploit the muscle contraction and, therefore, muscles were not able to take advantage of
the elastic force generated by the eccentric movements. Significant correlations were found
between muscular mass or weight and the variation of several parameters. Since these
correlations involve mainly velocity and power parameters, we can assert that athletes with
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greater muscular mass lose more of their ability to generate power and maintain higher
velocities than those with less lean mass. Unfortunately, no significant correlations between
COM kinematic/articular joint kinematic parameters and blood lactate were found, even if
all the measured blood lactate levels fall into the normal concentrations range of a football
match [32]. The possible reasons of this inconsistency could be that YYIR1 led to a maximal
activation of the aerobic system, overshadowing the contribute of the anaerobic system
in energy uptake [20]. In this scenario, the blood lactate level might not reflect the real
athlete status, becoming an unreliable indicator for fatigue detection and relegating the
YYIR1 as a valid test for aerobic analysis [33]. Furthermore, blood lactate level is affected
by several external and unpredictable factors (i.e., ambient temperature, hydration status,
diet, glycogen content, previous exercise and amount of muscle mass utilized, as well as
sampling procedures) [34]), and it may not reflect the real lactate level in the muscles [35].

Conversely, athletes who underwent a potentiation showed the opposite behaviour:
increased exerted power, velocity and released energy and decreased executions times.
Since higher order muscle fibres are involved in the potentiation, in this case, athletes are
faster and the counter-movement gesture is more symmetric (decreased TSI and eccentric
duration), while the eccentric phase duration is reduced due to a better elastic force
exploitation. In contrast to the first group, in this case, no significant correlations were
found between physiological/anatomical parameters and COM kinematic/articular joint
kinematic parameters.

Regarding fatigue quantification, the FAI definition was based on the logic presump-
tion that since the exerted power is an indicator of the athlete’s lower-body explosive ability,
it could be reasonably considered as the most sensitive parameter to fatigue [27]. Thus, FAI
expresses the reduction in this ability due to fatigue induction. In this framework, higher
FAI variations are related to a greater fatigued status and vice versa. This phenomenon
is confirmed by the correlation coefficients of FAI with regard to the COM kinematic and
articular joint kinematic parameters, which were statistically significant for fourteen out of
nineteen variables. This suggests the existence of a strong correlation between the “fatigue
approximation index” and most of the parameter variations (especially the COM kinematic
ones), resulting in a monotonic relation. In this scenario, lower FAI values correspond to
higher variations in the parameters and, presumably, to a major fatigue status and vice
versa.

This study shows some limitations. Indeed, the participant sample was characterized
by a high variability in terms of age and year of agonistics practice, resulting in a hetero-
geneous study population. In particular, since participants belonged to different training
teams, different referees’ preparation could introduce additional variability in the observed
data. In addition, the YYIR1 was based on the participants’ subjective perception of fatigue
and no physiological parameters were measured to objectively verify the effectivity of
the fatiguing exercise. In addition, since the quantification of fatigue is based on external
sensors (i.e., Magneto-Inertial Units), the evaluation of fatigue is indirect. The use of sEMG
as a wearable alternative could have given useful information on the lower-limb muscles
activation and their ability to exert force in association to fatigue. This information could
have been compared with the FAI to validate it as an objective index for quantifying fatigue.
However, the assessment of fatigue from muscle electrophysiology by means of EMG was
impractical, due to the significant sweating of athletes during the proposed test that would
result in signal artifacts [30]. Nevertheless, this work also suggests a practical method
for performance assessment and fatigue detection/quantification based on four wearable
sensors and a simple but reliable CMJ exercise that can also be exploited in uncontrolled
environments, allowing outdoor and in-field monitoring. Finally, if we limit our analysis
to the COM kinematic parameters, the body inertial sensor network could be optimized
from four to two units (i.e., only pelvis and right foot). This reduction, still preserving the
capability to identify fatigue-related markers, would make the system more cost effective
and accessible for teams of all levels. Future work will be focused on the implementation
of the proposed method directly on the pitch (i.e., an uncontrolled environment) during a
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soccer match to also validate the system for in-field application. In particular, this applica-
tion will surely give useful information on how fatigue could arise in a real situation (i.e., a
90 min soccer match) and on its possible correlation with the performance and motivation
of the referee.
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