
����������
�������

Citation: Kut’ák, D.; Poppleton, E.;

Miao, H.; Šulc, P.; Barišić, I. Unified

Nanotechnology Format: One Way to

Store Them All. Molecules 2022, 27, 63.

https://doi.org/10.3390/

molecules27010063

Academic Editor: Arnaud Gissot

Received: 16 November 2021

Accepted: 15 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Unified Nanotechnology Format: One Way to Store Them All

David Kut’ák 1,2,*, Erik Poppleton 3 , Haichao Miao 4, Petr Šulc 3 and Ivan Barišić 1,*

1 Business Unit Molecular Diagnostics, AIT Austrian Institute of Technology, 1210 Vienna, Austria
2 Visualization Laboratory, Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic
3 Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences,

Arizona State University, Tempe, AZ 85281, USA; epopplet@asu.edu (E.P.); psulc@asu.edu (P.Š.)
4 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,

Livermore, CA 94550, USA; miao1@llnl.gov
* Correspondence: david.kutak.fl@ait.ac.at (D.K.); ivan.barisic@ait.ac.at (I.B.)

Abstract: The domains of DNA and RNA nanotechnology are steadily gaining in popularity while
proving their value with various successful results, including biosensing robots and drug delivery
cages. Nowadays, the nanotechnology design pipeline usually relies on computer-based design
(CAD) approaches to design and simulate the desired structure before the wet lab assembly. To
aid with these tasks, various software tools exist and are often used in conjunction. However, their
interoperability is hindered by a lack of a common file format that is fully descriptive of the many
design paradigms. Therefore, in this paper, we propose a Unified Nanotechnology Format (UNF)
designed specifically for the biomimetic nanotechnology field. UNF allows storage of both design and
simulation data in a single file, including free-form and lattice-based DNA structures. By defining a
logical and versatile format, we hope it will become a widely accepted and used file format for the
nucleic acid nanotechnology community, facilitating the future work of researchers and software
developers. Together with the format description and publicly available documentation, we provide
a set of converters from existing file formats to simplify the transition. Finally, we present several
use cases visualizing example structures stored in UNF, showcasing the various types of data UNF
can handle.

Keywords: DNA nanotechnology; file format; molecular file formats; computer-aided design; coarse-
grained simulations; DNA origami; DNA-protein engineering; RNA nanotechnology

1. Introduction

The steadily increasing popularity of the field of DNA nanotechnology has seen
success in various domains, ranging from biomedical research [1], through drug deliv-
ery [2], up to the creation of nanorobots [3]. The basic premise of this field is that DNA
molecules have predictable binding properties based on Watson–Crick base pairing of
complementary sequences, allowing researchers to design strands that self-assemble into
a vast range of nanoscale-sized structures. While these structures share the nanometer
scale, they can significantly differ in terms of size, internal complexity, or the desired use
case. Furthermore, despite the core Watson–Crick base-pairing rules being well-defined, in
theory, the properties of nanostructures are also determined by a range of other factors in
the real-world application, including charge interactions, kinetic traps, and knotting. These
factors also partially depend on the chosen design paradigm. Amongst the most popular
paradigms nowadays are multilayer DNA origami [4] and wireframe DNA origami [5,6].
Furthermore, in addition to DNA nanotechnology, there also exists an ever-growing field of
RNA nanotechnology [7], sharing many of the same design concepts while leveraging the
wider chemical capabilities of RNA, allowing for the incorporation of naturally occurring
structural RNA motifs. Moreover, DNA nanostructures have started to be combined with
proteins to create DNA-protein hybrid nanostructures [8]. These conjugates further increase

Molecules 2022, 27, 63. https://doi.org/10.3390/molecules27010063 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27010063
https://doi.org/10.3390/molecules27010063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-5146-5970
https://orcid.org/0000-0002-1301-6197
https://doi.org/10.3390/molecules27010063
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27010063?type=check_update&version=2

Molecules 2022, 27, 63 2 of 17

the potential applications of nanotechnology. On the other hand, the design and assembly
of such structures are correspondingly more complex.

As the nanostructures grow in complexity, it is desirable to utilize in-silico design
tools to prevent expensive and time-consuming lab experiments. The typical modern DNA
nanotechnology pipeline includes a basic design–simulation loop, allowing to design the
structure using computer-aided design tools, followed by molecular dynamics simulations
verifying the properties of the design. This pipeline often involves various software tools,
such as Cadnano [9], Adenita [10], and oxDNA [11,12], focused on different subtasks.
Ideally, it would be possible to directly use the outcomes of one tool as an input for another
and then back again in an iterative manner, harnessing the strengths of the individual
applications. However, the currently existing DNA nanotechnology software usually
represents data in various formats, not offering sufficient support for such interoperability.
This can be especially challenging in the case of collaborations between various research
groups, where each prefers a different tool. This challenge can be partially overcome thanks
to the file format converters, such as those provided by the TacoxDNA web server [13].
However, current export and conversion tools only convert structures from design-oriented
file formats, such as Cadnano files, into simulation-ready formats, such as PDB and oxDNA.
The opposite is currently not possible due to the loss of hierarchical information in the
simulation formats. Furthermore, while existing formats have served the community well
for the design of DNA structures, they generally lack support for emerging nanotechnology
applications, such as RNA nanostructures and DNA-protein hybrids. As such, it is not
surprising that various researchers, including us, lately called for a standard and sufficiently
capable file format.

Therefore, in this paper, we propose a Unified Nanotechnology Format (UNF) de-
signed specifically for the biomimetic nanotechnology domain, which uses DNA, RNA,
and proteins as basic building blocks. The format aims to be usable in design and simula-
tion applications, offering a verbose and explicit representation of the stored data to meet
the needs of these areas. The in-depth documentation describing the format structure is
available on a public repository (see Appendix A) to foster the inclusion in the existing and
upcoming software tools. Together with the format description, we also provide a set of
converters from existing file formats to simplify the transition to UNF. To showcase the
capabilities of the UNF, various nanostructures stored in this file format are presented in
this paper.

2. State of the Art

As soon as computers started to be used for the in-silico analysis and design of molec-
ular structures, the need to store structural data in digital form naturally arose. There
have been several distinct file formats developed over the years, storing various levels of
information. For the description of atoms of a single molecule, MDL Molfile, structure-data
file (SDF), and XYZ are often used [14,15]. All of them are text-based, with one line of text
per atom. While XYZ omits storing explicit bonding information, MDL Molfile and SDF
support this feature. In the area of proteins and other macromolecular structures, the most
prevalent and de facto standard way of data storage is via the Protein Data Bank (PDB) for-
mat [16]. It paved the way for the standardization of biomolecular file formats, facilitating
scientists’ work almost for half a century, thus having a significant influence on their work
and achievements. Similar to the formats mentioned above, PDB also works in a text-based
all-atom manner, storing one atom per line. The strength of PDB lies in its ability to define
not only coordinates of molecules but also abstract molecular structure data, such as atom
names, parent residue, multiple structure models, and crystallographic transformations.
One disadvantage of the PDB format is its age, making it not well suited for the latest
developments in the biomolecular domain, despite the numerous revisions over the years.
For example, the fixed-column approach chosen by PDB limits the maximum number of
atoms per model. For this reason, PDB is being replaced by its spiritual successor—the
mmCIF (macromolecular Crystallographic Information) format [17,18]. It is also a textual

Molecules 2022, 27, 63 3 of 17

format, but thanks to its dictionary-based approach, it is more flexible. Besides that, there
are no limitations on the maximum number of atoms. On the other hand, when compared
to PDB, it is less human-readable.

From the perspective of nanotechnology applications, PDB contains more details than
necessary, but lacks a coarse-grained representation of structures. Most of the design
tools for DNA nanotechnology work on a higher level of abstraction as they focus on
nucleotide-level or helical segment representations, making the conversion to atomistic
resolution difficult and often unnecessary. Current formats for storing coarse-grained
molecular data are often closely coupled with particular molecular modeling software. For
example, Moltemplate [19], a coarse-grained molecular builder for LAMMPS [20,21], uses a
text-based file format, also known as LT (LAMMPS-Template format), closely resembling a
source code. In HADDOCK [22], the all-atom to coarse-grained model conversion outputs
a coarse-grained PDB file together with a file containing distance restraints, which is used
when converting the coarse-grained data back to the fully atomistic model [23,24]. Finally,
VMD [25] also allows its users to perform conversion to coarse-grained data, utilizing the
MARTINI [26] CGC textual file format throughout the process [27].

Since the domain of DNA nanotechnology relies on in silico design and modeling
of structures from scratch, the file formats must include additional data when compared
to the general macromolecular ones. Moreover, due to existing design paradigms, it may
be needed to capture some of their abstractions, not necessarily relevant to the structural
data itself. As this domain can still be considered relatively young in comparison to other
areas of molecular biology, the existing file formats reflect this by using more up-to-date
technologies. Besides that, since it is often sufficient to work on the nucleotide level in
nanotechnology, the existing file formats mostly omit atomistic details.

Probably the most widely used design file format is provided by the well-known DNA
origami design tool Cadnano [9]. It stores data as a JSON (JavaScript Object Notation)
file containing fields that describe the routing of single strands inside the DNA origami
lattice. In more detail, Cadnano distinguishes between scaffold and staple strands, storing
their data separately, but the information about the routing of individual strands is not
explicitly stored and needs to be deduced. The disadvantage of Cadnano files is that they
are limited to lattice-based design data. Furthermore, the nucleobase sequence needs to be
stored in a separate CSV file. Some of the drawbacks of Cadnano’s file format are refined
in the Scadnano [28] web-based DNA origami design application. It allows for storing
the nucleotide sequences directly inside the file, includes chemical modifications, and is
generally better structured. The JSON-based approach is also employed by the Tiamat
design tool [29]. Compared to the Cadnano and scadnano file formats, Tiamat stores the
world Cartesian coordinates for each duplex center line, or unpaired nucleobase, since it
is a free-form design tool. Similarly, the Parabon inSēquio Design Studio application [30]
also stores free-form data, using XML schema for their description. Finally, Adenita [10],
an application for multiscale visualization and modeling of DNA nanostructures, employs
a JSON-based file format to store the design files. An advantage of Adenita’s format is the
ability to store both lattice-based data and free-form single strands. In some of the design
tools, the used file format is closely coupled to the application framework in which they
are implemented. For example, the file format of vHelix [6], an application focused on
designing wireframe DNA origami, is based on Autodesk Maya ASCII files. Similarly, the
file format of MagicDNA [31], a tool for multi-component DNA origami assembly, is based
on Matlab files.

Among the approaches focused on nanostructure simulations and structure prediction,
the oxDNA [12,32] file format stands out, having a robust suite of conversion tools into
its format and a high degree of flexibility in its representation. OxDNA uses two text
files—configuration and topology file—which store molecule positions/orientations and
connectivity/sequence information, respectively. Furthermore, the recent extension of
the oxDNA model, ANM-oxDNA, supports simulations and storage of DNA-protein or
RNA-protein hybrid nanostructures [33].

Molecules 2022, 27, 63 4 of 17

A text-based file format is also employed by the 3D structure prediction software
Cando [34], storing the necessary data for the reconstruction of single and double DNA
strands, including the base-pairing information. The Structured Nucleic Acids Program-
ming Interface SNUPI [35], a framework for computational analysis of DNA origami
assemblies, employs several text-based formats, including XYZ, PDB, and Matlab data
files. OxView [36], a freeform design tool and oxDNA configuration viewer, uses JSON-
formatted files to store the scene data, which extends the data available in the oxDNA
format by including information such as designed base pairs, alternate color schemes,
labels, and grouped molecules.

In total, the number of different file formats used in the nanotechnology domain is
rather large, with most of the tools implementing their own instead of reusing existing
ones (Figure 1). Thanks to the aforementioned TacoxDNA converter or built-in exporters,
all the previously mentioned design formats can be converted into the oxDNA format for
free-form editing with oxView. However, the situation is far from being ideal. OxView is a
powerful tool for combining multiple designs and creating small free-form structures, but
it lacks layers of abstraction such as virtual helices, domains, and scaffold routing, which
allow other tools to design large and complex structures. Furthermore, the conversion to
the oxDNA format results in the loss of design data which would be useful in the analysis
and visualization of simulated structures.

Figure 1. Visualization of the possible interconversions between the established nanotechnology
formats and UNF. Graph nodes denote file formats while the edge labels mark the tools offering
the conversion. oxDNA and Cadnano file formats are amongst the most important ones, while
many of the conversions are realized via the TacoxDNA [13] converters and the oxView [36] applica-
tion. The red-colored part shows the proposed Unified Nanotechnology Format together with the
corresponding converters.

Beyond the DNA itself, only Adenita and oxView allow the inclusion of RNA and pro-
tein structures within the design format. Moreover, no tool includes explicit representation
of modified bases, small molecules, and other nanoparticles, such as gold nanoparticles and
quantum dots, which are frequently found in DNA nanotechnology applications. Finally,
many file formats are scarcely documented, if at all, making it difficult for software devel-
opers to understand their inner workings. Due to all of these reasons, we propose here
a UNF, Unified Nanotechnology Format, described in the following section, which aims
to provide an application-independent and well-documented solution to an omnipresent
problem of nanotechnology data storage. By developing the UNF and converters into and

Molecules 2022, 27, 63 5 of 17

out of the format, we hope to improve data sharing and interoperability among the tools
and researchers involved in this field.

3. Format Description

In this chapter, the general structure of a UNF file, version 1.0, is introduced. The
primary focus is on the concept as a whole, presenting the categories of data UNF handles.
Therefore, most of the lower-level details are omitted in the text of the paper.

3.1. Overall Goal

As the name suggests, the proposed Unified Nanotechnology Format aims to provide
a unified way of storing various nanotechnology structures, considering the specifics of
existing design paradigms and the needs of simulation applications. In its current state
proposed in the paper, the format definition is based on our survey of the available tools
(described in Section 2), discussions with other experts, and our experience from developing
in silico design tools for DNA and protein-based nanotechnology. Furthermore, there were
several subgoals we aimed to achieve:

• Due to the popularity of the multilayer DNA origami technique, the format should be
able to explicitly store designs of such lattice-constrained nanostructures. However, at
the same time, it must also support the storing of the free-form DNA nanostructures,
allowing for the description of arbitrarily shaped designs and simulation outcomes.

• The format should be viable for DNA-protein and RNA-protein nanotechnology
engineering by storing coarse-grained representations of protein structures.

• For conversion from fully atomistic models to coarse-grained ones and vice versa, the
format should have some way of referencing the original source data from crystallog-
raphy, NMR, cryoEM, and all-atom simulation experiments.

• Related to the previous point, the format should support references to other types of
molecules to allow the creation of more complex molecular scenes, possibly including
all-atom structures together with coarse-grained ones.

• To facilitate the implementation of the format in various tools, it must be well defined,
with a clear and properly explained terminology. Furthermore, the documentation of
its structure should be easily available.

• The UNF file itself should be human-readable to allow for quick changes using a
simple text editor in case of need. At the same time, it must be easy to process from
the perspective of software developers.

• Ideally, the format should reuse well-defined concepts and terms from the existing
DNA nanotechnology file formats and software applications to make the transition
from other ways of data storage easier.

• Finally, due to the nature of the goal summarized at the beginning of this chapter, it
is expected that the format will gradually evolve to meet the needs of its potential
end-users. Therefore, it should be open for extension, making it possible to shape it in
the future without a need for a complete rewrite.

Given all these subgoals, we realized that the file format used by Adenita might
serve as a reasonable starting point and source of inspiration. Thus, we incorporated the
advantages of this format and solved its limitations, extending it to go beyond its original
possibilities. Furthermore, we also drew inspiration from file formats implemented by
Cadnano and oxView as these are two well-known ones in the area of nanostructure design
and molecular dynamics simulation, respectively.

3.2. UNF File Structure

Similar to some of the existing nanotechnology formats, we decided to make the UNF
JSON-based (see an excerpt from the example file in Figure 2). Apart from this approach
being already well-explored in the domain, it has an advantage in both simplicity of file
parsing and human readability. On the other hand, JSON files are not very space-efficient

Molecules 2022, 27, 63 6 of 17

as they are rather verbose. However, given the focus on the complete definition of a
coarse-grained structure, reasonable length is to be expected.

Figure 2. Excerpts from an example UNF file. Fields for identification of the file and stored structures
are visible, together with parameters describing the location of nucleic and amino acids.

To enable the inclusion of fully atomistic molecules, UNF allows referencing external
files (see Figure 3). These are primarily PDBs in UNF’s current state. Since a simple
reference to an external file would mean that this file needs to be provided together with
the UNF file to have complete data, UNF offers a way of including the content of other
files directly in the UNF file, if needed. This makes it possible to distribute just one file
containing all the necessary information. The inclusion of other files works by simply
appending a specifically structured line of text at the end of the UNF file, followed by
the contents of the appended file. The consequence of this approach is that the final UNF
file is not always a clean JSON as it may contain other kinds of data appended to the
end of the file. Furthermore, applications aiming to process these referenced files need
to possess adequate parsers. However, extracting the JSON part out of the UNF file is a
straightforward task. Besides that, since the JSON-stored data represent the main UNF
content, referenced files serve mainly for specific use cases. They can be, therefore, omitted
in some applications. For this reason, the content of referenced files is appended instead of
being included directly in the JSON, as this reduces the memory and processing overhead
posed on these kinds of applications.

Molecules 2022, 27, 63 7 of 17

Figure 3. References to external files in UNF and their influence on the UNF file structure. The
currently proposed solution allows for simple extraction of the JSON part if the remaining data are
not needed in the given scenario, or are about to be processed later.

3.3. Data Hierarchy

The data represented by UNF can be split into four major categories, as visualized in
Figure 4. While there is no one-to-one correspondence between these categories and the
UNF fields, this distinction is helpful for the format description. Thus, in the following
text, each of these categories will be introduced in more detail. To connect the textual
description of the format with the UNF JSON attributes, terms emphasized in bold will
refer to similarly-named JSON fields.

Figure 4. Categories of data stored by UNF. Each category carries a certain kind of information, with
structural and design data being the most important content-wise as they define the structures.

Molecules 2022, 27, 63 8 of 17

3.3.1. General File Information

This group stores mainly data related to file identification and settings. They specify,
for example, the version of UNF that is used and the units in which positions of objects
are represented. Then, information about the file name, author, and date of creation are
stored, as well as the DOI of relevant publications. Finally, references to external files are
included. As for external files, except for the information mentioned in Section 3.2, UNF
stores the MD5 hash of the file’s content for each referenced file. This ensures that the
content of the given file is equal to its content at the moment of UNF creation.

3.3.2. Design Data

Design-specific data are primarily represented by storing the information about DNA
origami lattices to describe multilayer structures. For free-form structures, an explicit
position of a nucleotide is stored, as described in the following section. UNF can encompass
more than one lattice in a single file, making it well-suited for multi-component assembly.
For each lattice, its position and orientation in space are saved, as well as its type, which
can be either of the two arrangements permitted by Cadnano, square and honeycomb.
Then, an array of its virtual helices is stored, where each virtual helix represents a possible
location of a double helix. Virtual helices consist of cells, of which each references two
arrays of nucleotides. One array corresponds to nucleotides from the single strand crossing
the cell in the 5′ to 3′ direction, the other for a strand in the 3′ to 5′ direction. Furthermore,
each cell possesses one of three types of nucleotide information: Normal cells can reference
up to one nucleotide in each of the arrays, signaling that this is a regular cell without any
special properties. Deletion cells do not reference nucleotides as they denote that this cell
should be skipped. Therefore, deletion cells allow the visual alignment of different lengths
of double strands when designing structures. Finally, insertion cells allow for referencing
more than one nucleotide. For the insertion of length n, the corresponding array contains n
+ 1 nucleotides. These concepts naturally correspond to the skips and loops in the Cadnano
application, allowing the inclusion of these details in the UNF data. Overall, this hierarchy
matches the semantic conventions of multilayer origamis used by Cadnano.

3.3.3. Structural Data

At the core of structural data are coarse-grained structures, where each structure
consists of an arbitrary number of nucleic acid strands and amino acid chains. All the
necessary data are stored for both of these subunits, including the starting and ending amino
and nucleic acids and a custom color for annotations. Nucleic acid strands also contain an
attribute determining whether they are a scaffold or a staple strand. On top of that, they
consist of nucleotides, storing the type of a nucleobase, neighboring nucleotides references,
the paired nucleotide on the complementary strand, and the nucleotide’s position in space.
For amino acid chains, similar information is saved, required for a successful reconstruction
of a chain from the stored data. Since UNF operates on a coarse-grained level, it is essential
to define how exactly the coarse-graining works. In this regard, UNF’s representation of
nucleic and amino acid locations is based on models proposed by oxDNA, as it is verified
both programmatically and experimentally [37,38]. In the case of protein structures, the
position of an amino acid is represented by one vector corresponding to the location
of its alpha carbon atom. Information about the side-chain orientation is not currently
included as there are no tools that produce or read this information at the present time.
For nucleic acids, four vectors are employed. Two of them describe the center of mass
positions of the backbone and nucleobase. In this area, the UNF model deviates from the
oxDNA representation, which stores only the center of mass of a whole nucleotide. We
found out that extending the data model in this way allows for more flexibility and more
straightforward visualization, particularly for structures converted from fully atomistic
representations. The remaining two vectors uniquely describe the normal of a nucleobase
plane, i.e., the base stacking direction and the direction of a hydrogen bonding. Since
lattice-based design approaches do not explicitly store nucleotide locations, this situation

Molecules 2022, 27, 63 9 of 17

needs to be captured by UNF as well. Therefore, a simple rule was proposed. If the
nucleotide contains position records, then they take precedence over the lattice-based
representation. Otherwise, the nucleotide is expected to be referenced by some lattice cell,
and visualization tools can determine its position algorithmically.

UNF is also able to capture other kinds of molecules. For this purpose, the data model
splits them into three groups: ligands, nanostructures, and others. Since ligands are
usually small, they can be described as an explicit set of atoms and bonds. Nanostructures
are currently identified by a name, reference to an external file, and position in space. The
purpose of the nanostructures field is to store compounds such as gold nanoparticles. At
the moment, the stored data are very general, as we aim to collect the needs of other experts
over time to more precisely define what needs to be stored. Finally, the remaining field
allows for the storage of arbitrary molecules referencing external PDB files. Thanks to
this, UNF allows creating a molecular scene combining fully atomistic structures with
coarse-grained ones.

3.3.4. Other Data

The remaining category of data allows storing user-defined groups, modifications,
connections, comments, and the size of the molecular simulation box. Groups are named
as collections of IDs, allowing to reference various objects stored in a UNF for annotation
purposes, clustering, and so on. Modifications enable storing of information about the
nucleotides and amino acids that are chemically modified, together with the standard five
and twenty- codes describing the type of modification. As for connections, they allow
to explicitly define a particular interaction between several elements. Comments enable
to store textual notes related to a particular element stored in the file. Finally, UNF also
contains a field for miscellaneous data. This is a general-purpose attribute where the
individual applications can append arbitrary information while keeping the structure of
the UNF file completely valid.

4. Converters from Existing Formats

Apart from proposing the format itself, we also provide a set of converters from some
of the existing file formats to simplify the transition to UNF (Supplementary Material S1
and Appendix A). The Cadnano and PDB converters were implemented in the Python
programming language and can be executed and parameterized via the command line,
enabling their usage in automatized scenarios. The oxDNA/oxView converter is built into
oxView, also creating the opportunity to edit UNF files as a result.

4.1. Cadnano

Molecules 2022, 26, x FOR PEER REVIEW 10 of 17

In the case of UNF to Cadnano conversion, each lattice stored in UNF is converted
to an individual Cadnano file. While this converter is still evolving, it already converts the
most crucial features of the data. If the source UNF file contains free-form structures or
additional molecules, they will be ignored during the conversion to Cadnano as this for-
mat does not support such data.

Figure 5. Process of converting files from Cadnano to UNF and then from UNF back to Cadnano,
showcasing the supported interoperability between these two file formats. During both conversions,
structural and color information remain fully preserved.

4.2. PDB → UNF Converter
This converter accepts a fully atomistic PDB or mmCIF file as an input and converts

it to coarse-grained UNF representation, creating a new record in structures. Due to the
types of data represented by UNF, only nucleic and amino acid chains together with lig-
ands are processed; the rest of the file is ignored. It is expected that the PDB residues are
listed in 5′ to 3′ direction, respectively, from the N-terminus to C-terminus.

An important part of the conversion process is the transformation of the atomistic
locations to the reference frames of the UNF. This procedure directly corresponds to the
way coarse-grained positional data are stored, as described in Section 3.3.3. For amino
acids, the location of the alpha carbon is extracted. For nucleic acids, the process of con-
version follows the one performed by the corresponding TacoxDNA converter. Therefore,
vectors determining the orientation of a nucleobase are computed based on specific atoms
and vectors between them. This procedure is detailed on the official UNF repository to
ensure that all of the applications implementing UNF will behave consistently.

4.3. oxDNA/oxView ⇄ UNF
The UNF parser was written for the oxView visualization and editing application. It

creates oxView system objects for each structure represented in the UNF. For structures
containing lattice representations, positions in 3D space are determined based on the lat-
tice corner coordinates, the position of the helix, and ideal B-form helix geometry. For
structures containing alternate positions, positions of the nucleoside and backbone beads
are set based on these coordinates. These systems can then be exported to the oxDNA or
oxView formats using the built-in export tools. This provides UNF with an editing oppor-
tunity in an already available and widely used tool.

OxView also contains an export option to the UNF format (see Figure 6). With the
intended molecule loaded in the scene, the user can obtain a UNF representation by click-
ing the UNF export button in the “File” Table This will bring up a dialogue where the
header information can be edited (it will be automatically filled from the most recently

UNF Converter

We provide both, Cadnano to UNF and UNF to Cadnano conversion (see Figure 5).
The Cadnano to UNF converter allows converting multiple Cadnano files into one UNF
file. For each input file, additional parameters, in the form of the lattice type and desired
world space location of the lattice, are provided. Then, the converter extracts the design
information from the Cadnano file and creates a new lattice record in UNF. Together with
that, new nucleotides are created, referenced from the lattice cells, and assembled into
strands. Cadnano’s loops and skips are converted to insertions and deletions, and the
strands corresponding to these cells are modified in length accordingly. Circular scaffold
strands are currently cut at a predefined location. While this is unnecessary for the UNF,
it serves mainly as a convenience for the potential applications implementing the format.
Since some Cadnano users utilize colors to annotate specific single strands, the staple
strands coloring is also transformed to corresponding fields in UNF. In summary, for n
input files, n records in lattices and structures UNF fields will be created.

In the case of UNF to Cadnano conversion, each lattice stored in UNF is converted
to an individual Cadnano file. While this converter is still evolving, it already converts
the most crucial features of the data. If the source UNF file contains free-form structures

Molecules 2022, 27, 63 10 of 17

or additional molecules, they will be ignored during the conversion to Cadnano as this
format does not support such data.

Figure 5. Process of converting files from Cadnano to UNF and then from UNF back to Cadnano,
showcasing the supported interoperability between these two file formats. During both conversions,
structural and color information remain fully preserved.

4.2. PDB→ UNF Converter

This converter accepts a fully atomistic PDB or mmCIF file as an input and converts it
to coarse-grained UNF representation, creating a new record in structures. Due to the types
of data represented by UNF, only nucleic and amino acid chains together with ligands are
processed; the rest of the file is ignored. It is expected that the PDB residues are listed in 5′

to 3′ direction, respectively, from the N-terminus to C-terminus.
An important part of the conversion process is the transformation of the atomistic

locations to the reference frames of the UNF. This procedure directly corresponds to the
way coarse-grained positional data are stored, as described in Section 3.3.3. For amino acids,
the location of the alpha carbon is extracted. For nucleic acids, the process of conversion
follows the one performed by the corresponding TacoxDNA converter. Therefore, vectors
determining the orientation of a nucleobase are computed based on specific atoms and
vectors between them. This procedure is detailed on the official UNF repository to ensure
that all of the applications implementing UNF will behave consistently.

4.3. oxDNA/oxView

Molecules 2022, 26, x FOR PEER REVIEW 10 of 17

In the case of UNF to Cadnano conversion, each lattice stored in UNF is converted
to an individual Cadnano file. While this converter is still evolving, it already converts the
most crucial features of the data. If the source UNF file contains free-form structures or
additional molecules, they will be ignored during the conversion to Cadnano as this for-
mat does not support such data.

Figure 5. Process of converting files from Cadnano to UNF and then from UNF back to Cadnano,
showcasing the supported interoperability between these two file formats. During both conversions,
structural and color information remain fully preserved.

4.2. PDB → UNF Converter
This converter accepts a fully atomistic PDB or mmCIF file as an input and converts

it to coarse-grained UNF representation, creating a new record in structures. Due to the
types of data represented by UNF, only nucleic and amino acid chains together with lig-
ands are processed; the rest of the file is ignored. It is expected that the PDB residues are
listed in 5′ to 3′ direction, respectively, from the N-terminus to C-terminus.

An important part of the conversion process is the transformation of the atomistic
locations to the reference frames of the UNF. This procedure directly corresponds to the
way coarse-grained positional data are stored, as described in Section 3.3.3. For amino
acids, the location of the alpha carbon is extracted. For nucleic acids, the process of con-
version follows the one performed by the corresponding TacoxDNA converter. Therefore,
vectors determining the orientation of a nucleobase are computed based on specific atoms
and vectors between them. This procedure is detailed on the official UNF repository to
ensure that all of the applications implementing UNF will behave consistently.

4.3. oxDNA/oxView ⇄ UNF
The UNF parser was written for the oxView visualization and editing application. It

creates oxView system objects for each structure represented in the UNF. For structures
containing lattice representations, positions in 3D space are determined based on the lat-
tice corner coordinates, the position of the helix, and ideal B-form helix geometry. For
structures containing alternate positions, positions of the nucleoside and backbone beads
are set based on these coordinates. These systems can then be exported to the oxDNA or
oxView formats using the built-in export tools. This provides UNF with an editing oppor-
tunity in an already available and widely used tool.

OxView also contains an export option to the UNF format (see Figure 6). With the
intended molecule loaded in the scene, the user can obtain a UNF representation by click-
ing the UNF export button in the “File” Table This will bring up a dialogue where the
header information can be edited (it will be automatically filled from the most recently

UNF

The UNF parser was written for the oxView visualization and editing application. It
creates oxView system objects for each structure represented in the UNF. For structures
containing lattice representations, positions in 3D space are determined based on the
lattice corner coordinates, the position of the helix, and ideal B-form helix geometry. For
structures containing alternate positions, positions of the nucleoside and backbone beads
are set based on these coordinates. These systems can then be exported to the oxDNA
or oxView formats using the built-in export tools. This provides UNF with an editing
opportunity in an already available and widely used tool.

OxView also contains an export option to the UNF format (see Figure 6). With the
intended molecule loaded in the scene, the user can obtain a UNF representation by clicking
the UNF export button in the “File” Table This will bring up a dialogue where the header
information can be edited (it will be automatically filled from the most recently loaded
UNF file in the scene if one exists). Currently, only the structure section of the UNF record
is filled out as oxView does not have an internal representation of lattices. However, this

Molecules 2022, 27, 63 11 of 17

is something we intend to support in the future. The export feature of oxView allows for
editing of UNF structures as well as combining multiple files into a unified design file. As
was described in Section 2—and visualized in Figure 1—the oxView plays, together with
the tacoxDNA server, an important role for the interconversion of nanotechnology formats.
Therefore, the option to import and export UNF and oxDNA files in oxView also enables
users to store structures converted from many existing file formats in UNF, with the oxDNA
file format being used as an intermediate step followed by the oxDNA to UNF conversion.

Figure 6. Structure of Robot arm with tweezer [31] converted from oxDNA to UNF and back using
the oxView application.

5. Use Cases

This chapter introduces example structures that UNF can process. They were created
using the converters mentioned in Section 4, possibly combined with additional scripts
and manual modifications. Some of these structures are available on the official repository
of the format (Appendix A), together with documentation instructing how to reproduce
the results from the source data. Since it would be challenging to imagine the contents of a
UNF file purely from its textual representation, one of the tasks during the development of
a new file format is to come up with a way how to visualize it. For this purpose, a web-
based application called UNF Viewer was developed and made accessible on the official
repository. Its sole purpose is to visualize the main contents of the UNF file, making it
possible to verify if the structural data are correctly preserved during the conversion process
or file modifications. Besides that, the oxView [34] application was also extended with
UNF support, allowing for import, visualization, and editing of the stored structures. We
hope that the extension of such a widely accepted tool with UNF support can significantly
accelerate the inclusion of UNF in the work of other researchers.

5.1. Multi-Component Designs

The first use case pertains to multi-component DNA origami designs. For example,
in Cadnano, it is not possible to explicitly store nanostructure complexes consisting of
more than one lattice. There are some workarounds, however, to achieve lattice structures
where all lattices have the same arrangement. However, well-defined support for this kind
of design is missing, despite this being a topic for many researchers [39–42]. In contrast,
UNF was designed with a multi-component design in mind, naturally supporting such
structures. Figure 7 shows a sample hextube–cuboid structure consisting of one honeycomb
lattice design combined with a square lattice design. Data of both lattices, as well as their
world locations, are stored in a single UNF file.

Molecules 2022, 27, 63 12 of 17
Molecules 2022, 26, x FOR PEER REVIEW 12 of 17

Figure 7. A hextube–cuboid structure stored in a single UNF file, visualized in UNF Viewer (left)
and oxView (right), based on two different lattices. While the UNF Viewer also visualizes the empty
lattice cells stored in UNF, oxView focuses purely on the structural data.

Another example of multi-component design is the DNA origami rotor structure,
visualized in Figure 8, proposed by Ahmadi et al. [42]. This structure consists of four
lattice-based components (three honeycombs, one square), which can be stored entirely in
UNF. Moreover, using UNF we can also integrate the fully atomistic structure of a protein-
based antibody to the given structure.

Figure 8. DNA origami rotor [42] together with an antibody (PDB: 1IGY [43]), visualized in oxView.
An example of a multi-component DNA-protein hybrid design, which can be stored in UNF.

5.2. Multilayer DNA Origami Structures And All-Atom Molecules
As suggested by the DNA origami rotor structure in Figure 8, UNF can also store

multilayer origami designs combined with fully atomistic structures. Another example of
such a combination is visualized in Figure 9. To the best of our knowledge, this was not
yet possible, in a straightforward way, with the publicly available formats. This allows for
the creation of molecular sceneries combining different levels of detail. Thanks to that,
coarse-grained structures can be modified in the corresponding design software while the
information about the all-atom structure remains stored for molecular simulations
performed after the design is finished.

Figure 7. A hextube–cuboid structure stored in a single UNF file, visualized in UNF Viewer (left) and
oxView (right), based on two different lattices. While the UNF Viewer also visualizes the empty
lattice cells stored in UNF, oxView focuses purely on the structural data.

Another example of multi-component design is the DNA origami rotor structure,
visualized in Figure 8, proposed by Ahmadi et al. [42]. This structure consists of four lattice-
based components (three honeycombs, one square), which can be stored entirely in UNF.
Moreover, using UNF we can also integrate the fully atomistic structure of a protein-based
antibody to the given structure.

Figure 8. DNA origami rotor [42] together with an antibody (PDB: 1IGY [43]), visualized in oxView.
An example of a multi-component DNA-protein hybrid design, which can be stored in UNF.

5.2. Multilayer DNA Origami Structures and All-Atom Molecules

As suggested by the DNA origami rotor structure in Figure 8, UNF can also store
multilayer origami designs combined with fully atomistic structures. Another example of
such a combination is visualized in Figure 9. To the best of our knowledge, this was not
yet possible, in a straightforward way, with the publicly available formats. This allows
for the creation of molecular sceneries combining different levels of detail. Thanks to that,
coarse-grained structures can be modified in the corresponding design software while
the information about the all-atom structure remains stored for molecular simulations
performed after the design is finished.

5.3. Coarse-Grained DNA-Protein Hybrids

An important goal of UNF is the storage of coarse-grained structures, allowing to save
arbitrary free-form designs. Two examples of such structures are visualized in Figure 10.
Both of them result from PDB to UNF conversions using the converter described in the
previous chapter. Apart from conversion from PDB, coarse-grained structures can also be
designed from scratch in arbitrary tools offering this functionality. Moreover, they can be
combined with lattice-based designs.

Molecules 2022, 27, 63 13 of 17Molecules 2022, 26, x FOR PEER REVIEW 13 of 17

Figure 9. Smiley face DNA origami structure [44] combined with a protein (PDB: 6JI1 [45]), visual-
ized in the UNF Viewer from the contents of a single UNF file.

5.3. Coarse-Grained DNA-Protein Hybrids
An important goal of UNF is the storage of coarse-grained structures, allowing to

save arbitrary free-form designs. Two examples of such structures are visualized in Figure
10. Both of them result from PDB to UNF conversions using the converter described in the
previous chapter. Apart from conversion from PDB, coarse-grained structures can also be
designed from scratch in arbitrary tools offering this functionality. Moreover, they can be
combined with lattice-based designs.

Figure 10. Two coarse-grained DNA-protein hybrids stored in UNF and visualized in oxView. The
source data for the conversions to UNF were the PDBs 3UGM [46] (TAL protein) and 6KIX [47]
(MLL1-NCP complex).

5.4. Coarse-Grained RNA Structures
Due to the rise of RNA nanotechnology, UNF also supports coarse-grained RNA

structures and their combination with proteins, as shown in Figure 11. As in the case of
DNA structures, the PDB to UNF converter enables the conversion of the atomistic data
to a coarse-grained UNF representation while correctly detecting the type of nucleic acid
to label the given strand as RNA.

Figure 9. Smiley face DNA origami structure [44] combined with a protein (PDB: 6JI1 [45]), visualized
in the UNF Viewer from the contents of a single UNF file.

Figure 10. Two coarse-grained DNA-protein hybrids stored in UNF and visualized in oxView. The
source data for the conversions to UNF were the PDBs 3UGM [46] (TAL protein) and 6KIX [47]
(MLL1-NCP complex).

5.4. Coarse-Grained RNA Structures

Due to the rise of RNA nanotechnology, UNF also supports coarse-grained RNA
structures and their combination with proteins, as shown in Figure 11. As in the case of
DNA structures, the PDB to UNF converter enables the conversion of the atomistic data to
a coarse-grained UNF representation while correctly detecting the type of nucleic acid to
label the given strand as RNA.

Molecules 2022, 27, 63 14 of 17

Figure 11. Two coarse-grained RNA structures stored in a UNF file and visualized in oxView.
2JYH [48] RNA is shown on the left, while 6SY6 [49] structure, which contains both RNA and protein,
is on the right.

6. Conclusions

The Unified Nanotechnology Format—UNF, proposed in this paper, aims to provide a
single way of data storage in the domains of DNA and RNA nanotechnology. It allows for
the combination of different types of structural data, including multilayer DNA origami
structures, free-form structures, coarse-grained amino acid chains, and fully atomistic
molecules. By doing so, it should be suitable for both computer-aided design and molecular
simulation areas with respect to the nanotechnology domain. The format description is
publicly available, making it accessible to anyone who aims to implement it in their
software framework. Moreover, since the format is sufficiently capable, well-structured,
and thoroughly documented, such implementation should not pose a major challenge.
Together with the format definition, a set of converters from other existing file formats is
provided to facilitate the transition to UNF. To allow for visualization of the UNF-stored
data, a UNF Viewer (see Section 5) application was developed. Moreover, the web-based
oxView [34] application was extended to support UNF. By executing all of these steps, we
believe that we can increase the interoperability and compatibility between individual
software tools by providing a single means of data storage and exchange. Since the lack
of a common file format for the nanotechnology domain has been lately discussed among
various research groups, UNF presents a first major step in this direction. While we support
most of the structures represented by well-established formats, there still exists specialized
data, which UNF cannot fully represent. For example, while UNF can store wireframe
DNA origami structures using the free-form nucleotide coordinates, it cannot meaningfully
represent the polygonal mesh files used as source design data. Similarly, in the case of
RNA structures, UNF can describe their spatial properties but does not offer an explicit
way of storing the RNA origami blueprints used for the design. However, there are fields
that can be utilized for this purpose without breaking the format compatibility. In any case,
we realize that there might be novel design paradigms or discoveries in the future, posing
additional requirements on the UNF in order to preserve its status of universally applicable
format. For this reason, one of the important parts of the UNF ecosystem is a well-defined
versioning system, allowing for tracing the history of format changes, as well as for quick
identification of whether the given version of the format is compatible with another one.

With these points in mind, the format was designed to be open for further improve-
ments. Therefore, we aim to collect feedback and opinions of additional experts to make
the UNF suit their needs. Furthermore, we would like to extend some of the file format
fields to make them more focused on a particular type of data. We will encourage and offer
help to nucleic acid nanotechnology tool developers to support the export and loading of
UNF format, as well as the development of interconversion tools between respective design

Molecules 2022, 27, 63 15 of 17

formats to make sharing designs between research groups easier. In the end, we believe
that UNF has the potential to replace the existing file formats where possible, as well as to
open doors to new discoveries and interoperability between the individual software tools.

Supplementary Materials: The following supporting information can be downloaded, ZIP archive
S1: the contents of the UNF release 1.0.0.

Author Contributions: Conceptualization, I.B., P.Š., H.M., D.K. and E.P.; methodology, H.M., D.K.
and I.B.; software, D.K. and E.P.; investigation, D.K., E.P. and H.M.; resources, D.K. and I.B.; writing—
original draft preparation, D.K.; writing—review and editing, D.K., E.P., H.M., P.Š. and I.B.; visualiza-
tion, D.K. and E.P.; supervision, P.Š. and I.B.; funding acquisition, P.Š. and I.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement No. 952110 (MARILIA). This research was also
funded by National Science Foundation, grant number 1931487. This work was performed under
the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-JRNL-829736).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on the following repos-
itories: https://github.com/barisicgroup/unf and https://github.com/sulcgroup/oxdna-viewer
(accessed on 15 November 2021).

Acknowledgments: We would like to thank all people who provided any feedback, suggestions, or
ideas during the process of UNF development.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

Appendix A

• The official UNF repository is accessible via the following link: https://github.com/
barisicgroup/unf (accessed on 15 November 2021).

• The repository of the oxView application is available using this link: https://github.
com/sulcgroup/oxdna-viewer (accessed on 15 November 2021).

References
1. Sun, L.; Yu, L.; Shen, W. DNA nanotechnology and its applications in biomedical research. J. Biomed. Nanotechnol. 2014, 10,

2350–2370. [CrossRef] [PubMed]
2. Tang, M.S.L.; Shiu, S.C.-C.; Godonoga, M.; Cheung, Y.-W.; Liang, S.; Dirkzwager, R.M.; Kinghorn, A.B.; Fraser, L.A.; Heddle, J.G.;

Tanner, J.A. An aptamer-enabled DNA nanobox for protein sensing. Nanomedicine 2018, 14, 1161–1168. [CrossRef] [PubMed]
3. Li, S.; Jiang, Q.; Liu, S.; Zhang, Y.; Tian, Y.; Song, C.; Wang, J.; Zou, Y.; Anderson, G.J.; Han, J.-Y.; et al. A DNA nanorobot functions

as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018, 36, 258–264. [CrossRef] [PubMed]
4. Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302. [CrossRef]
5. Veneziano, R.; Ratanalert, S.; Zhang, K.; Zhang, F.; Yan, H.; Chiu, W.; Bathe, M. Designer nanoscale DNA assemblies programmed

from the top down. Science 2016, 352, 1534. [CrossRef]
6. Benson, E.; Mohammed, A.; Gardell, J.; Masich, S.; Czeizler, E.; Orponen, P.; Högberg, B. DNA rendering of polyhedral meshes at

the nanoscale. Nature 2015, 523, 441–444. [CrossRef]
7. Weizmann, Y.; Andersen, E.S. RNA nanotechnology—The knots and folds of RNA nanoparticle engineering. MRS Bull. 2017, 42,

930–935. [CrossRef]
8. Hernandez-Garcia, A. Strategies to Build Hybrid Protein-DNA Nanostructures. Nanomaterials 2021, 11, 1332. [CrossRef]
9. Douglas, S.M.; Marblestone, A.H.; Teerapittayanon, S.; Vazquez, A.; Church, G.M.; Shih, W.M. Rapid prototyping of 3D

DNA-origami shapes with caDNAno. Nucleic Acids Res. 2009, 37, 5001–5006. [CrossRef]
10. De Llano, E.; Miao, H.; Ahmadi, Y.; Wilson, A.J.; Beeby, M.; Viola, I.; Barisic, I. Adenita: Interactive 3D modelling and visualization

of DNA nanostructures. Nucleic Acids Res. 2020, 48, 8269–8275. [CrossRef]
11. Šulc, P.; Romano, F.; Ouldridge, T.E.; Rovigatti, L.; Doye, J.P.K.; Louis, A.A. Sequence-dependent thermodynamics of a coarse-

grained DNA model. J. Chem. Phys. 2012, 137, 135101. [CrossRef]

https://github.com/barisicgroup/unf
https://github.com/sulcgroup/oxdna-viewer
https://github.com/barisicgroup/unf
https://github.com/barisicgroup/unf
https://github.com/sulcgroup/oxdna-viewer
https://github.com/sulcgroup/oxdna-viewer
http://doi.org/10.1166/jbn.2014.1930
http://www.ncbi.nlm.nih.gov/pubmed/25992461
http://doi.org/10.1016/j.nano.2018.01.018
http://www.ncbi.nlm.nih.gov/pubmed/29410111
http://doi.org/10.1038/nbt.4071
http://www.ncbi.nlm.nih.gov/pubmed/29431737
http://doi.org/10.1038/nature04586
http://doi.org/10.1126/science.aaf4388
http://doi.org/10.1038/nature14586
http://doi.org/10.1557/mrs.2017.277
http://doi.org/10.3390/nano11051332
http://doi.org/10.1093/nar/gkp436
http://doi.org/10.1093/nar/gkaa593
http://doi.org/10.1063/1.4754132

Molecules 2022, 27, 63 16 of 17

12. Doye, J.P.K.; Fowler, H.; Prešern, D.; Bohlin, J.; Rovigatti, L.; Romano, F.; Šulc, P.; Wong, C.K.; Louis, A.A.; Schreck, J.S.; et al. The
oxDNA Coarse-Grained Model as a Tool to Simulate DNA Origami. 2020. Available online: https://arxiv.org/pdf/2004.05052
(accessed on 15 November 2021).

13. Suma, A.; Poppleton, E.; Matthies, M.; Šulc, P.; Romano, F.; Louis, A.A.; Doye, J.P.K.; Micheletti, C.; Rovigatti, L. TacoxDNA: A
user-friendly web server for simulations of complex DNA structures, from single strands to origami. J. Comput. Chem. 2019, 40,
2586–2595. [CrossRef] [PubMed]

14. Dalby, A.; Nourse, J.G.; Hounshell, W.D.; Gushurst, A.K.I.; Grier, D.L.; Leland, B.A.; Laufer, J. Description of several chemical
structure file formats used by computer programs developed at Molecular Design Limited. J. Chem. Inf. Comput. Sci. 1992, 32,
244–255. [CrossRef]

15. XYZ (Format)—Open Babel. Available online: http://openbabel.org/wiki/XYZ_%28format%29 (accessed on 15 October 2021).
16. Atomic Coordinate Entry Format Version 3.3. Available online: https://www.wwpdb.org/documentation/file-format-content/

format33/v3.3.html (accessed on 15 October 2021).
17. Bourne, P.E.; Berman, H.M.; McMahon, B.; Watenpaugh, K.D.; Westbrook, J.D.; Fitzgerald, P.M. [30] Macromolecular crystallo-

graphic information file. In Macromolecular Crystallography Part B; Elsevier: Amsterdam, The Netherlands, 1997; pp. 571–590.
ISBN 9780121821784.

18. Fitzgerald, P.M.D.; Berman, H.; Bourne, P.; McMahon, B.; Watenpaugh, K.; Westbrook, J. The mmCIF dictionary: Community
review and final approval. Acta Cryst. Sect. A 1996, 52, C575. [CrossRef]

19. Jewett, A.I.; Stelter, D.; Lambert, J.; Saladi, S.M.; Roscioni, O.M.; Ricci, M.; Autin, L.; Maritan, M.; Bashusqeh, S.M.; Keyes, T.; et al.
Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics. J. Mol. Biol.
2021, 433, 166841. [CrossRef]

20. LAMMPS Molecular Dynamics Simulator. Available online: https://www.lammps.org/ (accessed on 15 October 2021).
21. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [CrossRef]
22. Dominguez, C.; Boelens, R.; Bonvin, A.M.J.J. HADDOCK: A protein-protein docking approach based on biochemical or biophysi-

cal information. J. Am. Chem. Soc. 2003, 125, 1731–1737. [CrossRef] [PubMed]
23. Roel-Touris, J.; Don, C.G.; Honorato, R.V.; Rodrigues, J.P.G.L.M.; Bonvin, A.M.J.J. Less Is More: Coarse-Grained Integrative

Modeling of Large Biomolecular Assemblies with HADDOCK. J. Chem. Theory Comput. 2019, 15, 6358–6367. [CrossRef]
24. Honorato, R.V.; Roel-Touris, J.; Bonvin, A.M.J.J. MARTINI-Based Protein-DNA Coarse-Grained HADDOCKing. Front. Mol. Biosci.

2019, 6, 102. [CrossRef]
25. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]
26. Marrink, S.J.; Risselada, H.J.; Yefimov, S.; Tieleman, D.P.; de Vries, A.H. The MARTINI force field: Coarse grained model for

biomolecular simulations. J. Phys. Chem. B 2007, 111, 7812–7824. [CrossRef]
27. Gamini, R.; Chandler, D. Residue-Based Coarse Graining Using MARTINI Force Field in NAMD; University of Illinois at Urbana-

Champaign, Computational Biophysics Workshop: Urbana, IL, USA, 2013.
28. Doty, D.; Lee, B.L.; Stérin, T. scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures. In 26th International

Conference on DNA Computing and Molecular Programming (DNA 26); Geary, C., Matthew, P.J., Eds.; Schloss Dagstuhl-Leibniz-
Zentrum für Informatik: Dagstuhl, Germany, 2020; pp. 9:1–9:17. ISBN 978-3-95977-163-4.

29. Williams, S.; Lund, K.; Lin, C.; Wonka, P.; Lindsay, S.; Yan, H. Tiamat: A Three-Dimensional Editing Tool for Complex DNA
Structures. In DNA Computing; Goel, A., Simmel, F.C., Sosík, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 90–101.
ISBN 978-3-642-03075-8.

30. Parabon NanoLabs. The Parabon™ inSēquio™ Design Studio: The Quintessential Application for Designing DNA-Based
Nanostructures. Available online: https://parabon-nanolabs.com/therapeutics/insequio.html (accessed on 30 November 2021).

31. Huang, C.-M.; Kucinic, A.; Johnson, J.A.; Su, H.-J.; Castro, C.E. Integrated computer-aided engineering and design for DNA
assemblies. Nat. Mater. 2021, 20, 1264–1271. [CrossRef] [PubMed]

32. University of Oxford. Documentation—OxDNA. Available online: https://dna.physics.ox.ac.uk/index.php/Documentation#
Configuration_and_topology_files (accessed on 15 October 2021).

33. Procyk, J.; Poppleton, E.; Šulc, P. Coarse-grained nucleic acid-protein model for hybrid nanotechnology. Soft Matter 2021, 17,
3586–3593. [CrossRef] [PubMed]

34. Kim, D.-N.; Kilchherr, F.; Dietz, H.; Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid
nanostructures. Nucleic Acids Res. 2012, 40, 2862–2868. [CrossRef] [PubMed]

35. Lee, J.Y.; Lee, J.G.; Yun, G.; Lee, C.; Kim, Y.-J.; Kim, K.S.; Kim, T.H.; Kim, D.-N. Rapid Computational Analysis of DNA Origami
Assemblies at Near-Atomic Resolution. ACS Nano 2021, 15, 1002–1015. [CrossRef] [PubMed]

36. Poppleton, E.; Bohlin, J.; Matthies, M.; Sharma, S.; Zhang, F.; Šulc, P. Design, optimization and analysis of large DNA and RNA
nanostructures through interactive visualization, editing and molecular simulation. Nucleic Acids Res. 2020, 48, e72. [CrossRef]

37. Fernandez-Castanon, J.; Bomboi, F.; Rovigatti, L.; Zanatta, M.; Paciaroni, A.; Comez, L.; Porcar, L.; Jafta, C.J.; Fadda, G.C.; Bellini,
T.; et al. Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars. J. Chem. Phys. 2016,
145, 84910. [CrossRef]

38. Snodin, B.E.K.; Randisi, F.; Mosayebi, M.; Šulc, P.; Schreck, J.S.; Romano, F.; Ouldridge, T.E.; Tsukanov, R.; Nir, E.; Louis, A.A.;
et al. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J. Chem. Phys. 2015,
142, 234901. [CrossRef]

https://arxiv.org/pdf/2004.05052
http://doi.org/10.1002/jcc.26029
http://www.ncbi.nlm.nih.gov/pubmed/31301183
http://doi.org/10.1021/ci00007a012
http://openbabel.org/wiki/XYZ_%28format%29
https://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
https://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
http://doi.org/10.1107/S0108767396076593
http://doi.org/10.1016/j.jmb.2021.166841
https://www.lammps.org/
http://doi.org/10.1006/jcph.1995.1039
http://doi.org/10.1021/ja026939x
http://www.ncbi.nlm.nih.gov/pubmed/12580598
http://doi.org/10.1021/acs.jctc.9b00310
http://doi.org/10.3389/fmolb.2019.00102
http://doi.org/10.1016/0263-7855(96)00018-5
http://doi.org/10.1021/jp071097f
https://parabon-nanolabs.com/therapeutics/insequio.html
http://doi.org/10.1038/s41563-021-00978-5
http://www.ncbi.nlm.nih.gov/pubmed/33875848
https://dna.physics.ox.ac.uk/index.php/Documentation#Configuration_and_topology_files
https://dna.physics.ox.ac.uk/index.php/Documentation#Configuration_and_topology_files
http://doi.org/10.1039/D0SM01639J
http://www.ncbi.nlm.nih.gov/pubmed/33398312
http://doi.org/10.1093/nar/gkr1173
http://www.ncbi.nlm.nih.gov/pubmed/22156372
http://doi.org/10.1021/acsnano.0c07717
http://www.ncbi.nlm.nih.gov/pubmed/33410664
http://doi.org/10.1093/nar/gkaa417
http://doi.org/10.1063/1.4961398
http://doi.org/10.1063/1.4921957

Molecules 2022, 27, 63 17 of 17

39. Zhan, P.; Urban, M.J.; Both, S.; Duan, X.; Kuzyk, A.; Weiss, T.; Liu, N. DNA-assembled nanoarchitectures with multiple
components in regulated and coordinated motion. Sci. Adv. 2019, 5, eaax6023. [CrossRef]

40. Marras, A.E.; Zhou, L.; Kolliopoulos, V.; Su, H.-J.; Castro, C.E. Directing folding pathways for multi-component DNA origami
nanostructures with complex topology. New J. Phys. 2016, 18, 55005. [CrossRef]

41. Johnson, J.A.; Dehankar, A.; Robbins, A.; Kabtiyal, P.; Jergens, E.; Ho Lee, K.; Johnston-Halperin, E.; Poirier, M.; Castro, C.E.;
Winter, J.O. The path towards functional nanoparticle-DNA origami composites. Mater. Sci. Eng. R Rep. 2019, 138, 153–209.
[CrossRef]

42. Ahmadi, Y.; Nord, A.L.; Wilson, A.J.; Hütter, C.; Schroeder, F.; Beeby, M.; Barišić, I. The Brownian and Flow-Driven Rotational
Dynamics of a Multicomponent DNA Origami-Based Rotor. Small 2020, 16, e2001855. [CrossRef] [PubMed]

43. Harris, L.J.; Skaletsky, E.; McPherson, A. Crystallographic structure of an intact IgG1 monoclonal antibody. J. Mol. Biol. 1998, 275,
861–872. [CrossRef] [PubMed]

44. Converting caDNAno Design JSON File to All-Atom PDB File|The Aksimentiev Group. Available online: https://bionano.
physics.illinois.edu/sites/default/files/smileyFace.json (accessed on 2 November 2021).

45. Nagamura, R.; Fukuda, M.; Kawamoto, A.; Matoba, K.; Dohmae, N.; Ishitani, R.; Takagi, J.; Nureki, O. Structural basis for
oligomerization of the prokaryotic peptide transporter PepTSo2. Acta Crystallogr. F Struct. Biol. Commun. 2019, 75, 348–358.
[CrossRef] [PubMed]

46. Mak, A.N.-S.; Bradley, P.; Cernadas, R.A.; Bogdanove, A.J.; Stoddard, B.L. The crystal structure of TAL effector PthXo1 bound to
its DNA target. Science 2012, 335, 716–719. [CrossRef]

47. Xue, H.; Yao, T.; Cao, M.; Zhu, G.; Li, Y.; Yuan, G.; Chen, Y.; Lei, M.; Huang, J. Structural basis of nucleosome recognition and
modification by MLL methyltransferases. Nature 2019, 573, 445–449. [CrossRef]

48. Zuo, X.; Wang, J.; Foster, T.R.; Schwieters, C.D.; Tiede, D.M. Rigid-Body Refinement of the Tetraloop-Receptor RNA Complex.
Available online: https://www.rcsb.org/structure/2JYH (accessed on 21 December 2021).

49. Grau, F.C.; Jaeger, J.; Groher, F.; Suess, B.; Muller, Y.A. The complex formed between a synthetic RNA aptamer and the transcription
repressor TetR is a structural and functional twin of the operator DNA-TetR regulator complex. Nucleic Acids Res. 2020, 48,
3366–3378. [CrossRef]

http://doi.org/10.1126/sciadv.aax6023
http://doi.org/10.1088/1367-2630/18/5/055005
http://doi.org/10.1016/j.mser.2019.06.003
http://doi.org/10.1002/smll.202001855
http://www.ncbi.nlm.nih.gov/pubmed/32363713
http://doi.org/10.1006/jmbi.1997.1508
http://www.ncbi.nlm.nih.gov/pubmed/9480774
https://bionano.physics.illinois.edu/sites/default/files/smileyFace.json
https://bionano.physics.illinois.edu/sites/default/files/smileyFace.json
http://doi.org/10.1107/S2053230X19003546
http://www.ncbi.nlm.nih.gov/pubmed/31045564
http://doi.org/10.1126/science.1216211
http://doi.org/10.1038/s41586-019-1528-1
https://www.rcsb.org/structure/2JYH
http://doi.org/10.1093/nar/gkaa083

	Introduction
	State of the Art
	Format Description
	Overall Goal
	UNF File Structure
	Data Hierarchy
	General File Information
	Design Data
	Structural Data
	Other Data

	Converters from Existing Formats
	Cadnano[scale=1.1]Definitions/molecules-1474454-g111.pdfUNF Converter
	PDB UNF Converter
	oxDNA/oxView[scale=1.1]Definitions/molecules-1474454-g111.pdfUNF

	Use Cases
	Multi-Component Designs
	Multilayer DNA Origami Structures and All-Atom Molecules
	Coarse-Grained DNA-Protein Hybrids
	Coarse-Grained RNA Structures

	Conclusions
	Appendix A
	References

