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Abstract

We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach.
The approach stems from the observation that many diverse biological phenomena are described using a small set of
mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of
computational biology require that models are structured according to the accepted terminology and classification of that
domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the
underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more
layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the
limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level
biological modeling concepts are mapped to a computational representation, while abstracting away details of particular
programming languages and simulation environments. To illustrate this process, we define an example language for
describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to
generate model simulation code for various simulation environments. We use the example language to describe a Purkinje
neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of
computational neuroscience model development. We discuss the advantages and limitations of the approach in
comparison with other modeling language efforts in the domain of computational biology and outline some principles for
extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for
our language.
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Introduction

Scientists who construct computational models of biological

processes often find it necessary to use several different software tools

in order to carry out various forms of data analysis and model

simulation. However, each tool may employ its own model

description format, consisting of diverse syntactic structures, and

often can make implicit assumptions that are not reflected in the

corresponding technical documentation [1,2]. As a result, construct-

ing an exact implementation of a published model is a complex and

time-consuming task.

As an example, in computational neuroscience, both the

GENESIS [3] and NEURON [4] simulators provide a parame-

terized form of the Hodgkin-Huxley model [5] as a basic object for

model construction, but with some important differences between

their description languages. The Hodgkin-Huxley object that

exists in the Genesis language allows the rate equations to be

specified in functional form and thus it can express not only the

standard formulation of the model, but a whole family of

conductance-based models of ionic currents. The NEURON

HOC language also provides a Hodgkin-Huxley object, but its

rate equations are fixed and it only allows different values for the

parameters and initial states. NEURON includes a separate

language, NMODL, which is intended for detailed descriptions

of ionic current mechanisms that are distinct from the

Hodgkin-Huxley equations. Hence, the two simulators have very

different assumptions about what is meant by a ‘‘Hodgkin-Huxley

model’’.

6,7]. The Systems Biology Markup Language (SBML) can

represent cell signaling pathways, regulatory networks and other

kinds of biochemical network models [8,9]. CellML aims for a

wider scope of model description and is not specific to any one

field of biology [10,11].

These efforts are now facing their own information exchange

challenges [12]. For instance, the Simulation Experiment Description

Markup Language (SED-ML) [13], which is an emerging standard

for encoding numerical simulation protocols on top of SBML and

CellML, has faced problems such as different sets of mathematical

expressions allowed in different modeling languages and representing

a diverse range of simulation time courses in the simulator software

[14]. Other limitations of existing markup languages for biological

modeling are pointed out in Section Discussion.

These issues suggest that a more comprehensive approach may be

necessary to build an interoperable ‘stack’ of extensible declarative

languages for model description, simulation protocols, data analysis

and so on.

The layer-oriented approach described in this paper is a

methodology to specify the syntax and semantics of several interlinked
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declarative languages (or layers), each targeted at a particular problem

domain, and formally describe how they relate to one another. We

refer to syntax as the grammar according to which the sentences of a

language are constructed; semantics is the system of rules that gives

meaning to those sentences. The layers are not standalone languages,

such as in the case of SED-ML, SBML and CellML, but share

common properties in order to ensure their compatibility.

The work presented here was developed prior to the authors’

involvement in the NineML effort, which is a model description

language developed as part of the Large-Scale Network Modeling

initiative of the International Neuroinformatics Coordinating

Facility (http://www.incf.org/) [15]. The design of NineML is

also divided in semantic layers, however its focus is on describing

large-scale networks of integrate-and-fire neurons, and its design

significantly diverges from the language presented here, which is

oriented towards conductance-based models of ionic currents.

The rest of this paper is structured as follows. Section Results gives

an informal introduction to an example language for describing ionic

currents, presents a high-level overview of the layer-oriented design

of the language and highlights several language features necessary to

express a complex model of currents in the Purkinje neuron. Section

Discussion relates the layer-oriented approach to other model

description language efforts and discusses its advantages and

limitations. Section Methods presents a detailed syntactic and

semantic specification of all layers in the example language and

includes a brief summary of pertinent computer science literature.

Results

We propose the layer-oriented approach as a methodology to

develop common semantics for declarative biological modeling

languages and supporting software tools. The premise of the

approach is that computational models of biology are not merely a

flat collection of equations, but follow a hierarchical structure that

reflects the organization of the actual biological object or process [16].

This work was initially motivated by our attempts to express

models of Purkinje neuron currents in a declarative format and to

solve the problem of automatically merging together ionic current

mechanism descriptions in the NMODL language to reduce

simulation run time (see Section Ionic current mechanism

mapping problem in NEURON).

Implementing the necessary model description concepts in an

equation-based framework while preserving the neuroscience-specific

model structure led us to adopt a general layer-oriented approach,

where neuroscience-specific concepts are explicitly mapped onto

structured equations. As a result, this approach accommodates a

number of additional modeling concepts, supports multiple code

generation targets and further offers several advantages:

1. Semantic unambiguity: every element of a layer-oriented

language has exactly one unique mathematical representation.

2. Extensibility: new elements and corresponding semantics can

be added to layer-oriented language in a consistent and

unambiguous manner.

3. Expressiveness: all possible relationships among the entities in a

model of a biological system can be described.

A key assumption of the layer-oriented approach is that the

target domain of modeling is sufficiently well-defined so that its

concepts can be encoded using the methodology we outline. Thus,

the approach might not be necessarily suited for modeling

techniques that rely on empirical algorithms, as opposed to a

well-understood mathematical theory. This limitation and a

possible methodology for community development of a layer-

oriented language are discussed in Section When and how to use

the layer-oriented approach.

Furthermore, we emphasize that our approach is concerned

specifically with declarative languages. Variations of the layer-

oriented approach based on algorithmic languages do exist in

computational neuroscience. In Section Declarative and Algorith-

mic Languages we discuss this distinction and its implications. The

introduction of Section Methods relates our approach to computer

science literature on domain-specific language design.

The layer-oriented approach by example
We first informally illustrate the layer-oriented approach with

an example language for describing conductance-based ionic

current models. Some technical details are omitted here, but

complete formal grammar and semantic rules for the language are

given in Section Methods. In the following sections we show how

to use this language to describe a complex model of ionic currents

in the Purkinje neuron.

The example language provides convenient idioms for

common neuroscience modeling concepts. The layer-oriented

approach ensures that each language idiom has a consistent

mathematical representation that can be understood by each

simulation or analysis software we desire to use. Furthermore, we

will be able to extend the language by defining new concepts in

terms of differential equations and other mathematical abstrac-

tions.

We begin with a representation of a Hodgkin-Huxley-style

model, which implicitly relies on several physiological modeling

concepts such as Ohmic currents and gating variables.

For the reader interested in technical details, the syntax

presented below uses SXML, an alternative XML Infoset

implementation based on Lisp s-expressions [17]. This syntax

has an exact equivalent in conventional XML, but the use of s-

expressions eliminates the necessity of closing tags and consider-

ably reduces syntactic clutter.

Author Summary

The pursuit for understanding of neural function by
computational modeling has produced a variety of
software tools, with each tool targeting specific audiences
and often requiring input in its own distinct language.
Consequently, comprehending and communicating neu-
roscience models is a difficult and time-consuming task. In
this paper we suggest a new approach towards designing
biological modeling languages, which we call the layer-
oriented approach. The approach stems from the obser-
vation that diverse biological phenomena are described
using a small set of mathematical formalisms (e.g.
differential equations), which are structured according to
some biological principles. Our proposal is illustrated by
means of a computer language for describing computa-
tional models of ionic currents. The language consists of
rules for expressing mathematical equations as well as
rules to organize these equations according to the specific
terminology used by neuroscientists. The layer-oriented
approach offers two chief advantages. First, it allows the
flexible use of mathematical equations to represent many
different kinds of biological models. Second, it restricts the
language within a framework of biological concepts so
that existing modeling software can be reused. The goal of
the layer-oriented approach is to help define appropriate
notations for computational biology while enabling
interoperability of software for biological modeling.

Layer-Oriented Biological Modeling Languages
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(Membrane-potential

(Membrane-capacitance 1.0 uF/cm*cm)

(Ohmic-current Na (E=115 mV) (g_max=120 mS/

cm*cm)

(gating m (power 3)

(forward-rate (2.5 - 0.1*V)/((exp (2.5 -

0.1*V)) - 1))

(reverse-rate (0.125 * exp(-V/80))))

(gating h (power 1)

(forward-rate …)

(reverse-rate …))

) ;; end of Ohmic-current Na

(Ohmic-current K (E=…) (g_max=…)

(gating n (power 4)

(forward-rate …)

(reverse-rate …))

) ;; end of Ohmic-current K

(Ohmic-current Leak …)

) ;; end of Membrane-potential

Although the sentences above are a fairly idiomatic represen-

tation of the Hodgkin-Huxley model, we must ensure that the

underlying mathematics are consistently represented when this

model is loaded in different software environments.

To meet this requirement we need a language mechanism to

automatically transform the above model code into the corre-

sponding equations:

Capacitance=1.0 uF/cm*cm

g_Na=g_max_Na * m_Na * m_Na * m_Na * h_Na

I_Na=g_NA * (V - E_Na)

dm_Na/dt=alpha_m_Na(V) * (1 - m_Na) - beta_m_Na *

m_Na

alpha_m (V)=(2.5 - 0.1*V)/((exp (2.5 - 0.1*V)) - 1)

…

V=- (I_Na+I_K+…)/Capacitance

Figure 1 is a conceptual overview of the steps performed by such

a transformation mechanism in order to construct ionic current

and membrane potential equations. In step A.1 the gating variable

declarations are used to construct the gating dynamics equation,

and in step A.2 the maximal conductance and reversal potential

declarations are combined together to form the complete ionic

current equation. In step B.1 all Ohmic current declarations are

assembled together and used to construct the membrane potential

equation in step B.2.

This kind of transformation mechanism is key to ensuring

consistency of the mathematical representations of our model.

Furthermore, extending the set of available model description

concepts then becomes a matter of defining appropriate transfor-

mation rules. For example, to accommodate Goldman-Hodgkin-

Katz (GHK) currents we use the transformation rules illustrated in

Figure 2. This example already demonstrates the extensibility of

the layer-oriented approach. Figure 2 clearly shows that incorpo-

rating this important feature requires only minimal extensions to

the structures presented in Figure 1. Note that the gating

mechanisms are identical for Figures 1A and 2A and that

Figure 2B just adds GHK currents at the appropriate structure

without disturbing the overall model structure.Analogously with

the Ohmic current transformation, step A.1 constructs the gating

dynamics and step A.2 constructs the GHK current equation.

Thus, the layer-oriented approach is primarily concerned with

definitions of biological modeling concepts and their equivalent

equational form. The transformation from one to the other is

explained in detail in the following sections.

Concepts of the layer-oriented approach
The layer-oriented approach is a structured methodology to

define notations for declarative computational models. It involves:

N language layers, which are collections of grammatical rules that

correspond to concepts from a particular domain, such as

computational neuroscience or differential calculus;

N semantic transformation functions, which assign semantics to the

layers, in the form of rules that specify how concepts from one

layer can be represented by a combination of concepts in

another layer.

The question of which biological modeling and mathematical

concepts are chosen and grouped in layers is one that must be

properly answered by the scientific community. The layer-oriented

approach provides the technical means to formalize the relation-

ships between the domains of biological modeling and mathemat-

ical concepts. The process of formalizing these relationships is a

way to identify and eliminate potential flaws in the language and

to communicate the language semantics in a concise manner.

More on this topic can be found in Section When and how to use

the layer-oriented approach.

As a concrete example, Figure 3 illustrates the structure and the

relationships of several language layers that together can describe

the structure of computational neuroscience models of ionic

currents as well as voltage clamp protocols, explained below.

The ionic current layer consists of elements that correspond to

neuroscience modeling concepts, such as channel gates and ionic

conductances. The mathematical layer consists of elements that

correspond to general mathematical concepts, such as rate equations

and functions.

Figure 3 is not meant to be an exhaustive representation of the

biological modeling ‘universe’. It can be easily conceived that e.g.

adding stochastic differential equations to the mathematical layer

will allow a range of stochastic models to be included in the higher

layers. The point is that the layer-oriented approach enables such

additions to be explicitly and clearly specified while preserving full

compatibility with existing definitions, as illustrated with the GHK

example in Figure 2.

A metalanguage for describing layers and
transformations between them

In our approach, a semantic transformation function is a

collection of rules that specify how concepts from one layer are

represented as a combination of concepts from another. An

important practical aim is to represent the layers and the

transformations between them by means of a mathematical

notation that does not have the clutter of programming details

Layer-Oriented Biological Modeling Languages
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inherent to a concrete implementation yet can be easily expressed

in any reasonable programming language.

Thus, the semantic transformation functions in this paper are

written in a metalanguage that contains the essence of some typical

patterns of programming languages. With this approach, the

semantics of layer-oriented language can be described indepen-

dently of the implementation language by a sequence of various

layer transformation functions, e.g.:

T intermediate :: ~T nest?T membrane{potential?T flatten?T sort?T codegen

The sequence of transformation functions comprising T intermediate

describes a set of common operations necessary to express a model

of ionic currents as an environment of equations conforming to the

syntax of the equation-oriented mathematical layer (detailed

definitions are given in Section Methods).

The specification of a layer-oriented language then takes the form

of semantic transformation functions for all layers, which can be

straightforwardly mapped to an implementation. We note here that

the metalanguage is not concerned with issues such as error handling

for invalid input as these are details unique to each implementation.

Figure 1. Conceptual overview of the transformation steps involved in generating a membrane potential equation from a
collection of Ohmic current definitions. Step A.1 obtains the constituent parts of the gating component and constructs the gating dynamics
equations. Step A.2 constructs the ionic current equation using the gating variables, maximal conductance and reversal potential declarations. Step
B.1 assembles together all Ohmic current declarations and Step B.2 is constructing the membrane potential equation.
doi:10.1371/journal.pcbi.1002521.g001

Layer-Oriented Biological Modeling Languages
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Figure 2. Conceptual overview of the transformation steps involved in generating a membrane potential equation from a
collection of Ohmic and GHK current definitions. Step A.1 constructs the gating dynamics equations and extracting the maximal permeability
and concentration definition. Step A.2 constructs the ionic current equation using the gating values, the maximal permeability and the GHK equation,
which depends on the definitions of concentration. Step B.1 assembles together all Ohmic and GHK current declarations and Step B.2 constructs the
membrane potential equation.
doi:10.1371/journal.pcbi.1002521.g002
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A further practical benefit of this manner of specification is that

semantic transformation functions provide a convenient blueprint

for code generation, or the process of transforming computational

biology models to computer-executable form [18], in this specific

instance generation of Matlab or NMODL language. The two

sequences of transformation functions below describe code

generation for two very different software platforms (Matlab and

the NEURON simulator) using largely identical sequences of steps

(details are given in Section Methods).

Matlab generation : model?T intermediate?Cmatlab

NMODL generation : model?
T intermediate

T ionic{role

� �
?Cnmodl

From a practical standpoint, T intermediate and its constituent parts

need only be implemented once and reside in a standard software

library, which can then be shared between multiple simulators and

other software that aims to read this particular model description

language. Additional information for code generation, such as

provided by T ionic{role (needed for NEURON) can also be specified

with semantic transformation functions and implemented either as

part of the standard library or for specific platforms.

The transformations specific to neuroscience modeling soft-

ware are briefly described in the following sections. All transfor-

mation functions mentioned in this section are defined in Section

Methods

Components and structured layer-based models of ionic
currents

Our model examples thus far have included the use of two

layers, one for ionic current descriptions and one for equations and

functions. The equation layer omitted any of the structure

associated with biological interpretation of the equations, such as

the gating elements. But the language must have the capability not

merely to represent a set of equations, but to group related

definitions and equations across layers.

We therefore introduce the notion of model components, which

encapsulate related equations and functions that are part of a

model. They are generic entities that are not concerned with how

these equations are grouped together and permit arbitrary nesting

of sub-components. We further characterize a component by its

type and output quantities.

From the point of view of biological modeling, only particular

combinations of nesting are valid. Wimalaratne et al. observed that

allowing arbitrary structuring of hierarchical biological models leads

to difficulties in model exchange, and therefore we need to define

Figure 3. Conceptual layers of modeling and their relationships.
doi:10.1371/journal.pcbi.1002521.g003

Layer-Oriented Biological Modeling Languages

PLoS Computational Biology | www.ploscompbiol.org 6 May 2012 | Volume 8 | Issue 5 | e1002521



rules that require models of ionic currents to be structured

according to the accepted principles of computational biology [19].

The syntax and semantics of the component layer and

structuring rules are given in Section Methods. These rules

stipulate that the following structure must be followed:

(Membrane-potential Modelname

(Membrane-capacitance (out C)

… definition of capacitance …)

(Ohmic-current (name ion)

(gating (out m)

… equations for channel gate dynamics …)

(pore (out gbar)

… equations and parameters of maximal conduc-

tance …)

(permeating-ion (name ion) (out e)

… definition of reversal potential …)))

Compared with the previous example, the model structure

above explicitly labels the sub-components of the ohmic current

component (gating, pore and permeating-ion). While slightly more

verbose, this notation allows easier formulation of transformation

rules, as we explain in Section Methods.

These are not intended to be authoritative rules, but an

illustration of the capabilities of the layer-oriented approach. A

different set of rules can be easily formulated and formalized as

determined by discourse in the scientific community. Further

details can be found in Section Discussion and Section Methods.

The Khaliq-Raman model of the cerebellar Purkinje neuron
We have used the prototype language to implement a previously

published model of the Purkinje neuron. The component

abstraction gives us the ability to construct models as aggregations

of components containing definitions of ionic gates, conductances

and so on. Figure 4 illustrates the component structure of our

description of the Khaliq-Raman model of cerebellar Purkinje

neurons (ModelDB accession number 48332) [20]. The complete

prototype listing is given in Supporting Text S1.

Our layer-oriented description of this model consists of the

Ohmic and GHK current components already mentioned as well

as a calcium concentration dynamics components that will be

explained in the following subsections.

Parametric gating dynamics. The declarations contained

in the Ohmic-current component shown in Figure 4 define four

relations that represent activation and inactivation rates and whose

expression bodies are omitted from the figure for brevity. The

construct HH-gating-dynamics is a template which is expanded

into equations for the two state variables m and h using the given

rate function expressions.

Templates are special case of components where the contained

equations are required to have certain names. A regular

component can contain equations and functions with arbitrary

names, but the HH-gating-dynamics template must contain

equations that are exactly called m_inf, tau_m, etc. In all other

aspects, templates are treated in the same manner as the other

types of components.

The transformation function for HH-gating-dynamics is

given in Section Methods.

Resurgent sodium current. Although the definitions shown

above refer to standard Hodgkin-Huxley-type models, arbitrary

reaction rules to represent gate dynamics can be included in the

model as long as the correct component interface is used.

Moreover, models of additional biophysical processes can be

seamlessly incorporated in the functions that compute the channel

opening and closing rates.

The resurgent sodium current in the Khaliq-Raman model

uses a 13-state kinetic scheme and therefore we must use the

Reaction type of equation, rather than the HH-gating-dynam-

ics template. The transformation procedures for the lower-level

layers already handle kinetic schemes, as shown in Section

Methods and therefore we can represent this type of current

without further extensions to the language. A fragment of the

resurgent sodium kinetic scheme is shown in the Narsg

component box in Figure 4.

P-type calcium current. The Khaliq-Raman model uses the

standard Ohmic equation to describe most of its currents and the

Goldman-Hodgkin-Katz (GHK) constant field equation [21] to

describe its P-type calcium current. As illustrated in the

introductory example, this has necessitated the addition of a

GHK current transformation function and extending the mem-

brane potential transformation function with an additional clause,

following the GHK formulation [22].

The definition of the GHK current transformation function is

given in Section Methods. It still refers to probability that channel

gates are open, however the current equation now refers to a

permeability quantity p and no longer includes reversal potential.

We have extended the set of component types with the type

permeability and use it to encapsulate equations that compute

current rather than conductance.

The CaP current can then be formulated by means of the

permeability component, as shown in the the CaP component box

in Figure 4.

In the code shown in the figure, the external calcium

concentration is a constant but the internal concentration is given

by variable cai, which does not appear to be defined in the

component. As we will see in the next section, the internal

concentration dynamics are defined in a separate component,

which is not visible in the component defining the CaP current. In

the present paper, we address this issue by a global declaration that

specifies that the global identifier cai is related to the definitions in

the calcium concentration component so that it is visible to

declarations from other components:

input (cai from decaying-pool ca)

The above declaration specifies that the value cai must come

from a component named ca of type decaying-pool. An

example of such a component comes next.

Calcium concentration dynamics. Our description of the

Khaliq-Raman model includes the component type decaying-

pool, which is used to encapsulate the calcium concentration

dynamics of the model. The representation of this component is

the calcium decay equation due to Traub [23], shown in Figure 4.

The cac variable is exported from this component and, because

of the input declaration in the previous section the semantic

transformations described in Section Methods assign the value cac

to the global cai.

Simulation experiments
The layer-oriented approach can be easily applied to describing

simulation experiments. The simulation results in Figures 5 and 6

Layer-Oriented Biological Modeling Languages
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were produced from the same model description with code

generated by our prototype implementation of a translator for

layer-oriented neuroscience models, as applied to the Khaliq-

Raman model. The simulation software used was NEURON 7.1

and GNU Octave 3.2, in both cases running under Debian Linux

5.0 on a Dell Precision T5400 workstation. The code generation

algorithm is based on the transformation rules defined in Section

Methods. Additional simulation results addressing runtime

efficiency in the NEURON simulation environment are described

in Section Ionic current mechanism mapping problem in

NEURON and presented in Supporting Figure S1.

The transformation functions for simulation experiments are

given in Section Methods. We define two new types of components,

simulation and voltage-clamp, and use them to specify

simulation and voltage clamp parameters for the different currents

of the model, e.g.:

Figure 4. Components of a layer-oriented implementation of the Khaliq-Raman model of the Purkinje neuron. The model
representation in the ionic current layer consists of a set of components that refer to the various biological concepts in the model — membrane
capacitance, calcium concentration dynamics and the ionic currents comprising this model. Each component contains mathematical definitions
pertaining to those biological concepts.
doi:10.1371/journal.pcbi.1002521.g004
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(simulation (out duration stepsize)

(const duration=2000)

(const stepsize=1e-4)

)

(voltage-clamp (name CaBK)

(out hold base stepsize nsteps holding-duration

base-duration)

(const hold=-90)

(const base=-40)

(const stepsize=10)

(const nsteps=5)

(const holding-duration=5)

(const base-duration=20))

The semantics associated with each component of type voltage-

clamp require that there must be a corresponding ionic current

component of the same name. This then allows the generation of

voltage clamp scripts that are consistent with the currents of the model.

Ionic current mechanism mapping problem in

NEURON. To aid the construction of models and simulations

the NEURON simulation environment provides a number of

predefined constructs that correspond to familiar neuroscience

idioms. User-defined mechanisms, such as voltage- and ligand-

gated ion channels, diffusion, buffering, etc., can be added to the

default set of mechanisms by writing model descriptions in

NMODL, an equation-oriented declarative language.

These mechanisms are often structured such that there is a one-

to-one mapping between NMODL files (.mod extension) and ionic

current mechanism descriptions (7 A).

However, it is frequently advantageous to combine the

descriptions of several mechanisms in the same NMODL file so

that their equations can be solved together, in order to improve

the numerical efficiency of the simulation. Unfortunately, the

Figure 5. Comparison between simulation runs of the Khaliq-Raman model under different computing environments. NEURON is a
software for simulations of neurons and networks of neurons. GNU Octave is an open-source equivalent to Matlab. The NEURON simulation was
conducted with NEURON 7.1 using the cvode method, and the GNU Octave simulation was conducted with Octave 3.2 using the RADAU solver from
the OdePkg toolbox version 0.6.10. In both cases, the software was run under Debian Linux 5.0 on a Dell Precision T5400 computer (CPU Intel Xeon
E5430 2.66 GHz). The difference in how the respective simulation platforms compute the initial values for the resurgent sodium current causes the
initial discrepancy between the two simulation runs.
doi:10.1371/journal.pcbi.1002521.g005
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standard NEURON software does not provide means to merge

mechanism descriptions automatically and users are forced to

maintain large NMODL files that are difficult to read and

understand. Ideally, the modeling language must permit an easy-

to-read model description that can be automatically transformed

into efficient code (Figure 7 B).

The difficulty in combining the ionic current equations together

comes from the fact that the same variable names may be used for

equations that belong to different types of ionic currents. This is not

a problem as long as these equations reside in separate NMODL

files, however merging them together presents the risk of collisions

between common variable names (e.g. gbar) and therefore the users

must resort to a very careful (and possibly verbose) coding style to

ensure unique naming.

This issue is naturally solved by the modularity and semantic

unambiguity of our approach because the equations for each ionic

current reside in separate components and a renaming step in the

transformation function ensures that each variable has a unique name

that is prefixed by the name of the component (specified in detail in

Section Methods). Furthermore, each ionic-current component

contains information identifying the ionic species, which is used to

combine the current equations for all channels of a given ionic species.

As a result, the NMODL code generator implemented in our

prototype software allows a very systematic methodology for

exploration of NEURON’s performance. We have conducted a

number of performance benchmarks with the Khaliq-Raman

model, as detailed in Supporting Figure S1. The average simulation

time using merged mechanism descriptions was reduced by 18.5%

when using NEURON’s variable time step solver and by 22.3%

when using NEURON’s fixed time step solver.

Discussion

The shortcomings of existing standardization efforts suggest that

future work should address the formal specification of mathematical

concepts and the mapping of high-level modeling concepts to

computational representation. This will make it possible to uniformly

describe, share and use a new modeling technique within the same

language. In particular, we believe that the layer-oriented approach

has the following advantages over the existing approaches.

Figure 6. Comparison between voltage clamp simulation of the Khaliq-Raman model under different computing environments. The
NEURON simulation was conducted with NEURON 7.1 using the cvode method, and the GNU Octave simulation was conducted with Octave 3.2 using
the RADAU solver from the OdePkg toolbox version 0.6.10. In both cases, the software was run under Debian Linux 5.0 on a Dell Precision T5400
computer (CPU Intel Xeon E5430 2.66 GHz).
doi:10.1371/journal.pcbi.1002521.g006
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Semantic unambiguity
The different domains and subdomains of computational

biology each require that models are structured according to the

accepted terminology and classification of that domain. Therefore,

successful development of future biological modeling languages

will depend on appropriately formalised representation of domain

knowledge. One common approach to developing such formal-

izations are the multiple ontological efforts to represent various

biological entities for multiple levels of granularity [24].

Our layer-oriented approach complements ontologies with the

systematic development of domain-specific language rules so that the

conventions and categories of the domain are distinctly and clearly

represented to the user, while generality is preserved by the

underlying layers that provide access to general mathematical and

algorithmic concepts.

Extensibility
By ‘extensibility’ we mean functionality to describe new modeling

techniques in addition to those provided by standard model databases.

For example, suppose that a scientist wishes to use conditional

expressions in the mathematical layer of a layer-based language,

which is necessary for e.g. threshold detection in the integrate-and-

fire formalism [25].

In such a case, the mathematical layer can be extended with

conditional primitives to express transitions between dynamical

systems and the neuroscience modeling layer can be extended with

a regime concept, which encapsulates the subthreshold equations

and specifies the firing condition and reset equation. The mapping

between the high-level regime concept and the condition

primitives can be defined by a semantic transformation function.

As another example, suppose that a scientist wishes to integrate

morphological descriptions in a layer-based language. While the

examples in this paper do not address geometric descriptions and

partial differential equations the same transformation approaches

can be applied to define complex surfaces and dynamics based on

core abstractions for spatial PDEs.

Once the precise hierarchy of concepts and mathematical

mechanisms are defined by the community, a layer-oriented

language can allow scientists using the language to formally describe

new approaches and make them shareable without having to alter

the core language specification, as must be done for NeuroML.

Expressiveness
As already observed by Wimalaratne, et al., explicitly defined

hierarchical structuring rules are a necessity for many kinds of

biological modeling. As we discuss in Section Existing biological

Figure 7. Ion channel mechanism mapping problem in NEURON. A) standard approach; B) merging of several ion channel mechanisms in
order to improve efficiency. Our layer-oriented code generation tool generates the .mod files, the .c files are generated by NEURON.
doi:10.1371/journal.pcbi.1002521.g007
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modeling languages, some of the key evolutionary improvements in

existing and emerging modeling languages are related to modularity,

hierarchical structuring and expressing relationships between different

components of a biological model. These properties are well-addressed

in our approach by means of compositionality.

We refer as compositionality to the ability to compose a model

from pre-existing parts. For example, given a set of standard ion

channel objects from a model library and a set of parameters

provided by the user, the equations for the model could be

automatically constructed depending on the chosen channel objects.

A sophisticated component model is required to support

descriptions such as a dendritic maximal conductance that is

dependent on distance from the soma [26]. In order to support

such functionality, the language must have formal semantics for

composition and extension.

Layer-based components in a biological modeling language can

express different functional and structural relationships and allow

scientists to invent and share their own components, as well as

build on the existing mechanisms.

When and how to use the layer-oriented approach
One of the most important problems facing biological modeling

languages is formulating the extent and requirements of the target

domain. The layer-oriented approach provides the technical

means to formalize the relationships between the domains of

biological modeling and mathematical formalisms, but the

researchers who wish to design and use such a language must

already have some informal understanding of these relationships.

Once the domain is well-defined in terms of mathematical

formalisms, as is the case with deterministic models of ionic

currents in computational neuroscience, our layer-oriented

approach can be applied by constructing a formal grammar for

the language and corresponding transformation rules that

explicitly link the biological modeling concepts to mathematical

formalisms. As we show in Section Methods, the transformation

rules can be written in a metalanguage that generalizes the typical

patterns of programming languages without the operational details

of a real implementation. The process of writing and understand-

ing such rules assists researchers in clarifying and refining the

semantics of the language, as Scott and Strachey showed in their

influential work on programming language specification [27,28].

Constructing a set of transformation rules for a given biological

modeling concept may be a whole scientific endeavor, such as, for

example, approximating the voltage dynamics of 3D cell

membranes with the 1D cable formalism commonly used in

computational neuroscience [29].

Furthermore, our approach relies on a mathematical language

that is sufficiently rich to formulate all concepts and problems of

the scientific field of interest. The development of computational

science suggests that mathematical languages based on ODEs and

PDEs are well-suited to express many theories and concepts of

physics and chemistry. However, additional formalisms, such as

stochastic equations, may be necessary to model problems in

computational biology. The layer-oriented approach as a method

for interoperability assumes that such additional formalisms would

be consistently supported by several software platforms.

It is possible that for some biological concepts there exist

semantic ambiguities, i.e. several alternative mathematical formu-

lations. The layer-oriented approach is modular and can

accommodate different sets of transformation rules for the same

concepts in the form of namespaces or modules [30], but

ultimately it is the responsibility of the language designers to use

such technical tools to resolve the differences between the

mathematical approaches.

The layer-oriented approach would not be applicable in a case

where a biological modeling concept has only an empirical

algorithmic representation and no consistent underlying mathe-

matical theory. This is a consequence of the declarative nature of

the approach. For example, the exact stochastic simulation

algorithm (SSA) is widely used in computational biology [31].

However, the necessity to simulate every reaction event causes the

algorithm to be too slow for some applications. An approximation

strategy known as tau-leaping sacrifices exactness for reduced

computational cost [32]. At present there is no widely adopted

declarative generalization of SSA and tau-leaping, although

proposals have been made [33]. Applying the layer-oriented

approach to modeling problems based on tau-leaping, or other

approximations of SSA, would require that the various decision

procedures involved are represented in a declarative form that

reflects the underlying mathematical model. In this sense our

approach is limited by the scientific understanding of the concepts

in the particular modeling domain.

Another important aspect of designing biological modeling

language is the process of community validation. For instance, the

community validation process of SBML Level 3 involves having at

least two independent software implementations of a proposed

feature before that feature can be considered for inclusion in the

standard. From our personal observations on the development

process of the emerging NineML language, the NineML

committee has also converged on peer-reviewing implementation

code as means to ensure that prototype implementations of the

language not only have the same grammar, but also have

consistent and community-approved semantics. However, the

informal processes of SBML and NineML are limited by the fact

that code in different programming languages cannot in general be

directly compared. The layer-oriented approach is a way to lift this

restriction. It enables the community first to agree on the semantic

transformation rules, then to relate them to particular software

implementation. It does not mandate a particular implementation,

or a particular programming language, and thus can be used by a

diverse community of developers. As a further step in language

specification, the layer-oriented approach opens the possibility for

using mathematical reasoning methodologies [34] to formally

prove that a particular software implementation is faithful to a

particular set of semantic transformation rules.

Declarative and algorithmic languages
Variations of the layer-oriented approach are not new to

computational neuroscience. The NEURON simulator has

pioneered the use of an introspective interpreter (HOC or Python)

and a declarative model description language (NMODL) for

extending the available modeling mechanisms.

However, the work presented here is specifically concerned

with layers of purely declarative languages. In our approach, the

interfaces between layers are explicitly specified in an implemen-

tation-neutral mathematical notation and additional layers can

be introduced in a consistent and conceptually clear manner.

In contrast, simulators such as NEURON typically employ an

algorithmic language for experiment control and a declara-

tive language for model equations, and the details of interfacing

the two languages are unique to the particular software

implementation.

Declarative languages describe problems in a particular

domain, and possibly some properties of the desired solutions,

rather than explicit mechanisms for computing solutions [35,36].

Algorithmic languages take the form of stepwise machine

instructions for performing computation. Algorithmic languages

have much greater expressive power than declarative ones,
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however they introduce operational details that might be entirely

irrelevant to the higher-level concepts that they express.

Because of the expressiveness of algorithmic languages, it could

be argued that all tasks in neuroscience simulation and modeling

could be accomplished with a combination of NMODL and HOC

or Python, or similar combination of declarative and algorithmic

languages. However, the many engineering details of interfacing

such languages – variable scoping, data representation and

propagation, control flow – would make any such combination

of languages unique and difficult to comprehend and to replicate

in different software implementations.

Because in our approach each layer is declarative and

constrained to a specific purpose, a complete set of rules can be

given for how the different layers relate to one another and how

executable code can be generated from a layer-based description.

Such rules then provide a convenient blueprint for consistent and

interoperable software implementations.

Existing biological modeling languages
NeuroML. The primary goals of the NeuroML family of

modeling languages [6,7] are ability to express commonly used

concepts in computational neuroscience and support of a large

number of published models. To achieve these goals, the

NeuroML development team has been focused on defining

language concepts that closely correspond to the modeling idioms

used by existing and well-established simulators, such as NEU-

RON and GENESIS.

However, a number of sweeping changes to the language were

found necessary by the NeuroML team when it was decided to

support the PSICS software [37] as a simulation platform. This

restructuring revealed some weaknesses of NeuroML 1.x, which

are consistent with our experiences with describing the Khaliq-

Raman model using ChannelML versions 1.6.x and 1.7.1. We can

summarize these weaknesses in the following categories:

1. Lack of formally-defined semantics for the elements of the

language: The ChannelML 1.x standard does not give the

precise mathematical definition of its concepts, nor how each

concept relates to the other structures in the language. It

merely states that a ‘ChannelType’ entity could contain an

‘hh_gate’ or a ‘ks_gate’, but the proper mathematical and/or

algorithmic background is not given anywhere in the

specification.

The problem with this approach is that it is very difficult to

ensure consistent semantics when transforming ChannelML

models to code for particular simulators and analysis software,

such as NEURON and XPP [38].

2. A lack of means to specify conductance and current laws: The

lack of a mathematical model for ChannelML means that no

support is provided for non-Ohmic definitions of conductance

and current, such as the Goldman-Hodgkin-Katz formalism.

SBML and CellML. SBML [8,9] and CellML [10] are two

well-known XML-based model exchange formats used in the life

sciences. SBML in particular is well supported by a wide array of

software packages. SBML is designed so as to capture several

biophysical concepts at the core language level. For example,

chemical reactions and species are an integral part of the language

core. SBML was originally developed for exchange of monolithic

models between simulation programs and its Level 1 and 2

specifications did not support reusable model components [39].

SBML Level 3 is developed as a modular language and its

specification is organized in a central core and extension packages

layered on top of this core [8].

CellML version 1.1 is more abstract and provides a component

abstraction with flexibility sufficient to model different types of

biological concepts. A CellML component can be an entirely

conceptual entity created for modeling convenience, or it can have

some real physical interpretation (for example, it could represent the

cell membrane). CellML allows several kinds of relationships between

components to be expressed, such as containment or connectivity.

However, the component model of CellML 1.1 does not permit

user-defined component relationships in a semantically meaningful

way, nor does it support parametric components. Furthermore,

the CellML specification offers few guidelines for how to produce

well-structured, layered models. A mathematical model of a

biological process can be represented in CellML in many different

ways and the structure of a model mainly depends on the style of

the individual author. Wimalaratne et al. have published

guidelines for structuring CellML models, which encourage

hierarchical structuring and reusable components with generic

mathematical expressions [19]. But as the CellML specification

and tools do not currently support the codification of these

informal guidelines, the biophysical concepts isolated in one

CellML model cannot be conveyed in a machine-readable format

to the software that interprets this model.

InsilicoML. InsilicoML (ISML) is a language that can

explicitly describe hierarchical structures of physiological functions

in a mathematical model [40]. In ISML, each part of a model is

called a module and relationships between modules are defined as

edges. ISML is fully compatible with CellML 1.0 and adds features

to annotate models with ontological information and links to

model databases.

ISML features extensive support for spatial PDEs and its modularity

features are an evolutionary improvement over CellML. Two unique

features of ISML are the morphology and time series data types, which

allow direct integration of models with experimental data.

Efforts such as ISML highlight the importance of layered

semantic specification for biological modeling languages. In

systems biology, models that integrate heterogeneous experimental

data, which are stored in numerous life-science databases, can

have considerable errors in data integration if different sources do

not describe their information consistently [41]. Furthermore, a

layer-oriented approach can be used to formally describe the

features unique to ISML and incorporate them in other modeling

languages and existing software.

PyNN. PyNN is a software package for simulator-independent

specification of neuronal network models [42]. PyNN allows the

users to write network model code in the Python programming

language, and then run it without modification on any of the four

simulators supported by PyNN.

The PyNN API is mainly aimed at describing populations of

neurons and the connections between them. Neuronal dynamics are

described not on the equation level, but are referenced via a library

of standard neuron types. PyNN can express concepts commonly

found in neuronal network modeling, however the exact computa-

tional semantics remain implicit in the targeted simulator platforms.

Reproducibility of results in different simulators can be achieved

with PyNN only for those models that are a part of the pre-defined

neuron library. Extending the repertoire of models supported by

PyNN is achieved by implementing the necessary extensions in

Python using specific internal APIs.

Our approach differs than that of PyNN in two ways. First, the

layer-oriented language presented here is not a collection of

models, but a collection of general concepts, such as Ohmic

currents and differential equations, that can be then utilized to

build particular models. This means that, as long as a model is

expressible with these concepts, executable code can be automat-
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ically generated for this model by applying common semantic

transformation rules and performing a final code generation step

for the specific executable target.

Second, the specification of a layer-based model description

language is intended to be independent of the semantics of the

implementation language and thus our semantic transformation

rules are given in a notation that is easy to encode in general-

purpose programming languages, but is not biased towards a

specific one. If, for example, one wished to implement some or all

of the functionality of PyNN in a language such as Java, then they

must find a way to translate the idioms of Python and the data

structures and algorithms of PyNN to a suitable and idiomatic Java

representation. Our semantic transformation rules rely on simple

pattern match (destructuring), function call, list/set construction

and decomposition. These are all operations present in the

popular programming languages of today and thus it is possible for

PyNN to accommodate our semantic transformation functions.

Summary
Designing modeling languages involves the translation of the

concepts of the domain into semantic concepts appropriate for

computer representation. Often the transformation from domain-

specific concepts into computer code cannot be done in a single step

but requires several intermediate steps. The layer-oriented ap-

proach is an attempt to discern these intermediate semantic steps.

The layer-oriented approach relies heavily on model structuring.

Structuring is a common modeling technique of dividing an object

into a number of parts and indicating relationships between these

parts. In this way quite naturally a layered model arises. Our

prototype language defines a form of structuring based on compo-

nents that allows models of arbitrary complexity to be constructed. In

this way, the language provides extensibility and flexibility in

describing new models that involve detailed biophysical modeling.

Methods

Our approach is inspired by the work of Scott and Strachey on

the mathematical foundations of the semantics of programming

languages [27]. Scott and Strachey attempted to formalize and

make explicit the meta-theories intuitively employed by language

designers, and developed solid mathematical methods for language

engineering [28]. Their approach resulted in clear, concise and

unambiguous specification of programming language semantics

and compiler transformations.

Among the innovations of Scott and Strachey was a calculus for

semantic description in the form of a minimal metalanguage based

on the lambda calculus [43]. Our metalanguage is based on a

small subset of the Standard ML programming language [44] and

is summarized in the following section.

While the present paper cannot include an exhaustive discussion

of the software engineering methods for constructing a layer-

oriented language, Paulson’s ‘‘ML for the Working Programmer’’

[34] has a practical introduction on modeling domain concepts as

mathematical objects, while Gunter’s textbook on semantics [45] is

an in-depth treatise on the mathematical foundations of

programming languages.

From the point of view of domain-specific languages, our

approach is most closely related to the pipeline pattern identified

by Spinellis [46]. The pipeline pattern involves a chain of domain-

specific language processors that are each dedicated to a specific

sub-language. As Spinellis points out, ‘‘often a system can best be

described using a family of DSLs,’’ and, ‘‘the use of the pipeline

pattern encourages the division of responsibility among small

specialised DSLs and discourages bloated feature-rich language

designs.’’ Our approach refines the pipeline pattern in that all

possible transformation paths are explicit, thus allowing a more

rigorous process of validating and extending the language, but

possibly at the loss of some flexibility.

Metalanguage definitions
The following syntactic constructs are used in the metalanguage:

identifier

identifier(x)~expr ½Functional abstraction with argument x�

expr expr ½Functional application�

pat½ �½ � Pattern match sequence of verbatim symbols andð½

pattern variablesÞ�

Expressions in the metalanguage are typically constructors for the

various data structures that correspond to the domain-specific

syntaxes discussed in this paper. For example, the definition

T const x~e½ �½ �~x : Parameter[ :e

means that metafunction T matches the sequence consisting of the

symbol const, followed by the pattern variable x (which must be of

a defined type), the symbol = and the pattern variable e. The result

of the function is an entry constructed using the pattern variables

and the Parameter constructor defined previously.

An ionic current description language
The language we have developed for describing models of ionic

currents has a hierarchical structure that is meant to reflect the

logical relationships between the different parts of ionic current

descriptions. For example, an Ohmic current consists of ionic

current name, gating dynamics description and maximal conduc-

tance definition.

The syntax of this language in Backus-Naur form [47] is given

below. We note that the definition of the Equation domain is not

part of this language but refers to the equation-oriented language in

the next section.

x [ Symbol

e [ Expression

n [ Equation

m [ Membrane potential

c [ Ohmic current

h [ GHK current

g [ Gating

m :: ~ Membrane{potential (Membrane{capacitance n) c � 1

c :: ~ Ohmic{current (name xion) (pore n � 1)

(permeating{ion n � 1) g � 1

g :: ~ gating (power e) (forward{rate e) (reverse{rate e)

An equation-oriented language
We base our layer-oriented approach on a domain-specific

language that is capable of expressing differential and algebraic

equations and later use it to construct complex models of ionic

currents.
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The language has a simple syntax for expressing relations and

first-order differential equations, and we define a transformation

function on this syntax that transforms every declaration in the

language to an intermediate form suitable for further processing,

such as code generation, or some type of model transformation,

such as parameter perturbation.

The syntax of this language in Backus-Naur form is:

x [ Symbol

e [ Expression

k [ Parameter

a [ AlgebraicEquation

r [ Relation

d [ ODE

o [ Reaction

k :: ~ const x ~ e [Constant during integration]

a :: ~ x ~ e [Algebraic equation]

r :: ~ xname (xformal) ~ e [Relation]

d :: ~ d (xvariable)~e [ODE of the form dx/dt = e]

o :: ~ reaction (xreactant ? xproduct) erate [Forward kinetic

scheme]

D reaction (xreactant < xproduct) efwd erev [Forward and re-

verse kinetic scheme]

Identifiers, entities, environments
The equation-oriented language is transformed to an interme-

diate semantic form suitable for further processing. We use an

intermediate language of the following form:

Entity :: ~ symbol : type[variable:expression

where

N symbol is the identifier we use to refer to this entity;

N type is one of Parameter, AlgebraicEquation, Relation,

ODE, Reaction

N variable represents the argument of a relation or the state

variables in ODEs and reactions;

N expression is the right-hand side arithmetic expression

The transformation function T entity describes the process of

creating new entities:

T entity const x~e½ �½ �~

x : Parameter[ :e

T entity x~e½ �½ �~

x : AlgebraicEquation[ :e

T entity xname(xformal)~e
� �� �

~

xname : Relation[xformal :e

T entity d (xvariable)~e½ �½ �~

xvariable : ODE[xvariable:e

T entity reaction (xreactant?xproduct) e
� �� �

~

xproduct : Reaction[xreactant:xproduct:e

Entities are characterized by name, type and expression.

However, we must use these entities together in order to solve

the corresponding system of equations. We use an environment

structure in which entities are indexed by name and type, and

which can be queried to extract information for further model

processing. We represent environments by a function

e[Environment :: ~Symbol?Entity

which we call the current environment of entities. We use the

metafunction notation e½symbol=entity� to express the extension of

the current environment with a new entity.

Component language
The syntax of the component language in Backus-Naur form is:

c [ Component

e [ Element :: ~ Parameter|AlgebraicEquation|Relation|

ODE|Relation

t [ ComponentType

c :: ~ component (type t) (name xname) � 1 e � (out xout � )

t :: ~Ohmic{current gatingj jpore {ionj jmembrane{

capacitance

We use the set of types defined above to identify structures

specific to ionic current models, although the schema of supported

types can be naturally extended to support a broader range of

modeling concepts. The transformation function T nest transforms

the component syntax into nested environments:

T nest component (type t) (name x) es (out xs)½ �½ �(enest)~

if xs(keys(E) then enest½cfresh=(Env x : E : t.xs)�

where E~fold T nest 1 es

T nest component (type t) es (out xs)½ �½ �(enest)~

(analogous to previous clause):::

T nest equation as � � �½ �½ �(enest)~

enest½name(equation)=Entry (T entity equation)�

The metafunction keys returns the set of names defined in the

given environment. The transformation function T entity is as

defined before. We do not define the case when the list of output

entities is not a subset of the entities defined in the given component,

but a real implementation must signal an error in such case.
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Furthermore, although our definitions allow the nesting of

environments, our target numerical platforms, such as Matlab, do

not necessarily support namespace control. In order to generate

code for such environments, we must conduct flattening of the

nested environments, so that all identifiers can occupy the same

namespace without collision.

The transformation function T flatten flattens nested environ-

ments by replacing all identifiers with explicit paths based on their

enclosing environments:

T flatten Env x : E : t.xs½ �½ �~

eflatten~fold T subst (1,(E,x)) E

T subst x : Parameter[(vars):e½ �½ �(eflatten,(E,r))~

eflatten½r:x=r:x : Parameter[(vars):subst(E,e)�

:::(analogous definitions for the other entry types):::

T subst entry as Env x : E
0

: t.xs
h ih i

(eflatten,(E,r))~

fold T subst (eflatten,(chain(E,E
0
),r:x)) E

0

The metafunction subst substitutes identifiers in an expression,

given a substitution environment that maps identifiers to

expressions. The metafunction chain builds nested substitution

environments: during the substitution process, if an identifier is not

found in the immediate environment, it is looked up in the

enclosing environment, and so on.

Membrane potential transformation function
Let Ctype(e) denote the set of components of type type

contained in the environment e. Let O(C) indicate the outputs

declared for component C. T membrane{potential can then be defined

as follows:

T membrane{potential Env x : E : t.xs½ �½ �(e,r)~

e
0

V=V : ODE[V:
S(is)

r:O(Cmembrane{capacitance(E))

� �

where OC~COhmic{current(E)

e
0
~fold T Ohmic{current (e,r:x) OC

is~map T current{name OC

T Ohmic{current Env ion : E : t.xs½ �½ �(e,r)~

e Iion=Iion : Assignment[ :(Pr:s[O(GC))gion(V{Eion)½ �

where GC~Cgating(E)

PC~Cpore(E)

PIC~Cpermeating{ion(E)

gion~r:O(PC)

Eion~r:O(PIC)

T current{name Env ion : E : t.xs½ �½ �~Iion

T membrane{potential and T Ohmic{current take an additional argu-

ment, r, which indicates the current scope, or environment nesting

path. The path specified by r is used to disambiguate the variable

names that are used in the current and voltage equations that are

constructed by the transformation functions.

The transformation functions defined above require that ionic

current models consist of one component of type membrane-

capacitance, and one or more components of type Ohmic-

current. Components of type Ohmic-current must in turn

contain one or more components of type gating (gate dynamics),

one component of type pore (maximal conductance) and one

component of type permeating-ion (reversal potential).

The T membrane{potential procedure takes input in the form of

nested environments. We rely on the metafunctions map and fold

to perform operations on a list of components. map applies a given

function to every member of a list of components and returns a list

of the results. fold (also known as reduce in Python or accumulate

in C++) iterates a given function over a list of components and

builds up a cumulative result.

Gating dynamics transformation function
The transformation function for HH-gating-dynamics has the

following definition:

T hh HH{gating{dynamics Sm½ �½ �(e)~

T hhs Sm e

T hh HH{gating{dynamics Sm Sh½ �½ �(e)~

T hhsSh e
0

where e
0
~ T hhs Sm e

T hhs ion ps as bs½ �½ �(e)~

e½ions=ions : Reaction[ions:(C bsu
as O)ps �

T hhs ion ps ts m?½ �½ �(e)~T hhs(ion ps as bs)(e)

where as~
m?

ts

bs~
1{m?

ts

Extended membrane potential transformation function
To support the GHK formalism, we first extend the grammar of

the ionic current description language from the beginning of this

section with the requisite clauses:

½domain definitions as before:::�

h [ GHK current

m :: ~ Membrane{potential (Membrane{capacitance n) (cDh) � 1

c :: ~ GHK{current (name xion) (permeability n � 1)

(permeating{ion n � 1) g � 1

½Ohmic current and gating definitions as before:::�

Then T membrane{potential must be extended with matching

clauses:
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T membrane{potential Env x : E : t.xs½ �½ �(e,r)~

e
00 ½V=V : ODE[V:

S(is)

r:O(Cmembrane{capacitance(E))
�

where CC~CGHK{current(E)

OC~COhmic{current(E)

e
0
~fold T GHK{current (e,r:x) CC

e
00
~fold T Ohmic{current (e

0
,r:x) OC

is~map T current{name OC@CC

T GHK{current Env i : E : t.xs½ �½ �(e,r)~

e½Ii=Ii : Assignment[ :(P r:s[O(GC))pi�

where GC~Cgating(E)

PC~Cpermeability(E)

PIC~Cpermeating{ion(E)

pi~r:O(PC)

Abstract code generation
Having defined the structures for describing ionic currents and

component-based systems of equations, we can now define a

transformation function that takes in an environment of entities as

input and produces code for a given solver API. We abstract away

the details of implementation by using idealized mathematical

structures that mimic the structure of the target API. Nevertheless,

we indicate what procedures are necessary to turn our abstract

notation into concrete programming language syntax.

We first define a code generation function for a Matlab-like

language, following the API required by the Matlab ODE solver:

f ~odefun(t,y) where odefun receives the independent variable t

and a state vector y and must return the vector of derivatives that

corresponds to the given input.

In order to proceed with code generation, we must have the

following representation of the system of equations:

N An ordered list of parameters and algebraic assignments: if any

assignments or parameters depend on one another, we must order

them appropriately and ensure no circular assignments are present.

N A list of relations: relations take the form of function declarations

in Matlab and most other numerical computing environments.

N A list of differential equations

N A mapping that assigns integer indices to state variable names:

we use this mapping to retrieve state values from the initial

state vector and to construct the vector of derivatives.

We first define transformation function, T sort, which computes

the free variables of every expression and orders the entries in the en-

vironment according the dependencies in their associated expression:

T sort x : Parameter[ :e½ �½ �(esort)~

esort½x=x : Parameter[(freevars e):e�

T sort x : AlgebraicEquation[ :e½ �½ �(esort)~

esort½x=x : AlgebraicEquation[(freevars e):e�

T sort xname : Relation[xf :e
� �� �

(esort)~

esort½xname=xname : Relation[xf :e�

T sort xvar : ODE[xvar:e½ �½ �(esort)~

esort½xvar=xvar : ODE[(xvar :: (freevars e)):e�

T sort xvar : Reaction[xreactant:xproduct:e
� �� �

(esort)

~esort½xvar=xvar : Reaction[(xreactant :: xproduct :: (freevars e)):e�

where the metafunction freevars computes the free variables in an

expression, and esort½x=e� inserts a new entry in an ordered collection

according to a partial order predicate:

ƒsort(x : Entity,y : Entity)~

if empty(vars(x)) then LESS

else(if name(x)[vars(y) then LESS

else (if name(y)[vars(x) then GREATER

else UNORDERED))

Given an ordered environment esort, we can now define a

transformation function to construct a structure suitable for input

to code generation procedures. In this particular case, our target

structure is a 5-tuple of the form:

Scodegen :: ~SRelation list|Parameter list|Assignment list|

ODE list|Reaction list|(int,symbol) mapT

The last element in the tuple is a mapping between state vector

indices and state variable names.

The transformation function can then be defined as follows:

T codegen(entry as x : Parameter[(vars):e½ �½ �)SR,P,A,O,MT~

SR, P@entry, A, O, MT

T codegen(entry as x : AlgebraicEquation[(vars):e½ �½ �)SR,P,A,O,MT~

SR, P, A@entry, O, MT

T codegen(entry as xname : Relation[xf :e
� �� �

)SR,P,A,O,MT~

SR@entry, P, A, O, MT

T codegen(entry as xvar : ODE[(vars):e½ �½ �)SR,P,A,O,MT~

SR, P, A, O@entry, M
0
T

where i~limit(M)

M
0
~M@(i,xvar)

T codegen(entry as xvar : Reaction[(xreactant :: xproduct :: vars):e
� �� �

)

SR,P,A,O,MT~

SR, P, A, O@

( xreactant : ODE[(xproduct :: vars):{e|xproduct

� �� �
), M

0
T

where i~limit(M)

M
0
~M@(i,xreactant)

We use the ST characters to indicate tuple construction, the @
metafunction to indicate list concatenation and the limit metafunc-

tion returns the largest integer plus one from the given map.
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The concrete code generation procedures can be defined as follows:

Each of the emit metafunctions are relatively simple procedures that

map the abstract representation to the concrete syntax of the target

language. foreach applies the given procedure to each element of the

given list.

Code generation specific to neuroscience modeling soft-

ware. From a code generation point of view, the component mecha-

nism facilitates the generation of code for neuroscience-specific soft-

ware environments, such as NEURON. The code generation process

for NMODL uses the same transformation functions as for Matlab, but

it requires one additional transformation function, T ionic{role.

T ionic{role extracts information about the ionic currents and

gate complexes present in the model description and uses this

information to generate declarations required for NMODL. The

structure with information specific to ionic current models has the

following definition:

SOhmic{current :: ~Sion | i|e|erevT

SGHK{current :: ~Sion | iT

Sdecaying{pool :: ~Sion | state | outputT

Sionic{role :: ~SSOhmic{current list|

SGHK{current list|

Sdecaying{pool listT

This structure contains the definitions of ionic currents, along

with information about the names of permeating and accumulat-

ing ions. This is necessary in order to generate the appropriate

USEION and RANGE statements for NMODL.

The transformation function to build Sionic{role takes entities as

input and can be defined as follows:

where PIC ~Cpermeating{ion(E)

ion ~name(PIC)

i ~T current{name entry

e ~T reversal{name entry

erev ~output(PIC)

p ~Sion,i,e,erevT

T ionic{role Env x : E : GHK{current.xs½ �½ �)SO,C,AT~

SO, C@p, AT

where PIC ~Cpermeating{ion(E)

ion ~name(PIC)

i ~T current{name entry

p ~Sion,iT

T ionic{role Env x : E : decaying{pool.xs½ �½ �)SO,C,AT~

SO, C, A@pT

where ion ~x

state ~first(xs)

p ~Sion,state,ionz‘o’T

Cmatlab(name, SR,P,A,O,MT : Scodegen)~

foreach emitFunction R; ½emit function definitions for all relations in the system�
emitPreamble(name); ½emit a definition for the function representing the system of equations�
emitStatemap(M); ½emit declarations of the form state~y (index)�
foreach emitParameter P; ½emit parameter assignments�
foreach emitAssignment A; ½emit algebraic assignments�
foreach emitDerivative O; ½emit derivative assignments : d state~rhs�
emitRStatemap(name,M); ½emit declarations of the form name(index)~d state�
emitEpilogue(name); ½close the function representing the system of equations�

CNMODL(name, SR,P,A,O,MT : Scodegen, SP
0
,C,A

0
T : Sionic{role)~

foreach emitPdecl P
0
; ½emit USEION and RANGE declarations for ohmic currents�

foreach emitCdecl C;

foreach emitAdecl A
0
;

foreach emitFunction R;

½emit USEION and RANGE declarations for GHK currents�

½emit USEION and RANGE declarations for decaying pools�

½emit function definitions for all relations in the system�

In the definition above, + is the string concatenation operator and

is used to construct names for the ionic currents and reversal

potentials for the specified ionic species.

The NMODL code generation function can be defined as follows:

T ionic{role(entry as Env x : E : Ohmic{current.xs½ �½ �)SO,C,AT~

SO@p, C, AT
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Simulation experiment code generation. The code gen-

eration procedures for simulation experiments are analogous with

those in the previous sections. We assume that the simulation code

generators for particular platforms take the form of templates

instantiated by substitution, such as the ones employed by the

Brian simulator [18].

In the case of voltage clamp simulation experiments, we assume

the following template interface:

SVClamp :: ~Smodel : env|

Scurrent : symbol|

hold : real| base : real|

increment : real| steps : int|

hdur : real| bdur : realT listT

That is, we assume the target voltage clamp procedure receives a

model name, names of the current variables and a list of voltage

clamp parameters for each current.

The transformation function for voltage clamp script generation

is then:

T vclamp Env x : E : t.xs½ �½ �(e,r)~

if (map #current vps) ( is then Smodel~m,vpsT

where OC ~COhmic{current(E)

CC ~CGHK{current(E)

VC ~Cvoltage{clamp(E)

is ~map T current{name OC@CC

vps ~fold T vclamp{params (e,r:x) VC

m ~e½V=V : ODE[V:0�

T vclamp{params Env x : E : voltage{clamp.½h,b,inc,n,hdur,bdur�½ �½ �(e,r)~

Scurrent~x, hold~h, base~b,

increment~inc, steps~n,

hdur~hdur, bdur~bdurT

The procedure T vclamp collects all voltage clamp parameter sets

from the given model environment and, if the given current names

correspond to the model current names, replaces the membrane

potential equation with an equation that keeps the potential at the

given initial value.

Implementation study
We have conducted an implementation study of a prototype

layer-oriented language for describing models of ionic currents.

The implemented prototype is closely related to the semantics

presented in this paper, but is not identical. The software is

available for download at http://wiki.call-cc.org/nemo. It

is developed in the Scheme programming language using the

Chicken Scheme compiler (http://www.call-cc.org/). The

Scheme and Lisp family of languages have a long tradition of

domain-specific language development [48] and are intrinsically

suitable for XML processing [17].

Supporting Information

Figure S1 NEURON simulation run times averaged
over 100 trials. A) NMODL mechanisms merged into one file;

B) NMODL mechanisms in separate files. In all cases, NEURON

7.1 was used for 2000 ms of simulation time. Method cnexp

indicates that NEURON’s modified Crank-Nicolson method is

used for solving the equations of all currents. Method cnexp+-
sparse indicates that NEURON’s special method for kinetic

equations is used for solving the equations of the resurgent sodium

current and the modified Crank-Nicolson method is used for

solving the equations of all other currents. Method cvode indicates

that the CVODE variable step method is used for solving the

foreach emitParameterDecl P; ½emit PARAMETER declarations�
foreach emitAssignmentDecl A;

foreach emitAssignmentFun A;

foreach emitStateDecl A;

foreach emitAssignmentFun A;

foreach emitDerivative O;

foreach emitInitial O;

CBREAKPOINT (name, SP
0
,C,A

0
T);

½emit ASSIGNED declarations�
½emit a procedure containing all assignments in the system�
½emit STATE declarations�
½emit a procedure containing all assignments in the system�
½emit DERIVATIVEblock�
½emit INITIAL block�
½emit BREAKPOINT block�

CBREAKPOINT (name, SP,C,AT : Sionic{role)~

species~sort(map ion P) @ (map ion C); ½collect the names of all ionic species present�
emitLiteral ‘asgns()’; ½emit call to compute assignments�
emitLiteral ‘SOLVE states’; ½emit call to compute derivatives�
emitCurrent species P C; ½emit current equations for the different species�
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equations of all currents. The hardware used was Dell Precision

T5400 (CPU Intel Xeon E5430 2.66 GHz) for the Linux platform,

and Apple Computer MacPro1,1 (CPU Intel Xeon 5150

2.66 GHz62) for the Mac OS X platform.

(TIF)

Text S1 A layer-oriented description of the 2003
Purkinje neuron model due to Khaliq et al. Shown are

two representations of the model. The first utilizes a concise

parenthesized syntax, which is more convenient for human users

to write. The second is canonical XML representation suitable for

automatic exchange between different software. The two formats

are completely interchangeable and our prototype software

NEMO supports reading and writing both.

(PDF)
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