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Strain profiling and epidemiology of bacterial
species from metagenomic sequencing
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Microbial communities are often composed by complex mixtures of multiple strains of the

same species, characterized by a wide genomic and phenotypic variability. Computational

methods able to identify, quantify and classify the different strains present in a sample are

essential to fully exploit the potential of metagenomic sequencing in microbial ecology, with

applications that range from the epidemiology of infectious diseases to the characterization

of the dynamics of microbial colonization. Here we present a computational approach that

uses the available genomic data to reconstruct complex strain profiles from metagenomic

sequencing, quantifying the abundances of the different strains and cataloging them

according to the population structure of the species. We validate the method on synthetic

data sets and apply it to the characterization of the strain distribution of several important

bacterial species in real samples, showing how its application provides novel insights on the

structure and complexity of the microbiota.
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Next-generation sequencing technologies provide for the
first time the possibility to study the composition of
complex microbial communities in human-derived and

environmental samples in a culture-independent manner. Thanks
to the large amount of data provided by these techniques, it is now
widely accepted that the microbiota plays a role in maintaining
host health1,2, and that alterations of the equilibrium between host
and colonizing microbiota is implicated in a number of diseases3.
However, to fully exploit the potential of metagenomics in clinical
and epidemiological applications, computational techniques able
to profile microbial communities at resolution beyond the species
level are needed, given the high level of phenotypic and genomic
variability between strains of the same species4.

Widely used marker-based computational methods5,6 profile
the taxonomic composition of metagenomic samples using col-
lections of genomic markers derived from databases of complete
and draft genomic sequences. Despite being able to reach strain-
level sensitivity7–9, these approaches rest on the implicit
assumption that a single dominant strain is present for each
species, while it has been shown that the human associated
microbiota is often a complex mixture of closely related strains of
the same species10. In these cases, marker-based methods might
predict chimeric strains resulting from the overlap of unrelated
sequences. As an alternative to using presence–absence profiles,
one reference-free method that uses polymorphism patterns in a
set of universal marker genes has recently been introduced11,
providing useful insights in the case of poorly characterized spe-
cies, where reference genomes are not available. However, to
achieve its best performances, this method needs that large data
sets of related samples (as, e.g., in time series) are analyzed.
Recently, statistical methods able to disentangle mixture of strains
from the same species by modeling the measured distribution of
sequence reads have been proposed12,13. In these methods, no
attempt has been made to provide a connection with the popu-
lation structure of the relevant bacterial species, thus limiting their
use in the epidemiology of known, potentially pathogenic species.
In addition, the lack of a preprocessing step of the reference
genomes might have an impact on their resolution when the
reference database contains many closely related sequences.

Here we present StrainEst, a novel, reference-based method
that uses the single-nucleotide variants (SNV) profiles of the
available genomes of selected species to determine the number
and identity of coexisting strains and their relative abundances in
mixed metagenomic samples. Rather than providing a general
tool that characterizes all species at the same time, StrainEst
concentrates on species of interest by defining their population
structure through a clustering of the SNV profiles. By using a
penalized optimization procedure to disentangle the individual
components, StrainEst identifies and quantifies all the strains of
the species of interest present in a sample, improving the reso-
lution of current strain identification methods. In addition, by
classifying these components using a pre-defined database of
representative genomic sequences, StrainEst allows the compila-
tion of large meta-analyses, including samples from unrelated
studies and poses the basis for the widespread use of metage-
nomics in epidemiological studies.

Results
Preprocessing of genomes and database preparation. For each
species of interest, we downloaded all the available complete and
draft genome sequences from the NCBI database (see Fig. 1a and
Methods section). To eliminate spurious sequences, the genome
database was filtered discarding those sequences too divergent
from the NCBI type strain of the species and clustered to reduce
the redundancy of closely related genomes (see Methods section).

Computing the core genome and the reference SNV profiles.
We aligned each representative genome against the complete
genome of a species representative (SR). SR was usually the
reference strain on the NCBI website, although other choices are
possible (Fig. 1b). During the alignment ambiguous mappings
(i.e., those regions that can be mapped in more than one positions
in the reference) were discarded. Then, the SNV profiles were
extracted from the core genome. Therefore, for each sequence, an
ordered vector of SNVs was defined, and the collection of these
vectors was the SNV matrix of the species. To define the reference
set for subsequent analysis, the SNV profiles were clustered using
a complete linkage hierarchical clustering with an identity
threshold of 99%. This step ensured that the base strains were
sufficiently diverse to allow the optimization step to distinguish
them in the mixed samples (Fig. 1c). This procedure yielded a
SNV profile for each representative strains (clustered SNV
matrix) that was the reference for the following modeling step.
The number of representative profiles depended on the genomic
variability of the species and on the number of available genomes.
For instance, in the case of Propionobacterium acnes this was
composed by 20 SNV profiles, while in the case of Escherichia coli
this included 278 reference SNV profiles. See Methods section for
more details on the procedure.

Metagenome alignment and abundance profiles. Given a
metagenomic sample, the raw reads were aligned against a set of
genome sequences that were chosen in order to be representative
of the genomic variability of the species (Fig. 1f and Methods
section). For the SNV positions identified previously, we extrac-
ted from these alignments the frequency of occurrences of each of
the four possible alleles from the aligned reads of the metagenome
(Fig. 1g). Then, positions were filtered to remove low coverage
sites (see Methods section). Finally, the frequency profile of each
metagenome was modeled as a sparse linear combination of the
reference SNVs profiles using Lasso regression14, where the
shrinkage coefficient was optimized using a cross-validation
approach. The result of this step was a list of the reference strains
and of their relative frequencies that best explained the observed
distribution of the allelic frequencies.

Validation and comparison with existing tools. To validate the
approach, we generated two sets of synthetic microbiomes, syn-
theticII and syntheticIV, using the ART15 simulator. In syntheticII,
we mixed synthetic reads from pairs of genomes of the same
species for four bacterial species, namely Bifidobacterium longum,
Enterococcus faecalis, Staphylococcus aureus and Staphylococcus
epidermidis for four different values of the total coverage (10×,
20×, 50× and 100×) and for three different values of the relative
abundances (50–50, 70–30 and 90–10%). For each combination of
coverage and relative abundance 50 independent samples were
generated, for a total of 600 paired-end Illumina HiSeq-2000
metagenomic samples for each species. In syntheticIV, 10 inde-
pendent samples for two different values of the coverage (10× and
100×) were generated by mixing synthetic reads generated from
four different genomic sequences of the same species for seven
different bacterial species, namely B. longum, E. coli, E. faecalis, P.
acnes, S. aureus, S. epidermidis and Streptococcus pneumoniae. The
performances of the algorithm on syntheticII were quantified by
measuring the absolute deviations between the predicted and true
relative abundances of the major and minor components (Sup-
plementary Fig. 1). For all species and values of coverage, we
found a good agreement between predictions and true values, with
the higher discrepancies at low coverages in cases where the minor
component accounted for 10% of the reads, often below the
threshold of detection. To further quantify the ability of StrainEst
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to identify the strains present in the samples, we considered as
present the strains with a predicted abundance exceeding a given
threshold, and computed the Matthew Correlation Coefficient16

(MCC) with the true values as a function of this threshold. For all
species (Supplementary Figs. 2–5), the MCC was close to 1 for
thresholds exceeding 2% (i.e., when strains with predicted relative
abundance below 2% were discarded) and dropped for the mix-
tures 90–10% when the cutoff threshold exceeded the relative
abundance of the minor component. The ability of StrainEst to
disentangle complex communities of closely related strains was
confirmed by the analysis of the syntheticIV data sets (Fig. 2 and
Supplementary Fig. 6), where we found that in all cases the strain
distribution was reconstructed with high precision, with an aver-
age MCC >0.96 (strains with relative predicted abundance below
1% were not considered in the comparison) and an average
Jensen–Shannon divergence (JSD)< 0.02 for a total coverage of
100X (Supplementary Tables 1 and 2).

One of the major challenges of reference-based methods is
when a strain is missing from the reference database. To show the
performances of StrainEst in these cases, we adopted a leave-one-
out approach, by selectively removing one reference profile from
the E. coli database and using this reduced database to
characterize one synthetic sample containing only the removed

strain (LOOEcoli data set). In those cases, StrainEst with default
parameters always identified a closely related strain as dominant,
but overestimated the sample complexity (Supplementary Fig. 7).
Using a more stringent cutoff of the compatibility parameter that
defines the profiles that are used in the modeling step (see
Methods section) the predictions of the sample complexity
progressively improved, while the number of samples that could
not be classified increased (Supplementary Fig. 7).

We tested the algorithm on the two mock communities
available from the Human Microbiome Project17, containing 21
known organisms with even (SRR172902) or staggered composi-
tion (SRR172903). For these communities, we tested the ability of
StrainEst to identify the correct strain of E. coli, N. meningitidis,
P. acnes, S. aureus, and S. epidermidis. This test was especially
challenging, due to the low abundance of some of these species in
these samples (see Methods section and Supplementary Table 3).
For this reason, we included in the modeling step all SNV
positions with coverage ≥1 (the default cutoff for this option is 6).
For all species StrainEst identified correctly the presence of one
dominant strain that coincided with the strain known to be
present, with the exception of N. meningitidis in sample
SRR172903, where the algorithm did not reach convergence
due to the low number of reads that aligned to the reference
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Fig. 1 StrainEst overview. a Given the complete and the draft genomes of the species of interest (G1, G2,…) and the species representative (SR), the
pairwise Mash distances are computed. Genomes with Mash distances>0.1 from the SR are discarded and the remaining ones are clustered to remove
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genomes and the low coverage of SNV sites (Supplementary
Table 3).

To highlight the potentialities and the novel features of StrainEst,
we compared to PanPhlAn7, MIDAS8, PathoScope12, Sigma13,

ConStrains11 and simple read alignment on reference genomes
using Bowtie218 (Fig. 2c–e). PanPhlAn and MIDAS, despite being
able to determine the taxonomic structure of metagenomic samples
with strain-level resolution were not specifically designed to
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Fig. 2 Validation on synthetic data and comparison with existing tools. StrainEst is able to predict the relative abundances of multistrain synthetic mixtures
for different species such as B. longum, E. coli, E. faecalis, P. acnes, S. aureus, S. epidermidis, and S. pneumoniae. For each species, we simulated 10 synthetic
data sets at coverage 10X (a) and 100X (b) generating reads from four strains mixed at variable relative abundances (60-25-10-5%). In the upper panel,
we show the comparison between real and predicted relative abundances for E. coli. Colors indicate different strains. In the middle panel, we show the JSD
between actual and predicted strain composition. In the lower panel, we show the MCC between the real and predicted strain composition, discarding
strains with predicted relative abundances below 1%. As expected, the accuracy of StrainEst grows with increasing coverage. Boxes extend to the first and
third quartile, whiskers extend to the upper and lower value within 1.5*IQR from the box. Outliers are shown as points. c–e Upper panels: distance between
the dominant (D) and the second (II), third (III), and fourth (IV) most frequent strain predicted by Bowtie 2, ConStrains, PanPhlAn, PathoScope, Sigma, and
StrainEst for the three synthetic data sets composed of 2, 3, and 4 strains of E. coli. NA (generic E. coli) indicates that the algorithm only predicted the
presence of E. coli without further specification. The broken lines indicate the 25th percentile, median, and 75th percentile of the distribution of the pairwise
Mash distances between pairs of strains randomly chosen from the 3041 E. coli genomes downloaded from NCBI. Lower panels: Predicted relative
abundances of the identified strains. The expected relative abundances are marked in colors (D, II, III, and IV for the dominant, second, third, and fourth
strain in terms of relative abundances, respectively) on the vertical axes. Error bars indicate the first and third quartile
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disentangle mixtures of multiple strains of the same species into
single components, and provide no information on the existence
and identity of other strains beside the dominant one. Rather,
PanPhlAn is able to identify and classify the dominant strain of
each species using a reference database, while MIDAS provides the
SNV profiles and genomic repertoires of each of these dominant
strains (Supplementary Table 4). Thus, MIDAS can be used to
assess whether the same dominant strain is conserved across
samples (allowing, e.g., the identification of transmission networks),
but does not provide data directly comparable to StrainEst due to
the lack of a post-processing classification tool. PathoScope and
Sigma identify the most likely mixture of source genomes from
reads distributions using a penalized mixture model and a
stochastic model of read sampling, respectively. ConStrains uses
methods from information theory to identify the mixture of strains
present in a set of samples from SNV profiles in universal marker
genes balancing model fitness and complexity. To quantitatively
compare the performances of StrainEst, PanPhlAn, PathoScope,
Sigma, ConStrains and Bowtie 2 in the identification of the
dominant and subdominant strains, we generated 50 synthetic
microbiomes containing 2, 3 and 4 randomly selected strains of
E. coli using ART with coverage 20× syntheticEcoli data set).
We found (Fig. 2c–e and Supplementary Data 1) that in all cases
ConStrains and Sigma correctly identified the species, but gave no
information concerning the presence of different strains. In
the majority of cases this was also true for PathoScope,
which only in a few cases could identify the presence of multiple
strains below the species level. However, the genetic distance
between the strains predicted by PathoScope and the actual ones
was usually high (see upper panels in Fig. 2c–e). In addition, even
when strains below the species level were identified, PathoScope
found that the majority of the metagenomic reads supported
generic E. coli, while the relative abundances of the single
strains below the species level were always low. On the other hand,
as mentioned before, PanPhlAn could not predict the relative
abundances of the different strains, but could identify the dominant
one with good accuracy, as measured by the Mash19 distance
between the predicted and the actual strain. However, the dominant
strains predicted by StrainEst were more closely related to the real
ones than those identified by PanPhlAn (P = 8.06×10−3 for the two-
strain data set, Wilcoxon rank-sum test), in particular for those
cases where the contribution of subdominant strains was higher (P
= 2.37×10−5 for the four-strain data set). In all cases, StrainEst could
also identify the subdominant components with high accuracy
(Fig. 2c–e, lower panels). In order to show the advantages of using
this approach to naive read assignment, we aligned all the reads to
the same reference genome database used by StrainEst with Bowtie
2, and selected the most frequent 2, 3, and 4 strains in the
three synthetic data sets, respectively. Ambiguous alignments (reads
with mapping quality <10) were discarded. The Mash distances
between these sequences and the actual ones, also reported in
Fig. 2c–e show that the precision of the dominant strain
identification by Bowtie 2 is comparable to PanPhlAn in the case
of mixtures of two strains, but with a much higher variability
between samples. For more complex mixtures and for subdominant
strains, read alignment with Bowtie 2 provide strain identification
that is in the best cases only slightly better than random. The
command lines used for ConStrains, PanPhlAn, PathoScope, Sigma
and Bowtie2 are available in Supplementary Methods.

Diversity and stability of P. acnes in human skin. In a recent
report10, it has been shown that P. acnes is one of the major
components of the skin microbiome, usually forming complex,
host-specific communities composed by multiple strains. We
have re-analyzed the human skin data set using 110 genomic

sequences of P. acnes available at NCBI as reference database.
After the clustering procedure, 20 distinct references were
obtained (Supplementary Fig. 8). We found that each subject was
colonized by a different combination of strains, and that while the
strains colonizing the different body sites of a given subject were
the same, these were mixed in different proportions in different
body sites (Fig. 3a) and stable over time. To confirm that these
complex patterns were not an artifact due to the presence in the
samples of strains not represented in the reference collection of
sequenced genomes, for a selection of typical single-, double- and
multiple-strains samples, we measured the distribution of site-
specific frequency of the four possible allelic variants found for
each SNV site (Fig. 3b). In agreement with the strain pattern
reconstructed by StrainEst, we found that for samples predicted
to harbor a single strain the distribution was bimodal, with allelic
variants either supported by 100% of the reads or not present. For
double strains samples, two intermediate peaks were found in the
distribution, representing those sites where the two strains had
discordant alleles. Given that the SNV matrix has been clustered
to 99% identity to define the reference profiles (see Methods
section), in a sample containing two strains these should account
for at least 1% of the sites. Finally, multiple strain samples were
characterized, as expected, by complex distributions of the rela-
tive frequency of allelic variants. In cases where one single strain
was clearly dominant, we used the consensus (i.e., supported by
the highest number of reads) SNV profiles to probe its inter- and
intra- subject variability (Fig. 3c). Profiles assigned to the same
reference strain clearly clustered by subject and intra-subject
variability was related to the amount of noise introduced by
subdominant strains (e.g., subject HV03 in Fig. 3c).

Using the relative abundances predicted by StrainEst, we could
show that the populations of colonizing strains of P. acnes were
more similar between samples from the same subject, same body
site at different times, than between samples from the same subject
and different body sites, and different subjects (Fig. 4a). The per-
subject Faith’s phylogenetic diversity20 (PD) of the P. acnes
populations identified two classes of individuals, one with low and
one with high diversity (Fig. 4b). In three individuals, we could
monitor a switch from the low to the high diversity phenotype
(HV01, HV02 and HV03) during the course of the study (see also
Supplementary Fig. 9), and one from the high to the low diversity
phenotype (HV05). Three of these four individuals were defined
as “high variable” for the general instability of their microbiota in
the original study10. Looking at the different sites across
individuals, we found that there was a wide distribution of
diversity of the colonizing population of P. acnes with the most
diverse site being the hand palm that had a PD double than what
found on alar and retroauricular crease (Fig. 4c). Finally, we found
that individuals that had a highly dynamic P. acnes population
between the first two time points (Fig. 4d, upper panel) also had
larger distances between the second and the third time points
(Fig. 4d, lower panel), suggesting that the overall stability of the
P. acnes population is a subject-specific characteristics.

Spatial distribution and diversity of oral Neisseriae. Core
genome-based approaches, like StrainEst, are particularly suited
for the analysis of metagenomic samples below the level of species.
However, in the case of closely related species with similar gen-
omes, a general framework to analyze the data across the different
species can be set up. To show the use of StrainEst both between
and within species, we consider the many species from the Neis-
seria genus that can colonize the human oral cavity. In a recent
study21, it was shown that different species dominate the samples
from different sites in the oral cavity with a variable degree of
strain admixture, leaving the open question concerning the real,
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site-specific population structure of this group of species, i.e., how
many individual strains/species were present in each sample. To
verify if, besides the dominant component, samples from the
different sites contained complex mixtures of other species and the
site-specific structure of these communities, we analyzed 689 oral
samples from the Human Microbiome Project, using a database of
212 genomic sequences of human associated neisseriae. The core
genome of these species contained 25.393 SNV positions and the
genomes were grouped into 79 reference clusters by the StrainEst
pipeline (Supplementary Table 5). We found striking differences

amongst three main oral sampling sites of the HMP, i.e., the
tongue dorsum, the supragingival plaque and the buccal mucosa
(Fig. 5 and Supplementary Fig. 10). While the majority of samples
from the tongue dorsum contained exclusively Neisseria subflava,
most samples from the other two sites appeared to contain much
more complex mixtures of species. Interestingly, there was a clear
distinction between the tongue dorsum and the supragingival
plaque, and the buccal mucosa was intermediate between the two,
with a fraction of the samples clustering together with samples
from the tongue dorsum and a smaller fraction clustering with
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Fig. 3 StrainEst analysis reveals interpersonal and intersite differences in the strain composition of P. acnes communities in human skin metagenomic
samples. Three skin samples from 14 sites from a cohort of 12 healthy subjects were collected at three different times separated by long (1–2 years between
timepoints 1 and 2) and short (2–3 months, between timepoints 2 and 3) time intervals. a Each individual is colonized by a specific mixture of strains. The
relative abundances of the subject-specific mixture vary across the different body sites, but are conserved across the different sampling times. The site
codes are described in the original work. The strain identifiers are reported in (d). b To verify that complex strain mixtures are not an artifact due to the
presence of one strain not represented in the collection of genomic reference sequences, we show for three representative samples the distribution of
frequencies of the four possible nucleotides at each allelic position. cWhere a single strain was dominant, we could use the consensus (containing the most
supported allele in each position) SNV profile to compare the strains from different subjects/body site. In this example, strains were classified as HL096PA1
by StrainEst cluster by subject and body site. The variability between profiles from subject HV03 is probably due to the lower relative abundance of the
dominant components (see also a). In this case, it is likely that the presence of a second strain with nonnegligible relative abundance introduces a source of
noise in the consensus SNV profile. d Neighbor joining tree of the reference strains. Leaves are colored using the same schema as in (a)
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samples from the supragingival plaque. The former were char-
acterized by the presence of N. subflava that was almost com-
pletely absent from the supragingival plaque. These findings were
reflected in the phylogenetic diversity of the Neisseria population
of samples from the three sites, that was significantly higher in the
supragingival plaque than in the buccal mucosa (FDR corrected P
= 1.2×10−6, Wilcoxon rank-sum test), and in the tongue dorsum
(P = 3×10−7). An analysis of the Jensen–Shannon Divergence
showed that the diversities between the reconstructed populations
of neisseriae were significantly lower between the same sites and
subjects sampled at different times (average time between visits of
219 days, s.d. of 69 days) than between sites or between subjects
(P< 0.001 for both comparisons), suggesting that the same mix-
ture of strains is retained in each individual site for extended
periods of time.

Escherichia coli strains in cross-sectional studies. Amongst the
advantages of the reference-based approach of StrainEst there is
the possibility to perform large-scale meta-analyses and com-
parisons of unrelated studies, and to use the data for molecular
epidemiological surveys for species of particular relevance, ana-
logously to what is done using the popular Multi Locus Sequence
Typing (MLST) schema. To illustrate the potentialities of

StrainEst in epidemiological studies, we have applied the method
to determine the strain distribution of E. coli in two recent large
metagenomic studies from stool samples. E. coli is an extremely
diverse species with a large variability between strains that can
range from beneficial intestinal commensals to aggressive extra-
intestinal pathogens. Population genetics studies based on genetic
markers22 and whole-genome comparative analysis23,24 have
identified six phylogenetic groups, namely A, B1, B2, D1, D2 and
E, associated to different ecological niches and showing variable
pathogenic potential. The StrainEst reference database was built
using 3041 complete and draft genomic sequences downloaded
from the NCBI database. After the clustering procedure, these
were grouped into 278 distinct reference clusters. The repre-
sentative sequences of these clusters were assigned to one of the
six phylogenetic groups according to their Mash distance from
the reference strain of each group, namely E. coli str. K-12 substr.
MG1655 for A, E. coli O104:H4 for B1, E. coli O83:H1 str. NRG
857C for B2, E. coli UMN026 for D1, E. coli IAI39 for D2, and E.
coli O157:H7 str. Sakai for E. The profile of SNVs included
104248 allelic sites. Using this reference database, we analyzed
two large metagenomic data sets from stool samples, one from
222 infants in Estonia, Finland and Russia25, and the second from
345 adult Chinese individuals26. The percentage of multiallelic
SNV sites ranged from 0 to 11.8%, showing evidence that several
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Fig. 4 Diversity and richness of P. acnes in the human skin data set. a Short: for each subject/site pair, we computed the distribution of the JSD between the
second and the third time point. Long: the same distribution computed between the first and the second time point. Between body sites: the JSD
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samples were colonized by more than one strain (Fig. 6a). Con-
centrating on a subset of samples dominated by closely related
strains, we found that in all cases the consensus allelic profile of
the metagenomic samples was closely associated to the reference
strain (Fig. 6b). In one case (sample G80506), StrainEst predicted
a complex pattern of strains, that was not supported by the
percentage of multiallelic sites (Fig. 6a). In this case, a single
strain clearly distinct from all the reference strains was present
(Fig. 6b). Strikingly, the population of circulating strains of this
diverse species could be described by a relatively small number of
ubiquitous strains that were often present in individuals from all
the four distinct populations. The set of strains that dominated at

least one sample in our meta-analysis included only 57 strains out
of the 278 that represented the full pool of sequenced E. coli
isolates (Fig. 6c). However, the different populations were clearly
distinguishable by the mixture of strains colonizing them. If we
consider only the dominant strain for each sample, the most
common strains in the samples from the Chinese adults were
from phylogroup A, while the most common phylogroup in the
infants from Russia, Estonia and Finland was B2 (Fig. 6e).

Time series during infant gut colonization. A time series
study of infant gut colonization has shown that multiple strains
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of a limited number of species dominate the infant gut during
early stages of life27. In particular, it was shown that in a pre-
mature infant three strains of S. epidermidis were present and
changed considerably their relative abundances over time. In
the original study, two high-quality genomes and one partial
genome of S. epidermidis were assembled from these samples.
We have analyzed the data from27 to identify the strains of
S. epidermidis present in the samples and determine their relative
abundances. We found that we can confirm the presence of three
strains, with large shifts of their relative abundances (Fig. 7a). In
particular, while at the beginning of the sampling period we found
that a strain closely related to strain 504_SEPI was dominant, at
later times there was a switch to strain 236_SEPI, confirming the
findings of the original publication27. Comparing the two high-
quality genomes assembled in27 to the genomes of the strains
identified by StrainEst, we found that these are the most similar in
the reference database of complete and draft genomes (Fig. 7b).

Discussion
Metagenomic technologies are rapidly becoming the major source
of information concerning microbial ecology. To fully exploit
their potential, data analysis techniques able to disentangle
potentially complex communities of closely related strains and to
classify them according to the population structure of the species
are needed. In many cases, species of clinical or biotechnological
relevance have been extensively studied and large databases of
genomic sequences from single isolates exists, together with a
large body of knowledge on the individual characteristics of
selected strains. StrainEst is a method to determine the strain
composition of complex metagenomic samples for species for
which sufficient genomic information are available. While being
an obvious limitation in the case of poorly characterized species,
the reference-based approach encoded in StrainEst has the
advantage of providing a classification of the strains in term of a
standard set of representative sequences whose number and
identity is derived from the population structure of the species.
SNV profiles have already been used to analyze metagenomic
samples and to demonstrate the temporal stability of the indivi-
dual microbiota in human hosts10,28, but general methods to use
their distribution to identify individual strains and quantify their
relative abundances have not been proposed yet. Two major

points differentiate what we have done from previous approaches:
(i) we explicit the definition of strains as clusters of similar
sequences, and we provide a computational pipeline to define the
reference sequence database, also allowing the user to choose its
own definition of the cluster radius; (ii) we use a penalized
optimization procedure to guarantee that the SNV patterns are
explained using the minimal amount of independent strains. The
latter step is in particular key to use the SNV data to answer the
important biological question if more that one strain of a given
species is present in a sample, and, if yes, how many they are and
what are their relative abundances. Without the penalization step,
overfitting might lead us to overestimate the complexity of
samples where a single strain is present, that by chance belongs to
a group where many very similar reference genomes are available,
leading us to erroneously conclude that a complex population is
present. In this situation, a comparative analysis of the diversity
of unrelated samples would be impossible because the results
would be biased by the number of genomes present in the
database for each particular group. Instead, the preliminary
definition of the reference database and the use of a penalized
linear model guarantee that only the minimum set of clearly
distinct reference genomes is used in the modeling step. This
allows on one hand the portability of the data across different
studies, and on the other the interpretation of the data using the
accumulated body of knowledge concerning the epidemiology,
distribution, pathogenic potential and individual characteristics of
the reference strains, posing the basis for the widespread use of
metagenomics in epidemiological studies.

The classification provided by StrainEst is based on strain-
specific characteristics of the core genome of a species, and as
such is not intended to identify features in the dispensable gen-
ome that might nevertheless be important in determining the
individual characteristics of a strain, like, for instance, patho-
genicity islands or antibiotic resistance genes23,29. It has long been
known that some species are more recombinogenic than oth-
ers30,31, and that this corresponds to different degrees of corre-
lation between core and dispensable genome. StrainEst, like all
molecular typing schema based on conserved marker loci, relies
on the degree on genetic linkage between these and the features of
interest. If this is not sufficient, more specialized, feature-specific
methods need to be applied.
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Methods
Databases preparation and metagenome read alignment. The StrainEst pipe-
line uses a set of genome sequences to compute reference SNV profiles as the basis
for the modeling step and a second set (usually smaller than the previous one to
reduce the computational burden) of genomes as a target for metagenomic read
alignment. The selection of these two reference genome databases should be done
by the user according to its needs and goals. The procedure sketched below is
adapted for exploratory studies where the epidemiology of a given species is stu-
died. For more focused studies, like, for instance, when the dynamics of a restricted
set of strains is studied in time series, other strategies are possible.

Representative genomes for the SNV profiling. In this step, we selected the
representative set of genome sequences to calculate the SNV profiles that are the
basis of the modeling step and define the resolution of the method. For each species
of interest, we downloaded all the available complete and draft genomes from the
NCBI web site. For each species, the reference genome on the NCBI web site was
chosen as the species representative (SR, see Fig. 1), namely P. acnes str.
KPA171202, N. meningitidis str. MC58, E. coli str. K-12 substr. MG1655 for P.
acnes, N. meningitidis, and E. coli, respectively, in the examples presented here.
Given the complete and draft sequences (G1.fasta, G2.fasta,…) of the species of
interest, the pairwise Mash distances (≈1−ANI) were computed using the Mash
software, a recent alignment-free tool that can provide a complete pairwise distance
matrix for large-sequence data sets, avoiding the need of computing pairwise
whole-genome alignments, a step that is computationally demanding in large data
sets. The command line for computing the Mash distance was

mash sketch -o sketch G1.fasta G2.fasta

mash dist -t sketch.msh sketch.msh>mash.dist

Genomes with Mash distances >0.1 (>0.2 for the neisseriae, where sequences
from closely related species were included in the reference database) from SR were
discarded. This choice of the distance threshold guaranteed that unrelated genomes
were excluded, while divergent strains from highly variable species were retained.
For comparison, the bacterial species definition threshold was set to 0.05 in the
original Mash paper19 (95% ANI).

A complete linkage hierarchical clustering using the distances computed in the
previous step was then performed using a threshold between 0.001 and 0.006 for
the different species (approximately an ANI from 99.9 to 99.4%, respectively,
Supplementary Table 6). Given that there is an inverse relationship between the
number of sequences that are included in its definition and the size of the core
genome due to the fragmented nature of the majority of the genomes available on
public databases, the threshold was chosen as the lowest value below which the core
genome of the species fell below 10% of the length of the species representative
genome. For each cluster, the genome with the lowest average distance from the
members of its group was chosen as a representative (R1, R2,…, RN, see Fig. 1a).
Other clustering strategies could be used in this step, that adjust a local cluster
radius according to the sequence variability of each group of sequences by
optimizing a measure of clustering quality32. However, complete linkage
hierarchical clustering was a convenient choice for this step, since it allowed us to
control explicitly the maximum distance between each sequence and its
representative, thus giving full control over the precision by which a genome
sequence is approximated. After clustering, highly similar, closely related isolates
and resequencing of strains were represented by a single genome.

Representative genomes for the metagenome alignment. Given the short
length of sequencing reads, aligning metagenomes against a single reference could
introduce a bias toward strains closely related to the reference. To make the
method more robust, we generated a more comprehensive reference set including
10 aligned genomes representative of the genomic variability of the target species.
While the number of reference genomes to include in this step depends on the
genomic variability of the species and should be tuned accordingly, we found that
using 10 reference genomes that we could align over 80% of the sequencing
reads for all species included in the syntheticIV data set (Supplementary Table 7),
making this choice a good compromise between sensitivity and computational
burden. The procedure was the following: i) given the Mash distances computed
before, a complete linkage hierarchical clustering was performed and ii) the
minimum distance threshold that guaranteed that no more than M clusters were
formed (10 in the considered cases) was computed; iii) for each cluster, the genome
with the lowest average distance from the members of its group was chosen as a
representative (A1,…, A10, see Fig. 1d). This procedure guaranteed that the
selected sequences provide an even sampling of the species variability also in the
case of species with skewed composition of the genome sequence database. This
might occur, for instance, in the case of large-scale resequencing of pathogenic
strains. However, when some a priori knowledge of the microbiota composition is
available, more focused choices are possible. For instance, if the dynamics of the
long-term colonization of a single individual is studied, the sequences of the iso-
lates that are known to be present in the microbiota, if available, could be used as a
reference.

The StrainEst pipeline. The representative genomes for the SNV profiling
(Fig. 1a) defined in the previous step (R1, R2,…) were aligned against the SR using
MUMmer33 (nucmer command with default parameters), and ambiguous map-
pings (i.e., regions that can be mapped against more than one region) in alignments
were discarded (Fig. 1b). The StrainEst command line was

strainest mapgenomes R1.fasta R1.fasta SR.
fasta MR.fasta

where the file MR.fasta contained the output alignment. The positions that
were variable in at least one genome and their allelic variants were recorded in the
SNV matrix snp.dgrp (Fig. 1c):

strainest map2snp SR.fasta MR.fasta snp.dgrp

In this matrix, each row corresponded to a variable position in the reference
genome and each column contained the allelic variants (A, C, G, and T) of one
genomic sequence in those positions. In some cases, pairs of sequences were
characterized by vectors of SNVs differing only in few positions, preventing an
unambiguous separation of these different components in mixed samples. In order
to guarantee that these arrays contained enough information to allow us to
distinguish between different strains, we computed the number of sites where the
two vectors were different between each pair of sequences, followed by a complete
linkage hierarchical clustering with an identity threshold of 99%. The distance
matrix was computed using the strainest snpdist command (Fig. 1c):

strainest snpdist snp.dgrp snp_dist.txt

After that, the clustered SNV matrix was computed using the strainest
snpclust command:

strainest snpclust snp.dgrp snp_dist.txt
snp_clust.dgrp clusters.txt

For each cluster, the SNV profile with the lowest average distance from the
other cluster members was chosen as a representative. Fixing an identity threshold
below which two SNV profiles fall in the same cluster allows the user to control the
resolution for strain identification. This threshold should be determined as the
lowest possible that guarantees that a sufficient number of discordant SNV
positions exists between two profiles to allow the linear modeling step to
distinguish them. In the examples that we have considered, an identity threshold of
99% is equivalent to a number of discordant SNV sites between ~250 for the
Neisseriae and ~1150 for P. acnes (see Supplementary Table 6) that are sufficient
for disentangling complex mixtures. In the case of E. coli, the original
3041 sequences downloaded from the NCBI web site were clustered into 278
distinct SNV profiles (see Supplementary Table 6). The SNV profiles were the
reference for the final modeling step, and the associated sequences were the
representative strains of the species.

The representative genomes for the metagenome alignment (Fig. 1d) defined in
the previous step (A1, A2,…) were aligned against the species representative (SR),
using the strainest mapgenomes command (Fig. 1e):

strainest mapgenomes A1.fasta A2.fasta SR.
fasta MA.fasta

Then, the Bowtie18 index was built:

bowtie2-build MA.fasta MA

The FASTA files used to create the Bowtie 2 database are available at ftp://ftp.
fmach.it/metagenomics/strainest/bowtie_fasta/. Given a metagenomic sample (MG),
the raw reads were quality trimmed using sickle (https://github.com/najoshi/sickle):

sickle pe -f MG1.fastq -r MG2.fastq -t sanger -o
MG1.trim.fastq -p MG2.trim.fastq -s MG.
singles.fastq -q 20

The trimmed reads were then aligned against the Bowtie database defined
before, and a sorted and indexed BAM file was created:

bowtie2 --very-fast --no-unal -x MA -1 MG1.
trim.fastq -2 MG2.trim.fastq -S MG.sam

samtools view -b MG.sam>MG.bam

samtools sort MG.bam -o MG.sorted.bam
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samtools index MG.sorted.bam

The Bowtie 2 parameters used above (in particular the --very-fast option)
guaranteed sufficient accuracy in all the examples that we have studied. However,
in cases in which increased alignment sensitivity is needed, other options are
possible, as well as the use of other alignment programs (like, e.g., bwa)34. The
user should gauge the choice of the alignment program and parameters to the
problem at hand. Finally, the strainest est command predicted the strain
abundances:

strainest est snp_clust.dgrp MG.sorted.bam
outputdir

The strainest est command operates as follows. For the SNV positions
ðp1; ¼ ; pLÞ identified previously, we extract the frequency of occurrences for each
nucleotide (A,C, G, and T) from the aligned metagenome, obtaining the 4L-vector
of frequencies f:

f ¼ f p1A ; f p1C ; f p1G ; f p1T ; ¼ ; f pLG ; f pLT

� �T
; where f piB 2 0; 1½ � and pi is the ith allelic

position. Similarly, for each reference genome, the SNV profile can be written as

rj ¼ rp1A ; rp1C ; rp1G ; rp1T ; ¼ ; rpLG ; rpLT
� �T

; j ¼ 1; ¼ ;G;

where

rpiB ¼ 1; if the variant is the nucleotide B at the position pi;

0; otherwise;

�

and G is the number of reference genomes. Therefore, the SNV matrix can be
written as a 4L×G matrix R ¼ r1; r2; ¼ ; rGð Þ.

Positions in f and R with depth of coverage lower than the 10th percentile and
higher than the 90th percentile and in any case lower than 6 (these parameters can
be changed by the user) are excluded from the analysis. f piB smaller than 0.01 (1%
abundance) are set to zero. To reduce the computational burden of the prediction
step, only reference genomes that are 95% compatible (i.e., 95% of the alleles in its
profile are present in the metagenome) are used in the Lasso regression (default
parameter). In the case that no reference genome satisfies this condition, no
prediction is returned. This guarantees that if the sample contains a strain that is
divergent from all the sequences in the reference database, StrainEst will not try to
model it as a superposition of reference strains. Rows in the R matrix that contain
only 0 s are discarded. At the end of this filtering step, we obtain the filtered vector
of allele frequencies f̂ and the filtered SNV matrix R̂.

Relative abundances are predicted minimizing the L1 penalized residual sum of
squares (Lasso regression14):

~β ¼ argmin
β2RG jβk�0

k f̂ � R̂β k22 þαjβj1;

where the regression coefficients are constrained to be nonnegative. α controls
the strength of the L1 penalty and is optimized by a 20× random-subsampling
cross-validation (test size 50%) choosing the most parsimonious model within one
standard error of the best model (i.e., the model with the lowest mean-squared
error). ~β is finally scaled to have a unit norm, obtaining the strain relative
frequencies β̂ ¼ β̂1; β̂2; ¼ ; β̂G

� �T
. To assess the quality of the prediction, we define

the Pearson correlation coefficient between the measured and predicted allelic
frequencies as

R ¼
cov ~f ; f̂

� �

σ~f ; σ f̂
;

where ~f ¼ R̂β̂ are the predicted frequencies and σ~f ; σ f̂ are the standard deviations
of ~f and f̂ respectively.

Prediction accuracy assessment. In order to measure the accuracy of the pre-
dicted strain profiles in synthetic data sets, we computed the Jensen–Shannon
divergence and the Matthews correlation coefficient16 between the actual and the
inferred frequencies.

Given two probability distributions (or relative abundance profiles) A and P, the
Jensen–Shannon divergence is defined as

JSD A k Pð Þ ¼ 1
2
D A k Kð Þ þ 1

2
D P k Kð Þ;

where

K ¼ 1
2

Aþ Pð Þ

and D A k Pð Þ is the Kullback–Leibler divergence from A to P and it is defined as

D A k Pð Þ ¼
X

i

AðiÞ log2
AðiÞ
PðiÞ :

The Jensen–Shannon divergence is symmetric and, for two probability
distributions, it is in the interval 0; 1½ �35.

The Matthews correlation coefficient is a widely used measure to assess the
quality of binary classifications. The MCC is defined as

MCC ¼ TP ´TN� FP ´ FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp ;

where TP is the number of true positives, TN the number of true negatives, FP the
number of false positives, and FN the number of false negatives. The MCC returns
a value comprised in the interval �1; 1½ �, where 1 represents an exact prediction, 0 a
random prediction, and –1 indicates total disagreement between the predicted and
actual values.

syntheticII data set. For each species analyzed, we generated 600 Illumina HiSeq-
2000 paired-end samples using the ART15 simulator. In particular, we took the
representative genomes (Supplementary Table 6) of Bifidobacterium longum (30
genomes), Enterococcus faecalis (264 genomes), Staphylococcus aureus (761 gen-
omes), and Staphylococcus epidermidis (146 genomes), and for each combination of
coverage (10X, 20X, 50X, and 100X) and relative abundance (50–50%, 70-30%, and
90–10%), 50 independent samples were simulated.

syntheticIV data set. For seven different bacterial species, (B. longum, Escherichia
coli, E. faecalis, Propionibacterium acnes, S. aureus, S. epidermidis, and Strepto-
coccus pneumoniae), we generated 10 independent Illumina HiSeq-2000 paired-end
samples for two different values of the coverage (10X and 100X) using the ART
simulator. For each sample, reads were generated from four different genomic
sequences of the same species randomly selected from the reference genomes in the
SNV matrix (see Supplementary Table 6).

syntheticEcoli data set. For the Escherichia coli species, we generated 50 inde-
pendent Illumina HiSeq-2000 paired-end samples (20X of coverage) using the ART
simulator randomly picking 2, 3, and 4 genomes from 3041 RefSeq assemblies, for a
total of 150 metagenomic samples.

LOOEcoli data set. For the leave-one-out E. coli data set, we generated 50 inde-
pendent samples (20X of coverage) containing one single strain taken from the list
of reference genomes in the SNV matrix. Consequently, for each sample, the
corresponding reference profile was removed from the SNV matrix and the latter
was used by StrainEst to estimate the abundance profile. This procedure (i.e., using
only sequences of representative genomes present in the SNV matrix to generate
the synthetic data) guarantees that the test is robust to the case of databases with
uneven composition, including a large number of closely related sequences and a
smaller number representing the genomic diversity of the species. In that case, a
leave-one-out experiment on randomly chosen sequences would bias the test
toward the more common types.

ART parameters. The template ART command used for the generation of the
syntheticII, syntheticIV, syntheticEcoli, and LOOEcoli data sets was

art_illumina -i GENOME, -l 100 -m 350 -s 50 -ss
HS20 --fcov COVERAGE --noALN -o OUTPREFIX

Synthetic read samples were mixed to simulate the complete metagenomes.

HMP mock communities. We downloaded from the NCBI web site two metage-
nomic samples obtained from two artificial microbial communities containing 21
known organisms with even (SRR172902) or staggered composition (SRR172903).
The data sets were analyzed using StrainEst for E. coli, N. meningitidis, S. aureus, and
S. epidermidis. Due to the low coverage of some of these species (see Supplementary
Table 3), the strainest est command was run with the option -a 1, to include
in the estimation step all positions with coverage>1. The composition of these
samples is available from the HMP web site https://www.hmpdacc.org/HMMC/.

Oh et al. human skin. A total of 616 samples10 were downloaded from the NCBI
SRA archive. The data set is composed of 12 healthy subjects and a longitudinal
sampling occurred at 10–30 months (“long”) and 5–10 weeks (“short”), and 14 body
sites (Hp: hypothenar palm, Vf: volar forearm, Ac: antecubital fossa, Ic: inguinal
crease, Id: interdigital web, Pc: popliteal fossa, Al: alar crease, Ba: back, Ch: cheek,
Ea: external auditory canal, Gb: glabella, Mb: manubrium, Oc: occiput, Ra: retro-
auricular crease). “Foot” samples and samples with a prediction R < 0.8 were
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removed and a total of 458 samples were analyzed. The data set is available at the
NCBI SRA archive under the study accession SRP002480.

HMP oral. A total of 689 oral samples17 (121 subjects) were downloaded from the
HMP web site (http://www.hmpdacc.org/) and analyzed. The oral sites considered
in the analysis were the tongue dorsum, the buccal mucosa, and the supragingival
plaque. Only samples with a prediction R≥ 0.8 (320 samples in total) were con-
sidered in this study.

E. coli meta-analysis. The “three-country cohort” stool samples25 were down-
loaded from the DIABIMMUNE web page https://pubs.broadinstitute.org/
diabimmune/three-country-cohort. The data set consists of filtered (using knead-
Data v0.4) WGS data from 222 infants (33–1163-days old) from Estonia, Finland,
and Russia. A total of 345 Chinese adult samples26 were downloaded from the
NCBI SRA database under the accessions SRP008047 (stage I) and SRP011011
(stage II). Samples with a prediction R< 0.9 and a minimum depth of coverage<
10 were discarded, obtaining a total of 136 individuals (78 infant samples, 58
Chinese adult samples).

Sharon et al. infant gut. A total of 11 fecal samples collected on postnatal days
(15–24)27 were downloaded from the NCBI SRA archive under the study accession
SRP012558. This data set reports the microbial colonization of the gut of a pre-
mature infant born at 28 weeks of gestation.

Execution time and memory requirements. To assess the performance of
StrainEst in terms of execution time and memory requirements, we ran the
strainest est command (with one thread) on four samples of the syntheticII
data set for four different coverages (10X, 20X, 50X, and 100X, see Supplementary
Table 8). The running time ranges from 12min (S. aureus, 10X) to 25 min
(S. epidermidis, 100X) and the maximum memory occupied is in the interval
between 129 and 591 MB. The number of iterations required by the coordinate
descent algorithm in the Lasso regression and therefore the running time may vary.
The tests were run on a desktop machine with an Intel ® Core™ i7-3770, four
cores, and 16 GB of RAM.

Code availability. StrainEst is an open-source, Python-based software. The source
code, the documentation, and the reference databases are available at https://
github.com/compmetagen/strainest. A self-contained Docker (https://www.docker.
com/) image with preinstalled StrainEst, Sickle, and Bowtie2 is available at https://
hub.docker.com/r/compmetagen/strainest/.

Data availability. The syntheticEcoli and the LOOEcoli data sets are available at
ftp://ftp.fmach.it/metagenomics/strainest/synthetic/.

The authors declare that the data supporting the findings of this study are
available from the authors upon reasonable request.
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