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Abstract: A series of novel lightweight TaNbVTi-based refractory high entropy alloys (RHEA) were
fabricated through ball-milling and spark plasma sintering (SPS). The reinforced phase of TiO
precipitates were in-situ formed due to the introduction of Al2O3 ceramic particles. The RHEA with
15% Al2O3 exhibits a high compressive yield strength (1837 MPa) and a low density (7.75 g/cm3)
with an adequate ductility retention. The yield strength and density are 32% higher and 15%
lower, respectively, compared to the RHEA without Al2O3 addition. The specific yield strength
(237 MPa cm3/g) of the RHEAs is much higher than that of other reported RHEAs, and is mainly
ascribed to the introduction of high volume fraction of Al2O3 additives, resulting in solid solution
strengthening and precipitation strengthening. Meanwhile, the ductile matrix is responsible for the
good compressive plasticity.

Keywords: refractory high entropy alloy; microstructure; powder metallurgy; sintering; mechanical
property

1. Introduction

High entropy alloys (HEAs) are generally consisted of four or more principal elements
in either equi-atomic or near equi-atomic composition, and tend to form simple solid solu-
tion structures, e.g., face-centered cubic (fcc), body-centered cubic (bcc) and or hexagonal
close-packed (hcp), instead of complex phases or intermetallic compounds [1,2]. HEAs
have recently received much attention owing to their unprecedented promising properties,
such as outstanding strength, excellent fracture toughness, remarkable wear and corrosion
resistance, etc. [2–6]. This concept provides enormous capabilities for the development of
novel alloys for application in extreme environments [3,7]. Recently, refractory high entropy
alloys (RHEAs) consisted of refractory elements, such as W, Mo, Ta, Nb, V, Ti, Zr, etc., have
attracted increasing attention by virtue of their superior mechanical properties at room and
elevated temperature [8–11]. Unfortunately, their high density (up to 10–14 g/cm3) and
consequent low specific strength restrict their engineering application.

Adding lightweight elements into RHEAs can effectively reduce the density and im-
prove the specific strength [12–15]. For example, Senkov et al. fabricated Al0.4Hf0.6NbTaTiZr
RHEA by adding Al into the HfNbTaTiZr RHEA. The density of the alloy decreased
from 9.94 to 9.05 g/cm3, and the specific yield strength increased from 93.56 to
203.43 MPa·cm3/g [16]. However, their plasticity deteriorated significantly. Recently, Yang
et al. found that NbTiVTaAl0.25 RHEA with Al addition still have outstanding compressive
plasticity greater than 50% [17]. Nevertheless, the specific strength of this alloy is only
151.48 MPa·cm3/g, which has the potential for further improvement. In this work, a series
of lightweight TaNbVTi-based RHEAs were fabricated by mechanical alloying (MA) fol-
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lowed by spark plasma sintering (SPS). The microstructural evolution and its effects on
mechanical properties were analyzed.

2. Experimental Procedures

The TaNbVTi-based RHEAs were prepared by powder metallurgy (P/M) method.
High purity (>99.5 wt.%) Ta, Nb, V, Ti elemental powders in equiatomic composition
were mixed with Al2O3 powders as the raw materials, and then blended with a planetary
ball-millers for 6 h at 120 rpm under argon atmosphere at a temperature of 25 ◦C. The
average particle size of Ta, Nb, V, Ti and Al2O3 powders is 24.5 µm, 26.1 µm, 22.6 µm,
29.1 µm and 0.3 µm, respectively. The content of interstitial impurities of these powders are
listed in Table 1. In this work, three volume fractions of Al2O3 powders (0%, 10% and 15%)
were added to in-situ generate particles reinforced RHEAs, namely, TaNbVTi-0, TaNbVTi-1
and TaNbVTi-2, respectively. Figure 1 shows the morphology of the as-milled powders.
The average particle size and chemical composition of these powders are given in Table 2.
It can be seen that all these powders are in irregular shape. The content of Al and O in the
as-milled powders increases with the increase of Al2O3 powders. Finally, the as-milled
powders were consolidated via SPS machine (FCT HP D 25/3,Frankenblick, German) at
1700 ◦C with a heating rate of 100 ◦C/min. The sintering process was held for 10 min with
a constant pressure of 30 MPa. The dimension of the sintered bulks is 10 mm in height and
40 mm in diameter.

Table 1. Average particle size and content of elements C, H, O and N in the raw powders.

Raw Powders Average Particle Size (µm) C (wt.%) O (wt.%) H (wt.%) N (wt.%)

Ta 24.5 0.020 0.130 0.0008 0.0064
Nb 26.1 0.011 0.340 0.0015 0.0220
V 22.6 0.028 0.290 0.0014 0.0096
Ti 29.1 0.018 0.280 0.0147 0.0150

Al2O3 0.3 0.013 16.56 0.0653 0.0070
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Figure 1. Morphology of the as-milled powders. (a) TaNbVTi-0, (b) TaNbVTi-1 and (c) TaNbVTi-2 powders.

Table 2. Average particle size and chemical composition of the as-milled TaNbVTi-0, TaNbVTi-1 and
TaNbVTi-2 powders.

As-Milled Powders Average Particle Size (µm) Nb (at.%) Ta (at.%) Ti (at.%) V (at.%) Al (at.%) O (at.%)

TaNbVTi-0 21.5 22.66 27.61 24.25 23.17 0 2.31
TaNbVTi-1 23.2 19.27 23.39 20.33 19.58 6.73 10.70
TaNbVTi-2 24.3 17.47 22.21 18.57 17.67 9.72 14.37

The oxygen content was determined by the fusion method on a Leco O/N analyzer.
The composition was analyzed by chemical methods. The particle size distribution was
investigated by a laser particle size analyzer (MICRO-PLUS). The phase analysis was per-
formed by an X-ray diffraction analyses (XRD, Advance D8, Billerica, MA, USA) with Cu
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Ka radiation. The XRD analyses were conducted at a 2θ from 10–80◦ with a scan rate of
5◦/min. The microstructure was characterized by a scanning electron microscope (SEM,
Helios Nanolab 600i, Hillsboro, OR, USA) equipped with a backscatter electron (BSE) detec-
tor and an energy dispersive X-ray spectroscopy (EDX) device. The elemental distribution
was analyzed by an electron probe microanalysis (EPMA, JXA 8530F, Tokyo, Japan). The
density of the specimens was measured by Archimedes method. Cubic specimens with a
dimension of 8 mm × 8 mm × 8 mm for density test were obtained from the center of the
sintered bulks. Three samples were tested for the same composition, and the average value
was adopted. Cylindrical specimens (Φ 6 mm × 9 mm) for compressive test were cut from
the sintered bulks by using an electrical discharge machining. Before testing, the surface
of test specimens was polished by a 2000-grit SiC paper to eliminate scratches. Room
temperature compressive test was carried out on a universal testing machine (Instron-3369,
Norwood, MA, USA) at a strain rate of 1 × 10−3 s−1. All the specimens were compressed
until fracture. Tensile tests were carried out on an MTS Landmark test machine at a strain
rate of 1 × 10−3 s−1 by using “I” sharp samples with a gauge length of 10 mm and a
rectangular cross-section of 2 mm × 2 mm.

3. Results and Discussion

Figure 2 shows the XRD pattern of the sintered bulks. It is evident that the TaNbVTi-0
RHEA exhibits a single-phase BCC structure, and the related lattice parameter is determined
to be ~0.323 nm. After the addition of Al2O3, some extra diffraction peaks are detected in the
TaNbVTi-1 RHEA, and the intensity increased as the increase of Al2O3 addition, indicating
more second phase forms in the TaNbVTi-2 RHEA. According to the JCPDS cards (No.
72-0020), the second phase can be identified as TiO phase, implying the formation of TiO
phase in the sintered bulks, which is consistent with the results reported by Xin et al. [18].
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Figure 2. XRD patterns of the sintered TaNbVTi-0, TaNbVTi-1 and TaNbVTi-2 RHEAs.

Figure 3 shows the density and microstructural evolution of the as-sintered bulks. It
can be seen that the density of the bulks decreases rapidly from 9.08 g/cm3 of TaNbVTi-0
RHEA to 7.75 g/cm3 of TaNbVTi-2 RHEA with the incremental Al2O3 addition. The
embedded images show the microstructural characteristic of the TaNbVTi-0, TaNbVTi-1
and TaNbVTi-2 RHEAs. After sintering, the bulks can be consolidated to nearly full
dense, and there are few residual pores or shrinkage defects in the microstructure. Slight
component segregation can be observed in the TaNbVTi-0 RHEA, and the microstructure is
composed of two distinguishable regions, bright regions and dark regions, indicating an
incomplete alloying process. Figure 4 shows the EPMA mapping of the TaNbVTi-0 RHEA.
The bright regions are enriched in Ta while the dark regions are enriched in Ta, Nb and V,
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which is consistent with the results reported by Guo et al. [8]. After addition of 10 vol.%
Al2O3, a large number of particles can be clearly found in the TaNbVTi-1 RHEA (Figure 3).
The volume fraction of particles increases significantly with more addition of Al2O3 in
TaNbVTi-2 RHEA, which is consist with previous XRD results. As shown in Figure 3,
the microstructure of the TaNbVTi-1 and TaNbVTi-2 RHEAs exhibits two distinguishable
regions: one is dark matrix, and the other is black particle. The details of the elemental
distribution of the two regions in the TaNbVTi-2 RHEA are investigated by EPMA mapping
(Figure 5). According to the results, the black regions with distinct boundaries are enrich
in Ti and O. It has been widely reported that Al and O elements are introduced from
the initial Al2O3 powders during the MA process [19–21]. Then the Ti in the matrix is
favorable to react with O to form TiO particles when the sintering temperature is higher
than 1057 ◦C [18], which leads to the decrease of Ti content in the matrix significantly. The
TiO particles can hinder the movement of dislocations, leading to the strength enhancement
by precipitation strengthening effect [22,23]. Meanwhile, Al atoms decomposed from Al2O3
diffuse and dissolve into the matrix, and so that the dark regions are enriched in Ta, Nb, V,
Ti and Al, but depleted in O. Since misfit volume of Al is large, a small amount of interstitial
Al atoms will cause remarkable solid solution strengthening effect, and thereby resulting in
strength improvement [24].
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The compressive curves of the TaNbVTi-0, TaNbVTi-1 and TaNbVTi-2 RHEAs are
shown in Figure 6a. The yield strength, ultimate strength and the fracture strain of the
TaNbVTi-0 RHEA are 1391 MPa, 1932 MPa and 16.7%, respectively. And the TaNbVTi-2
RHEA has enhanced yield strength of 1837 MPa and ultimate strength of 2030 MPa, but
its fracture strain decreases to 11.2%. During the compression testing, no visible damage
or macro-crack was observed before attaining the maximum load. Apparently, for the
TaNbVTi-1 and the TaNbVTi-2 RHEAs, the introduction of incremental Al2O3 leads to
slight sacrifice in plasticity, but the yield strength and specific yield strength improve
significantly, mainly due to the remarkable solid solution strengthening effect caused by
Al in the matrix and the precipitation strengthening effect caused by the TiO particles.
At the same time, the TaNbVTi-2 RHEA exhibits the highest specific yield strength of
237 MPa cm3/g, which is slight higher than that of TaNbVTi-1 RHEA (217 MPa cm3/g).
Figure 6b presents fracture strain dependence of compressive specific yield strength of the
TaNbVTi-based RHEAs compared with other previously reported typical RHEAs [25,26].
Surprisingly, the results highlight the extraordinary mechanical properties of the TaNbTiV
based RHEAs compared with many other previously reported RHEAs with moderate
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plasticity. These exceptional mechanical features suggest a promising method for enhancing
RHEAs through the addition of ceramic reinforcements. In addition, the tensile properties
of the RHEAs were also tested for comparison, as shown in Table 3. The tensile strength
is close to compressive strength, while the tensile elongation is obviously lower than
the compressive fracture strain, main due to the stress concentration induced by the TiO
particles during tensile test.
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Figure 6. (a) Typical compression engineering stress-strain curves of the sintered TaNbVTi-0,
TaNbVTi-1 and TaNbVTi-2 RHEAs; (b) comparison of compressive specific yield strength at room
temperature for the current TaNbVTi-based RHEAs and typical RHEAs [25,26].

Table 3. Comparison in compression properties and tensile properties of the TaNbVTi-based RHEAs.

Alloys Testing
Method

Yield Strength
(MPa)

Fracture Strength
(MPa)

Fracture Strain/
Elongation (%)

TaNbVTi-0
Compression

1391 1932 16..7
TaNbVTi-1 1776 2004 12.0
TaNbVTi-2 1837 2030 11.2

TaNbVTi-0
Tensile

1345 1724 7.2
TaNbVTi-1 1694 1908 2.3
TaNbVTi-2 1762 1927 2.1

4. Conclusions

(1) Novel lightweight TaNbVTi-based RHEAs has been successfully developed through
the addition of Al2O3 ceramic particles. The introduction of Al2O3 can promotes the
formation of TiO precipitates in the BCC matrix. Meanwhile, Al atoms decomposed
from Al2O3 could diffuse and dissolve into the matrix.

(2) The TaNbVTi-2 RHEA has a relative low density of 7.75 g/cm3 with a high com-
pressive yield strength of 1837 MPa, which are 32% higher and 15% lower, respec-
tively, compared to the RHEA without Al2O3 addition. The specific yield strength of
TaNbVTi-2 RHEA is better than most reported RHEAs. The newly developed RHEAs
are promising for applying in aerospace field (such as aero-engine, nozzle, etc.) due
to the high specific strength.

(3) The improved strength is mainly ascribed to the introduction high volume fraction of
Al2O3 additives, resulting in solid solution strengthening and precipitation strength-
ening. Moreover, the ductile matrix is responsible for the good compressive plasticity.
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