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Abstract

Artificial intelligence has dramatically changed the world as we know it, but is yet to fully
embrace ‘hot’ cognition, i.e., the way an intelligent being’s thinking is affected by their emo-
tional state. Artificial intelligence encompassing hot cognition will not only usher in enhanced
machine-human interactions, but will also promote a much needed ethical approach. Theory
of Mind, the ability of the human mind to attribute mental states to others, is a key compo-
nent of hot cognition. To endow machines with (limited) Theory of Mind capabilities, com-
puter scientists will need to work closely with psychiatrists, psychologists and neuroscientists.
They will need to develop new models, but also to formally define what problems need to be
solved and how the results should be assessed.

Artificial intelligence (AI) has dramatically changed the world as we know it. Pivotal advances
are associated with machine learning (ML), the branch of AI that deals with enabling machines
to learn from data. A central role is played by deep learning (DL) (LeCun, Bengio, & Hinton,
2015), a technique based on artificial neural networks geared to efficiently support learning.
Since DL has been coupled with reinforcement learning (RL, the notion that an agent learns
by interacting with the real world and being rewarded or penalised accordingly), it has been
shown to be capable of delivering, at times, superhuman performances. In a paramount
example, the AlphaGo computer programme famously managed to consistently beat the
world champion at Go, while delivering new insights on successful game strategies.

These ground-breaking achievements have generated overconfidence in AI and what it can
achieve, especially in the short term. Venture capital is flocking to AI start-ups. People are
expecting autonomous vehicles to appear on our roads at any moment. Some recent serious
incidents, however, have raised red flags. Accidents involving prototype autonomous cars
have led to casualties (Tesla Deaths, 2020), questioning how ready the technology really is
for use in potentially dangerous situations, in which humans and machines closely interact.
Strikingly, these accidents were caused by the vehicle failing to perform relatively simple
tasks, such as object detection or obstacle tracking and avoidance (Hawkins, 2019).

In fact, far more sophisticated functions need to be in place before AI can be safely
deployed in high-risk and potentially dangerous situations. Expectations of the current use
of AI may need to be revised. Consider, for instance, autonomous driving. A smart car
needs to make reliable predictions about human behaviour in real time, for example, in
order to pre-emptively adjust speed and course to cope with a child’s possible decision to
abruptly cross the road in front of them. Deep neural networks can efficiently identify
human actions in streaming videos, as motion patterns (Singh, Saha, Sapienza, Torr, &
Cuzzolin, 2017). The latter, however, may be deceiving, as humans can suddenly change
their minds based upon their own mental processes, thoughts and motivations, and things
they see around them. In our example, children previously walking on the pavement towards
school may spot an ice cream van across the road, and decide to dart across the road to get
their ice cream. No predictive system functioning purely on past observed motion could be
accurate and trustworthy enough in such complex environments, without taking into account
context and the nature of the other agents involved. Human beings, on the other hand, can
predict others’ future behaviour even when no motion is present, just by quickly assessing
the ‘type’ of person involved and the scene around them (e.g. an elderly person standing in
a hallway is likely to decide to take the elevator, rather than the stairs).

This flags the need for AI to tackle ‘hot’ cognition, such as how a person’s thinking is influ-
enced by their emotional state (Lawrence, Clark, Labuzetta, Sahakian, & Vyakarnum, 2008;
Taylor Tavares, Drevets, & Sahakian, 2003). Hot cognition refers to emotional and social cog-
nition, including Theory of Mind (ToM). It contrasts with ‘cold’ cognition, in which the pro-
cessing of information is independent of emotional involvement. Social cognition aims to
understand social phenomena (i.e. the way people deal with other people) by investigating
the underlying cognitive processes. With the emergence of artificial constructs able to show
some (limited) intelligence, the concept needs to be extended to how humans deal with intel-
ligent machines (e.g. an airline’s conversational bot) and vice-versa.
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Theory of Mind

ToM is a major component of social cognition (Baron-Cohen,
1995). In cognitive psychology, the term refers to the set of pro-
cesses and functions of the human mind that allow an individual
to attribute mental states to others. For instance, looking at John
inspecting the inside of the refrigerator, I can deduce that ‘John is
hungry’. I may then stand up to offer him food that is in the
refrigerator and some that is in the kitchen cupboard. The ability
of putting yourself in somebody else’s shoes is a crucial evolu-
tionary advantage for humans, for it allows us to better interact
with our environment and cooperate more effectively with our
peers. The two dominant approaches to ToM are
Theory-Theory (TT) and Simulation-Theory (ST; Harris,
1992). TT argues that children formulate theories which they
then confirm or disprove through experience, just as a scientist
would do. TT is problematic in its assumption that an individual
generates a very large number of theories about other people and
their behaviour, against the ‘cognitive economics’ principle which
has been shown to characterise various mental functions. ST,
instead, defends a simulation process which consists of taking
someone else’s perspective to understand their reasoning, while
using many of the same cognitive mechanisms involved in mak-
ing decisions from a first-person perspective. This is what leads to
the ‘cognitive savings’ in the ‘cognitive economics’ principle.
While some TT work is indeed concerned with cognitive eco-
nomics (Gershman, Horvitz, & Tenenbaum, 2015) and computa-
tional efficiency (Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017;
Pöppel & Kopp, 2018), the idea of ‘cognitive savings’ gained from
sharing the first-person decision-making mechanisms appears to
be less developed.

A machine Theory of Mind

We claim that ToM needs to be incorporated into intelligent
machines if they are to smoothly share environments built by
human beings for human beings. To come back to our initial
example, the main stumbling block towards the actual use of
autonomous vehicles is safety. Safety relies on smart cars being
able to understand and predict human behaviour. As argued
above, naive pattern recognition is incapable of producing accur-
ate predictions of complex and spontaneous human behaviours.
The problem of anticipating human behaviour has in fact only
recently risen to the attention of the computer vision community
(Felsen, 2019), while, in contrast, it has been studied for a longer
time by robotics researchers, especially in the context of human–
robot interaction (Koppula & Saxena, 2016). What is truly
required is an understanding of how humans reason, as well as
their goals and motivations.

In terms of potential impact, ToM AI constructs could play a
significant role in empathetic healthcare, for instance in interac-
tions with individuals with neurological diseases, including
Alzheimer’s, and psychiatric disorders, such as depression,
autism-spectrum disorder and schizophrenia. Such approaches
could improve the efficacy of psychological treatments, such as
cognitive behavioural therapy or mindfulness. In the longer
term, we could imagine robotic companions for disabled people
capable of understanding and projecting emotions. Work in this
area would impact the current debate on moral AI, helping
machines make ethical decisions in critical situations. As people
realise machines are capable of reasoning like them, there will
be greater trust in AI.

To date, however, AI has mostly focussed on ‘cold’ cognition,
especially how to extract information from data. For example,
machines are extremely good, and better than humans, at playing
strategic games such as chess (in part because of their crushing
advantage in terms of processing speed). In a medical context,
they have proved able to diagnose diabetes from retinal images
with higher accuracies than a human physician (De Fauw et al.,
2018). Fruitful interactions between humans and machines are
at the core of imitation learning (Ho & Ermon, 2016), a frame-
work in which rewards are replaced by ‘tutorials’ given by humans
to machines.

The flip side of the coin is that past efforts in incorporating
ToM in machines have widely neglected the crucial learning
aspect. Most relevant work has been done within the field of a
multi-agent system, whereby an agent is an entity that autono-
mously tries to reach goals. Belief-Desire-Intention (BDI) models
(Georgeff, Pell, Pollack, Tambe, & Wooldridge, 1998) have been
proposed to emulate the functioning of the human mind, albeit
in a simplistic way. Attempts have also been made to implement
social norms that agents must follow, or simple ‘personality traits’.
Studies have been conducted from theoretical perspectives as var-
ied as Markov decision processes (Baker, Saxe, & Tenenbaum,
2011), multi-agent RL, evolutionary robotics or game theory
(Yoshida, Dolan, & Friston, 2008).

The vast majority of these models, however, fail to reflect the
real functioning of the human mind. A strong limitation of
most of them is their inability to continuously and dynamically
learn from experience and, thus, update the very rules of learning.
Other agents’ mental states are often assumed to be predeter-
mined. Moreover, most of these models use reasoning processes
based exclusively on propositional logic, which seems to reflect
the way humans use language, but not the actual way the brain
works, nor how knowledge is represented and organised within it.

Theory of Mind v. brute-force learning

One potential criticism of the computational ToM approach is
that, in some cases, learning from direct observations of other
agents might be enough to predict their future behaviour, without
trying to infer their mental states. However, considering once
again the self-driving cars scenario, multiple reviews (Rasouli &
Tsotsos, 2020; Rudenko et al., 2019) have highlighted the insuffi-
ciency of models which directly map observations to actions.
Previous work on computational ToM (Baker et al., 2017) has
also shown that ‘cue-based’ models, which go directly from obser-
vations to mental states via pure pattern recognition, perform
worse than ToM models in terms of prediction accuracy.

Importantly, machine ToM approaches are potentially capable
not only to predict the future behaviour of a person, but also to
provide an explanation for the observed behaviour, linking, in a
way, appearance and essence.

A sceptic might also argue that a pure (deep) learning
approach might be sufficient for a spontaneous ToM to emerge.
Indeed, prominent recent work (Rabinowitz et al., 2018) endorses
a similar philosophy, casting computational ToM as a meta-
learning problem. While the results achieved were impressive
(most particularly, the authors’ neural network learned to pass
a ‘Sally-Anne’ like test, recognizing other agents’ false beliefs;
Wimmer & Perner, 1983), this required very large amounts of
training data. Indeed, Jara-Ettinger (2019) points out that the
experiments reported in Rabinowitz et al. (2018) required 32 mil-
lion samples to learn to perform goal inference at a level similar to
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that of a 6-month-old infant. If infants learned ToM this way, 175
000 labelled demonstrations would be required every day during
those 6 months.

More recent results cast doubt over the possibility of a pure
learning-based approach for computational ToM for even more
fundamental reasons. Jara-Ettinger (2019) has shown how ToM
can be cast as inverse RL (IRL), a very popular RL framework
for learning human preferences (or ‘reward functions’). Most
IRL approaches assume some simplified form of human rational-
ity. It has long been known, though, that humans consistently
deviate from those assumptions (Tversky & Kahneman, 1975).
Armstrong and Mindermann (2018) showed that, if no assump-
tions are made about human rationality, then a human’s prefer-
ences cannot be recovered from behaviour only, no matter how
much data the system can learn from. Even adopting principles
similar to Occam’s razor does not address the problem. It needs
to be stressed that the impossibility result in Armstrong and
Mindermann (2018) is of a fundamental nature, and is not
affected by the amounts of training data or how expressive the
learning system is.

AI in psychiatry: some insights

Useful insights on how to achieve our goals can come from a
review of recent work applying AI to psychiatry. In fact, AI can
also help psychiatry, leading to the potential for a virtuous
cycle. In an informative recent survey, Shatte, Hutchinson, and
Teague (2019) summarised the methods and applications of ML
in mental health and found that four main application domains
emerged: detection and diagnosis, prognosis treatment and sup-
port, public health, and research and clinical administration.
They concluded that there is still significant room to apply ML
to other areas of psychology and mental health beyond the detec-
tion and diagnosis on which most ML studies focus. Durstewitz,
Koppe and Meyer-Lindenberg (2019), in particular, reviewed
the use of DL in psychiatry, with the motivation that DL algo-
rithms often outperform previous ML methods in many applica-
tions, suggesting they may provide similar gains in psychiatry.
They found that DL has mostly been applied to diagnostics in
psychiatry, achieving convincing preliminary results. However,
the small number of such studies does not yet support any firm
conclusions. Durstewitz et al. (2019) also discussed some chal-
lenges for DL in psychiatry, such as low sample sizes, and some
promising areas for their future development, such as interpret-
ability, potentially through more biologically or cognitively
inspired algorithms.

Autonomous robots have also recently been deployed in homes,
to work with children with autism, and have been shown to lead to
improvements in their math and social skills, through game per-
sonalisation and engagement modelling from behavioural cues
(Jain, Thiagarajan, Shi, Clabaugh, & Matarić, 2020). The research-
ers involved in this project are now planning to extend the model-
ling to children’s cognitive-affective states (ToM), including
emotions such as confusion or excitement (Dawson, 2020).

Overall, however, we are not yet in a position to facilitate
effective human–robot companionship for the treatment of psy-
chiatric disorders.

Machine Theory of Mind: a proposal

One possible way forward, which we support here, is to leverage
on the successes of deep and RL not by attempting to learn in

a brute-force fashion mappings from raw inputs (e.g. video or
speech) to human intentions and reasoning processes, but by
using them as tools to build suitable artificial ToM structures
mimicking the actual behaviour of the human mind, in cross-
disciplinary work incorporating neuroscientific insights and
evidence.

Humans can predict others’ mental states and actions by pre-
dicting how they themselves would act in a given situation – a
mechanism called ‘internal simulation’. Similar simulations also
have a role in other well-known mental functions, such as epi-
sodic and autobiographical memory, counterfactual thinking
and episodic future thinking. In direct reference to the concept
of hot cognition, internal simulation is much related to empathy,
as a mechanism allowing us to better understand others. Brain
structures called ‘mirror neurons’ appear to support this mental
function, for they are activated both when an individual actually
performs an action and when they see someone else doing the
same (Gallese & Goldman, 1998).

In another relevant process, humans put other people into
‘stereotypical’ categories characterised by rough personality traits,
in order to speculate what they might do. Indeed, the ventral and
dorsal regions of the medial prefrontal cortex specialise in
responding to elements related to the ‘self’ and to the ‘other’
(Mitchell, Macrae, & Banaji, 2006) and their patterns of activation
seem to adapt to who is performing the action we observe.

A computational approach for modelling other agents’ reason-
ing processes can then be outlined, which is centred on flexibly
generating ToM simulations for specific classes of agents and con-
texts. As it happens in the human brain, such simulations should
not be built from scratch for any new class of agent, but should
result from assembling in different ways a number of basic
‘blocks’ (Andreas, Rohrbach, Darrell, & Klein, 2016). Such blocks
would be deep neural networks representing logical relations
between mental states (Liu et al., 2016). For example, if I observe
an angry person, I may predict that they would be likely to hurt
someone. The best way to connect these blocks to form the
‘best’ possible simulation for the observed scene and involved
agents would then be learned from experience. For example, in
a hallway where taking stairs or taking the lift are both options,
we might infer through such a bespoke simulation that an elderly,
frail person would take the lift, while a healthy young adult might
take the stairs. This may be done according to the principles of RL
(Mnih et al., 2015), by rewarding structures which lead to predic-
tions that accurately match the observed behaviour, and by pena-
lising those that lead to inaccurate ones.

The way ahead

Significant obstacles remain on the way to an effective,
neuroscience-inspired approach to machine ToM.

In human beings, simulations of other people’s mental pro-
cesses are slowly built over the years, as we go about living our
lives. The amount of data required to build the sought flexible
mechanism for constructing agent-specific ToM simulations is
likely to be large. However, we believe the concept is mature for
proof in at least relatively narrow domains of application, such
as autonomous driving, in which humans only use a fraction of
their cognitive capabilities and their possible intentions are lim-
ited to a small number of cases (e.g. ‘Should I turn right or
stop?’). It is reasonable to expect that the amount of data needed
should be smaller than that required by the naïve approaches dis-
cussed above.
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The human brain is remarkably versatile: it can process and
compute a thousand different tasks, as we learn from each of
them and transfer knowledge between them. When driving, for
instance, we make use of knowledge gathered while playing, say,
with our nephews and nieces, knowledge which allows us to create
a good general model of children’s patterns of behaviour. In this
sense, an effective, human-inspired machine ToM needs to
emerge from machines learning to deal with multiple, loosely cor-
related tasks, rather than focusing on a simple, narrow objective.

Empirical validation is also an open question. Whereas mul-
tiple datasets designed for testing observed human behaviour in
videos exist, there simply is no benchmark for assessing an algo-
rithm’s ToM abilities. Arguably, mental state annotations will
need to be provided to data capturing the observed behaviour
of people, describing, for instance, the emotional state, desire
and intention of the various agents involved at any given time.
This is likely to be very time-consuming, and to require the assist-
ance of experts from neuroscience, cognitive psychology and bio-
logical psychiatry.

Last but not least, suitable measures of performance for asses-
sing the quality of the inferred mental states will also need to be
devised. One possibility is to assess the accuracy of ToM predic-
tions on the observed behaviour of the agents, using measures
commonly accepted in ML such as precision and recall. The alter-
native is to directly compare machine-generated mental state attri-
butions with human guesses in combined, ground-breaking
cross-disciplinary tests.

This reinforces our opinion that there is a strong need for
those in the field of psychological medicine to contribute to the
development of AI. This will not only facilitate enhanced
human–machine interaction in healthcare, including in the area
of mental health, but should promote a much needed ethical
approach in AI.
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