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Natural chemical compounds have been widely investigated for their programmed
necrosis causing characteristics. One of the conventional methods for screening such
compounds is the use of concentrated plant extracts without isolation of active moieties for
understanding pharmacological activity. For the last two decades, modern medicine has
relied mainly on the isolation and purification of one or two complicated active and isomeric
compounds. The idea of multi-target drugs has advanced rapidly and impressively from an
innovative model when first proposed in the early 2000s to one of the popular trends for
drug development in 2021. Alternatively, fragment-based drug discovery is also explored
in identifying target-based drug discovery for potent natural anticancer agents which is
based on well-defined fragments opposite to use of naturally occurring mixtures. This
review summarizes the current key advancements in natural anticancer compounds;
computer-assisted/fragment-based structural elucidation and a multi-target approach for
the exploration of natural compounds.

Keywords: natural anticancer compounds, theranostics, multi-target approach, fragment-based screening, drug
antibody conjugate, drug repurposing, personalized medicine

INTRODUCTION

Cancer is a disorder in which cells proliferate abnormally deprived of control. These cancerous cells
can attack other nearby tissues and transfer to other body parts via lymph and blood. Numerous
types of cancers exist such as carcinoma (cancer of the skin or internal organs covering the tissues),
leukemia (cancer of tissue that forms blood like, bone marrow, which leads to the production of too
many defected blood cells), sarcoma (cancer of muscle, bone, fat, cartilage, blood vessels or other
connective tissues or supportive tissues), lymphoma and multiple myeloma (cancer of the immune
system cells) (NIH, 2021). Healthy cells can change into tumor cells by following the multiple-stage
processes resulting from the interaction between genetic factors of the person and external
parameters. These external parameters include physical carcinogens, for example, UV and
ionizing radiation, chemical carcinogens like asbestos, constituents of tobacco smoke, food
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contaminants (aflatoxin), drinking water contaminants (arsenic),
and biological carcinogens such as infection of virus, bacteria, or
parasites (Setlow, 2001). Globally, cancer is the second major
reason for mortality with an estimate of 10 million deaths in 2020
(Figure 1) among which, breast, lung, colon, rectal, prostate, skin,
and stomach cancers were the most frequently observed. Lung
cancer was responsible for the majority of cancer-related deaths
in 2020 (WHO, 2021b). Throughout the globe, about 1 out of 6
deaths occur because of cancer each year. In low and middle-
income countries, almost 70% of the deaths arise due to cancer,
out of which, one-third of fatalities are caused by consumption of
tobacco and alcohol, high body mass index, less intake of fruits
and vegetables, and insufficient physical activity (Wogan et al.,
2004). Several infections including human papillomavirus, H.
pylori, Epstein-Barr virus, hepatitis B virus, and hepatitis C virus
(HBV and HCV) can also become indirect risk factors for cancer.

Advancements in multimodal imaging, 3D visual technology,
combinational therapy, and the use of nanomedicine have
improvized the effectiveness of cancer treatment in the past
2 decades (Shi et al., 2017; Chavda et al., 2019). Progress in
cancer immunotherapy, chemotherapy, gene therapy, and
epigenome therapy enables substantial improvement in cancer
management. Apart from that surgeries including plastic surgery,
robotic laparoscopy, radiotherapy, hormonal (mainly for breast and
prostate cancer), and photothermal (laser) therapy has
revolutionized cancer management (Kumar, 2018). The discovery
of targeted drugs, monoclonal antibodies, checkpoint inhibitors,
cancer vaccines (prophylactic and therapeutic), cytokines
(interferon and interleukins), and chimeric antigen receptor T-cell
(CAR-T cell) therapy is proven to be safe and effective in cancer
management. Proton therapy is effective in the treatment of several
cancer types such as brain, prostate, liver, lung, esophagus, breast,
colon, eye, neck, and head. Advancements in robotic surgery enabled

the treatment of certain cancers such as kidney, bladder, prostate,
ovaries, throat, and uterus (Charmsaz et al., 2018). Many trials and
research are ongoing in oncology for enhancing the efficacy of the
treatment with minimum side effects.

Targeted drug delivery has proven effective in the treatment of
various cancers with fewer side effects. Trastuzumab is used for breast
cancers with human epidermal growth factor receptor 2 (HER-2) gene
mutation. Afatinib and cetuximab block epidermal growth factor
receptor (EGFR), which supports the development of colorectal and
lung cancers. Dabrafenib and vemurafenib treat melanomas having
mutated BRAF genes. Even though such targeted therapies are
promising, currently they are used in very few types of cancers.
Research towards improving such therapies is ongoing (Charmsaz
et al., 2018). Multi-target therapy (either in sequential order or in
combination) is also a widely used approach especially in the cases of
intrinsic and acquired resistance towards anti-cancer compounds
(Holohan et al., 2013). Drugs such as sunitinib, sorafenib,
vandetanib, pazopanib, and axitinib are examples of multi-target
treatment of cancer. Sunitinib is approved to treat gastrointestinal
stromal tumors and renal cancer. Similarly, sorafenib is approved for
renal cancer and liver cancer, where both drugs have the potential to
target multiple sites. Vandetanib, pazopanib, and axitinib are used for
treating non-small-cell lung cancer (NSCLC) and breast cancer.
Vandetanib is effective in thyroid cancer, pazopanib in ovarian and
kidney cancer, and axitinib in renal and pancreatic cancer (Petrelli and
Valabrega, 2009).

Approximately 60% of effective anticancer drugs are obtained
from natural sources (Newman and Cragg, 2012). Campothesins,
nucleosides, taxanes, and vinca alkaloids are widely used anticancer
drugs obtained from natural origin, and these can provide potential
clinical efficiency with diminished toxicity. Another important
chemotherapeutic anticancer role is offered by combining potent
cytotoxic natural compounds with monoclonal antibodies,

FIGURE 1 | Statistics of globally reported cases and deaths due to various types of cancers in 2020 [Data Collected from (WHO, 2021a)].
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TABLE 1 | Pharmacological and Pharmacognostic details of the naturally occurring anticancer compounds.

Active chemical
constituents

Plant name and
(plant family)

Mechanism of action Biological target References

Shikonin Lithospermum erythrorhizon
Siebold and Zucc.
(Boraginaceae)

Cell proliferation and cell death Inhibition of CDC25 and CDK1 Zhang et al. (2019)

Columbianadin Angelica decursiva (Miq.)
Franch. & Sav.
(Apiaceae or Umbelliferae)

Angiogenesis Inhibition of VEGF,EGF,PDGF, TNF-α Majnooni et al.
(2019)

Polyphyllin D Paris polyphylla Sm.
(Melanthiaceae)

Apoptosis Inducing DNA fragmentation and phosphatidyl-
serine (PS) externalization

Cheung et al.
(2005)

Tanshinol A Salviae miltiorrhizae Bunge
(Lamiaceae)

Inducing autophagy and apoptosis
and inhibiting cell growth and
migration

Activating AMPK and inhibiting PI3K/Akt/mTOR
signaling pathway

Tay et al. (2019)

Artesunate Artemisia annua L.
(Asteraceae)

Apoptosis, arrest of the cell cycle at
G0/G1, and oxidative stress

Regulating the pathway of NK-B, survivin, NOXA,
hypoxia-inducible factor-1α, and BMI-1

Das (2015)

Dihydroartemisinin Artemisia annua L.
(Asteraceae)

Inhibition of tumor hypoxia Altering the ROS- dependent apoptosis which
summarises the activation of pro-apoptotic Bcl-2
family member Bax, and caspase-activation

Ontikatze et al.
(2014)

Phenethyl isothiocyan Cruciferous vegetables
(Cruciferouceae)

Inhibition of the progression of
tumorigenesis

Pathway alteration of Akt, JNK, XIAP, MCl1,
BCL2, BCL-XL, BAD, BAX

Gupta et al. (2014)

Piperlongumine Piper longum L. (Piperaceae) Cell cycle arrest, inhibition of
angiogenesis, metastasis pathways,
and autophagy pathways

Key regulatory proteins, including PI3K, AKT,
mTOR, NF-kβ, STATs, and cyclin D1

Tripathi and Biswal
(2020)

Metformin Galega officinalis L. (Fabaceae
or Leguminosae)

Inhibition of tumor development Triggering AMPK pathway Aljofan and
Riethmacher
(2019)

Gossypol genus Gossypium (Malvaceae) Inhibition of tumor necrosis Inhibition of TNF- α and NF-κB Lu et al. (2017)
Anthocyanin Brassica oleracea var

(Brassicaceae)
Suppression of angiogenesis Inhibition of TNF- α, inducing VEGF expression Wang and Stoner

(2008)
Paclitaxel Taxus brevifolia Nutt.

(Taxaceae)
Arrest cells in the G2/M phase of the
cell cycle

Inhibition of EGFR Barbuti and Chen
(2015)

Curcumin Curcuma longa L.
(Zingiberaceae)

Inducing apoptosis and inhibiting
proliferation

Strong inhibition of TNF-α Barbuti and Chen
(2015)

Dimethoxy curcumin Curcuma longa L.
(Zingiberaceae)

Anti-tumor effect Inhibition of EGFR, epithelial-mesenchymal
transition, and VEGFR

Chen et al. (2016)

Curcuminoid B63 Curcuma longa L.
(Zingiberaceae)

Inducing cell proptosis Targeted TrxR1 protein and increases (ROS) level
which responsible for MAPK pathway activation.

Chen et al. (2019)

Celastrol Tripterygium wilfordii Hook.f.
(Celastraceae)

Suppressing the development and
progression of tumor

Multiple signaling pathways inhibition such as
reactive oxygen species (ROS)/JNK and Akt/
mTOR, NF-κb, STAT3/JAK2, HSP90, Cdc37,
p23, Iκκb, p-Akt, ERα

Shi et al. (2020)

Ginsenoside Rh2 Panax spp (Araliaceae) Inhibition of cell proliferation, cell cycle,
cell invasion, and metastasis

Signaling pathway inhibition Akt/mTOR, NF-κb,
STAT3

Li et al. (2020)

Hesperidin Citrus aurantium L (Rutaceae) Responsible for autophagy and
apoptosis cell death,

The regulatory protein of Caspase3 and Aurora-A
kinase

Korga et al. (2019)

γ-tocotrienol, delta-
tocotrienol

Elaeis guineensis Jacq.
(Arecaceae)

Inhibition of angiogenesis Downregulation of NF-kappa B pathway and
VEGF

Ling et al. (2012)

Withaferin A Withania somnifera (L.) Dunal
(Solanaceae)

Inhibition of angiogenesis and
inducing intratumoral apoptosis

Encouraging the expression of pro-apoptotic
protein Bax and NF-κB pathway inhibiting by
caspase-3 protein

Lee and Choi
(2016)

6-Shogaol Zingiber officinale Roscoe
(Zingiberaceae)

Inducing apoptosis Blocking of NF-κB Ling et al. (2010)

Berberine Berberis aetnesis aetnensis
C.Presl (Berberidaceae)

Inhibition of cell proliferation Suppressing EMT and downregulating signaling
pathways (ROS, inhibiting mTOR and Akt
phosphorylation, AMPK)

Wang et al. (2020)

Honokiol Magnolia virginiana L.
(Magnoliaceae)

Regulation of cellular homeostasis Downregulating signaling pathway AMPK/mTOR Lee et al. (2019)

Sanguinarine Argemone mexicana L.
(Papaveraceae)

Inducing apoptosis and programmed
cell death

Inhibition of Bax and Bcl-2 proteins Xu et al. (2012)

Abbreviations: CDC, Complement-dependent cytotoxicity; CDK, Cyclin-dependent kinase; VEGF, Vascular endothelial growth factor; EGF, Endothelial growth factor; PDGF, Platelet-
derived growth factor; TNF-α, Tumor necrosis factor-alpha; AMPK, AMP-activated protein kinase; mTOR, The mechanistic target of rapamycin; DNA, Deoxyribonucleic acid; BMI-1,
Polycomb complex protein; ROS, Reactive oxygen species; Akt, Protein kinase B; JNK, c-Jun N-terminal kinases; STATs, signal transducer and activator of transcription proteins; MAPK,
mitogen-activated protein kinase; NF—κB, nuclear factor kappa-light-chain-enhancer of activated B cells.
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particularly targeting antigenic determinant sites of tumors
(Table 1) (Cragg and Pezzuto, 2016). Chemo-preventive and
tumor-suppressive activities exerted by certain natural agents
such as resveratrol, curcumin, indole-3-carbinol,
(-)-epigallocatechin-3-gallate, and vitamin D have been reported
in multiple studies (Weng et al., 2008; Chakraborti, 2011; Ko et al.,
2017; Kwak et al., 2017; Tomeh et al., 2019).

Some natural products are also used to prevent severe side
effects of chemotoxic agents which include nausea, vomiting, loss
of appetite, diarrhea, constipation, fatigue, skin irritation, etc.
Hence, the natural compounds obtained from plants, marine
sources, bacteria, fungi, and animals have great potential to
effectively target carcinogenic cells with minimal side effects.
In this review, we discuss the potential of phytochemicals as
anticancer agents followed by new computational approaches like
multi-target and fragment-based approaches for the natural
anticancer discovery and at last, we discuss theranostic role of
natural anticancer agents.

NATURAL ANTI-CANCER COMPOUNDS
AND CURRENT RESEARCH

Having extraordinary diversity in nature, the plant-derived
compounds are recognized as rich sources of bioactives with
some of them also possesses theranostic potential. In the past
four decades, many efforts have been made to isolate new

chemical entities (NCE) from natural sources like plants,
marine, and microorganisms to develop anti-cancer agents.
Since 1981, around 25% of new anticancer molecules are
derived from natural sources but most of the targeted small
molecules were launched after the year 1990 (Beck et al.,
2017). Different approaches for the development of novel
natural anticancer drugs are summarized in Table 2.

a. Antibody-Drug conjugates

The development of antibody-drug conjugation (ADCs)
therapy in the early 1990’s that integrates monoclonal
antibody (mAb) and potent chemotherapeutic agents in a
single chemical moiety by a chemical linker has paved the
way for the next-generation cancer therapeutics. This
advanced approach explores targeting a mAb to improve
tumor-specific drug delivery by the antigen-antibody
interaction with enhanced anti-cancer activity. Physical and
biological properties that are necessary for the ADCs are as
follows: 1) Drug loading requires a suitable modified site for
conjugation with mAb, 2) Appropriate solubility in water is
crucial for desired antibody reaction, and 3) Considerably,
higher toxicity (IC50 between 0.01 and 0.1 nM) than the
standard chemotherapeutic agents is required
(Abdollahpour-Alitappeh et al., 2019). Gemtuzumab
ozogamicin was the first approved conjugate of humanized

TABLE 2 | Novel natural anticancer drug development approaches.

Methods Natural ligands Targeted PDBa Activity Analytical
tools/Methodology

References

Structure-based
and Ligand-based

Porphyrin derivatives Interaction with Bcl2 active
site (PDB: 1XJ)

Antitumor activity Molecular dynamics (MD),
Structure-based
pharmacophore modeling,
Molecular simulation (MS)

Arba et al. (2018)

Curcuminoids, thiotryptophan, and
4-phenoxyphenol derivative

PDB of EGFR, MMP-9,
mTOR, PKC AKR1B10
(PDB:1ZUA)

Antitumor activity Molecular docking Parsai et al. (2014)

Pheophytin [high affinity human
mitochondrial translocator protein
(TSPO) ligand]

Inhibit mitochondrial
membrane Potential in
adenocarcinoma A549 cells

Cell survival Molecular docking Shailaja et al. (2019)

4-Methylpteridinones (berberin) PI3K/mTOR (PDB: 3OAW) Cell survival Molecular dynamics Liu et al. (2010)
Fragment-based Trypanosomabrucei,

Trypanosomacruzi,
Leishmaniainfantum, and
Plasmodium falciparum.

Thioredoxin peroxidase 2
(Trx-Px2)

Antitumor activity Molecular docking Boucher et al. (2006)

Drug repositioning
and purposing
based

Metformin and Aspirin In-Vivo cell line MCF-7,
VEGFR-2 (PDB: 3ewz)

Inhibition of breast
cancer cells

Molecular dynamics and
Molecular simulation

Amaral et al. (2018)

Mushrooms Inhibition of Histone
deacetylase (HDAC)
(PDB: 3C10)

Inhibition of breast
cancer cells (MCF-7
cell line inhibition)

Molecular docking Maruca et al. (2020)

Antibody-drug
conjugation

Gemtuzumab ozogmicin Calichemicin monoclonal
antibody

Inhibition of cytotoxic
tumor

Disulfide-thiol exchange Mullard (2014b)

Molecularly
targeted drug

Hematoxylin analogs Protein tyrosine kinase
inhibitor (VEGFR-r PDB:
4ASD)

Inhibition of
angiogenesis

Molecular dynamics and
molecular simulation

Ortiz-Hidalgo and
Pina-Oviedo (2019)

Leveraging
cutting-edge
technologies

Withaferin A Cysteine 377 Inhibition of breast
cancer

In silico approaches Sivasankarapillai
et al. (2020)

aPDB: Protein Data Bank
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anti-CD33 monoclonal antibody which is covalently attached
to the cytotoxic antitumor antibiotic calicheamicin, but it was
withdrawn from the market in 2010 due to fatal adverse events
like hemorrhage, infection, and/or acute respiratory distress
syndrome. In 2011, brentuximab vedotin was approved for
treating Hodgkin lymphoma and anaplastic large cell
lymphoma (Mullard, 2014a).

b. Structure-based drug design for natural products

The structure-based drug design is a new approach that can be
applied to naturally occurring molecules for the discovery of new
anticancer agents. The application of such approaches, resulted in
a substantial compilation of natural remedies with potential
therapeutic activities against cancer which, while mostly
immature as drug candidates, provide highly heterogeneous
substrates for lead compounds. This is the most reliable
approach for natural lead development. Hematoxylin and its
analogs sourced from the heartwood of Haematoxylon
campechianum L. manifested tyrosine kinase inhibitory
potential (Lin et al., 2008).

c. Drug mechanism-based evaluation of novel natural
anticancer

Cutting-edge technologies incorporated with
chemoproteomics and multi-omics help to overcome

challenges in the mechanistic investigation of naturally
occurring drugs. Grossman et al. reported the use of
chemoproteomics for the discovery of anti-cancer natural
product withaferin A that targets cysteine 377 on the
regulatory subunit PPP2R1A of the tumor suppressor protein
phosphatase 2A complex, and impair breast cancer cell
proliferation (Ward et al., 2019).

d. Drug repositioning and repurposing

The discovery of novel anticancer agents from natural
sources remains a challenging task. Therefore, many of the
currently used natural anticancer drugs are derived from
already existing drugs used for the treatment of different
diseases as a part of drug repurposing. Drug repositioning
approaches include structure-based and ligand-based drug
designs. Mushrooms display antifungal, antimicrobial,
antiviral, antitumor, and antioxidant activities. The
antifungal activity of the mushrooms also inhibits histone
deacetylase (HDAC) resulting in anti-proliferative activity
against human breast cancer cell line MCF-7. As
demonstrated in Figure 2, Trichostatin A docking with
HDAC 7 crystal structure of the protein (PDB: 3C10) shows
interaction with LEU 810, PRO 542, PHE 738, PHE 679, HOH
260, and HOH 384 aminoacids by hydrogen and π-π bond
interaction (Maruca et al., 2020). Trichostatin A inhibits
HDAC, resulting in anti-proliferative activity against the
human breast cancer cell line, MCF-7.

FIGURE 2 | (A) 3D and (B) 2D representation of the best re-docking pose of Trichostatin A (TSA) against HDAC7 (PDB code 3C10) receptor obtained using the
Glide-SP algorithm.

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 7026115

Chavda et al. Current Computational Methodologies

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


COMPUTER ASSISTED STRUCTURAL
ELUCIDATION OF NATURAL ANTICANCER
COMPOUNDS AND OTHER
BIOINFORMATICS APPROACHES

The isolation and identification of natural compounds is a tedious
task for chemists because natural compounds have more than one
stereo-center, high molecular weight, and complicated chemical
scaffolds (Koos et al., 2020). CASE strategies that are dependent
on chromatographic and spectroscopic approaches are recently
explored for structural elucidation of natural anticancer
compounds (Elyashberg and Argyropoulos, 2020). However, to
date, only a few spectral data are available for natural compounds,
therefore structure elucidation remains a challenge. The
spectroscopic and crystallographic analysis techniques
accelerated the process of structural elucidation of natural
molecules and helped in broadening the spectrum of structural
elucidation that could be applied as a tool in the discovery of new
drug entities (Nugroho and Morita, 2019).

Numerous advances in Mass Spectrometry (MS) and Nuclear
Magnetic Resonance (NMR) over the last 2 decades have enabled
structural elucidation processes for complex natural product
mixtures (Figure 3). Qualitative analysis like MS gives
information about the molecular weight and fragments of the
sample. Recent scenarios of hyphenated techniques like LC-MS,
GC-MS, GC-FID, GC-MSMS, and LC-MSMS are used for high-
resolution molecular weight determination with a decrease in the
total number of overlapping m/z ratios (Rinschen et al., 2019).
Orthodox chromatographic approaches take a long time to
identify or forecast the key chemical components found in a
natural product mixture. The restricted compound references
often render identifying or predicting each constituent in a
mixture quite troublesome. As a result, an effective algorithm

for solving the symmetric cone complementarity problem
(CSCCP) is needed. Similarly, sensitive techniques like NMR
spectroscopy give an essence of type and number of protons (H1),
carbon (C13), phosphorous (P31), and fluorine (F19) content in the
natural organic compounds. NMR spectrometric analysis alone
cannot elucidate the structure of the natural organic compounds
independently, therefore hyphenated techniques namely
LC–NMR–MS and LC–UV–solid-phase extraction–NMR–MS
are used. An IR spectrum can tell a lot about the existence or
absence of such functional groups, but it does not give
information about their environment in the compound
(Elyashberg et al., 2009). It was suggested that 2D NMR data
can be routinely generated, even in automation and amultitude of
data are available as inputs to CASE systems like HSQC (HMQC),
1H-1H COSY (TOCSY), and HMBC methods (Elyashberg et al.,
2009). Nowadays, 2D NMR spectroscopy is used for the
structural elucidation and verification of natural organic
molecules (Soong et al., 2020). A logical review of 2D NMR
data often reveals the existence of “nonstandard” duration of
COSY andHMBC correlations. Fuzzy structure generation allows
for the right solution even though an uncertain number of
nonstandard associations of unknown duration is present in
the spectra (Su et al., 2017).

A new computer-aided software engineering (CASE)
algorithm, known as the NP-Structure predictor, predicts
individual components in a natural product mixture by using
information acquired from LC-MS experiments (Harn et al.,
2017). This is accomplished by comparing a list of known
scaffolds with a list of weighted side groups to generate a list
of potential molecules subject to defined structural constraints.
They also mentioned an iterative DP algorithm with a wide range
of potential sets of positions (Nk) that can be connected by the
side chains upon its seed scaffolds, which may result in a
challenging execution period for the algorithm (Kind and
Fiehn, 2010; Harn et al., 2017). Expert system structure
elucidator for the natural organic anticancer compound
includes molecular connectivity diagram, structure generation,
and verification and selection of the most probable structure. The
fuzzy logic structure elucidator, which is based on spectral data,
can easily identify large and complicated molecules consisting of
up to 100 or more atoms with topological conceit. The beneficial
predictions produced by computational models combined with
empirical validations could help to accelerate the production of
anti-cancer drugs from natural origin.

FRAGMENT-BASED SCREENING OF
NATURAL ANTICANCER COMPOUNDS

Fragment-based drug discovery (FBDD) will have wide
applications in the field of natural products in the upcoming
years because extraction, isolation, and purification of the active
constituents from the natural sources are quite tedious and time-
consuming (Khalifa et al., 2019). Application of in-silico
techniques may expedite the process of development of potent
and semisynthetic compounds that were originally isolated from
natural sources. FBDD of the natural compounds is challenging

FIGURE 3 | Summary of stepwise structural elucidation techniques of
natural products.
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because it is not yet largely explored for natural compounds
manifesting anticancer activity (Murray and Rees, 2009). The
natural chemical compounds that exhibit anticancer activity
include alkaloids, polyphenolic compounds, etc. FBDD mainly
depends on the molecular modeling strategy for the identification
of the potential fragment for the anticancer agent. This involves
the binding of the small fragments in the active site of the target
(protein) to analyze the interaction of the small fragments with
the target protein that helps the medicinal chemists and
pharmacologists to design novel anticancer molecules. Natural
anticancer compounds are sourced from plants, animals, and
marine sources. The fragments are analyzed by various
spectroscopic techniques and crystallographic techniques
(David et al., 2020). Fragment-based screening (Figure 4) (Li,
2020) involves the following steps:

1. Collection of the compounds from the database
2. Filtration of the compounds from the database
3. Spectroscopic and crystallographic analysis of fragments
4. Molecular docking of the identified small fragments
5. Anti-cancer screening of the fragments.

Vemurafenib was the first drug discovered by the FBDD
approach that consists of pyrollopyridine as a fragment for

anticancer activity. Similarly, there is ample potential for
various natural compounds to be screened as novel anticancer
agents by applying the FBDD approach (Liu and Quinn, 2019). If
a target has been established, bioinformatics can be used to
comprehend the structure, which can be achieved by X-ray
crystallography or other approaches such as homology
modeling. The target protein would then be overexpressed. If
the isotopically labeled protein is quickly purified and exhibits
scattered cross-peaks in the 1H-15N-HSQC spectrum, this
protein-based NMR can be used in screening. Otherwise,
fragment scanning can be performed using DSF or 19F-NMR.
If the target can be conveniently crystallized, X-ray
crystallography would be the first tool to be used in screening.
Where a target framework is open, the virtual screening will still
be performed. An appropriate library would be chosen from a
large number of sources, which is not a restriction. Structural,
biophysical, and biochemical approaches can be used to validate
the hits. Finally, appropriate techniques can be used to exploit
fragment development (Figure 4). Role of medicinal chemists
would be crucial in this phase.

Curcumin is an active constituent of Curcuma longa L.
(Family: Zingiberaceae), which exhibits anticancer activity. It
consists of the active fragment of β-diketone. Curcumin’s
anticancer activities are due to its direct or indirect control of

FIGURE 4 | Procedure for fragment-based screening.
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signal transduction pathways, via its effect on cell division, the
p53 tumor suppressor gene, and transcription factors Nrf2 and
NFB, as well as modulation of inflammatory signaling cascades.
Similarly, for the designing of novel COX-2 inhibitors like
diketone, is a pharmacophore for developing anticancer agent
(Kljun and Turel, 2017).

Potential natural anticancer compounds which act on p21-
activated kinase (PAK1) were reported by using computational
methodologies (Shahinozzaman et al., 2020). 42 fragments of
herbal compounds were identified from drugs such as triptolide,
cucurbitacin I (C-I), nymphaeol A (NA), and staurosporine
(SPN). Pharmacokinetic properties like absorption,
distribution, metabolism, and excretion (ADMET) and
molecular docking studies suggested that inhibitors C-I, NA,
and SPN fit in the catalytic region of p21 activated kinase with
promising pharmacological and pharmacokinetic parameters
(Shahinozzaman et al., 2020). Molecular dynamic simulation
studies revealed that NA shows tight binding with the PAK1
enzyme and can be considered to be safe while toxicity was
manifested by SPN and C-I (Abdollahpour-Alitappeh et al.,
2019).

AlAjmi et al. identified novel natural molecules as polo-like
kinase (PLK-1) inhibitors with an anticancer activity using a
computational modeling approach like FBDD (AlAjmi et al.,
2018). Selleck’s library of natural compounds was screened
against PLK-1 with the aid of a molecular docking approach.
Docking studies identified eight bioactive natural molecules
(Apigenine, Dihydromyrecetion, Hesperidin, Hesperitine,
Naringenin, Phlorizi, and Quesertine) as PLK-1 inhibitors.
Molecular Mechanics-Generalized Born Surface Area (MM-
GBSA) calculations showed that hesperidin was found to be a
potent inhibitor of PLK-1 by the formation of a sturdy complex
with Tyrosine-protein kinase (TLK) and confirmed with the
help of molecular dynamics simulation studies. The generated
data provide ample evidence and confirmed that hesperidin is
a potential PLK-1 inhibitor by following parameters as
molecular weight (610.56 g/mol), 8 H-bond donors,
15 H-bond acceptors, 234 Å TpSA, 0 net charges, and 7
rotatable bonds. These results were more significant as
compared to other natural inhibitors of PLK-1 as an anti-
cancer agent. Similarly, optimization of natural compound
Itampoli A as p38α inhibitor by application of FBDD approach
was reported elsewhere (Liang et al., 2019). Itampoli A which is
effective against lung cancer was isolated from Iotrochota
purpurea, a marine sponge. Itampoli was modified with the
aid of the FBDD strategy. A total of 45 brominated tyramine
analogs were synthesized as fragments. In-vitro enzyme
inhibition assay of 45 analogs was performed against the
p38α enzyme. The inhibitory study revealed that
(−)-itampolin A potentially inhibited p38α with an IC50
value of 7.9 ± 1.7 nM. (−)-itampolin A also inhibited cell
proliferation in the lung cancer cell line (A549) at a
concentration of 0.66 mM. Molecular docking revealed that
(−)-itampolin A fit in the active site of p38α by forming 3H-
bonds with GLU71 and ASP168. On the other hand, the 3D
QSAR approach revealed that the tyrosine skeleton was
essential for the p38α inhibitory activity which was mainly

contributed by the ureoid moiety in (−)-itampolin A (Liang
et al., 2019).

Therefore, FBDD is one of the attractive tools for the
medicinal scientists in order to explore natural anticancer
agents and further identify hit fragments from the reported
natural anticancer agents and model a new anticancer
molecule (Koos et al., 2020).

MULTI-TARGET APPROACH FOR THE
EXPLORATIONOFNATURALANTICANCER
COMPOUNDS
The conventional drug discovery approach was applied for the
discovery of novel drugs. Even until 2000, scientists developed
drugs separately for different targets of the same disease. This
approach leads to an increase in the number of drugs and their
corresponding side effects (Table 3). To avoid this, scientists
focused on developing drugs that can target multiple sites of the
same disease that can ultimately reduce the number of drugs in
the chemical space and also the corresponding cost to develop
them (Figure 5) (Ramsay et al., 2018). The blockbuster drug
Sorafenib was developed by Bayers and Onyx which gained
approval from USFDA in 2007. Sorafenib inhibited different
kinases namely VEGFR-2, VEGFR-3, PDGFRβ, c-Kit, and Raf,
that play a crucial role in cancer progression and angiogenesis at a
low nanomolar concentration. Similarly, in Indian traditional
medicine, curcumin is a natural active constituent of crude drug
turmeric and its semisynthetic analogs are used in the treatment
of several types of cancers. In the last 3–4 decades, various drugs
were developed which act by binding to diverse biological targets,
resulting in desired pharmacological activity (Cragg and Pezzuto,
2016).

There are various targets for the treatment of different diseases
like tyrosine kinase for cancer, cyclooxygenases (COX) for
inflammation, and DNA gyrase for bacterial infection and
tuberculosis. Marine plants are the main source of anticancer
agents, and they can target more than one disease. Methanolic
extract of Artemia salina is a marine brine shrimp that shows
both anticancer as well as antibacterial activity. Natural
antioxidants like selenium, vitamin E, myricetin, quercetin,
and kaempferol act as anticancer agents via free radicals such
as superoxide anion (O2−), hydrogen peroxide (H2O2), hydroxyl
radicals (OH) (Kumar and Adki, 2018). Antibiotics like
azithromycin, doxycycline, tigecycline, pyrvinium pamoate,
chloramphenicol, 17-allylaminogeldanamycin, methotrexate,
and anthracycline are principally used in the treatment of
bacterial infections and manifest anticancer activity by
inhibiting the cell growth on cell lines like MCF7, T47D, etc.
at the concentration range of 50–200 nM.

Anti-inflammatory agents also act as anticancer agents by
inhibiting various inflammatory mediators like TNF-α, IL2 IL12,
transforming growth factor beta (TGF-β), etc. Scientists have
reported that COX2 and EGFR signaling is quite common to both
cancer and inflammation, so COX2 inhibitors and the
combination of both COX2 and EGFR inhibitors are potential
anticancer agents at lower doses. COX2 enzyme has a crucial role
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TABLE 3 | Multitarget-based anti-cancer natural compounds.

Nature molecule/Crude drug Inhibitory effect on biological targets or cancer cell lines References

Anthracycline MCF-7 and T47D Cragg and Pezzuto
(2016)

Pyrano-quinolone COX-2 and EGFR signalling Kumar and Adki (2018)
Taxol and Vinblastin PI3K, APC, and RB signalling Taylor et al. (2019)
Deacetylnemorone SKMEL5 (melanoma cancer cells), MG-63 (osteosarcoma), SK-OV-3 (ovarian adenocarcinoma),

MDA-MB-231 (breast cancer),
HCT 116 (colorectal carcinoma), HCT 116/200 (FdUrd resistant subclone of HCT 116 cells),
A2780ADR (a doxorubicin-resistant subclone of the ovarian carcinoma A2780), and HUVEC
(Normal human umbilical vein endothelial cells).

Liu and Quinn (2019)

Curcumin NF-κB, miR-221, COX-2, and their effectors such as PTEN, p27, p57, and pro-inflammatory
cytokines. STAT-1, STAT-3 phosphorylation, and Notch signaling pathway. Pancreatic cancer cell
lines (MiaPaCa-2, Panc-1, AsPC-1, BxPC-3, and Pan02)

Sahebkar (2016)

Curcumin COX-2, STAT-1 and STAT-3 signaling, NF-κB, VEFG, EGFR signaling, PI3/Akt, and m-TOR signaling,
CDK, B-catenine, Tcf-4

Sahebkar (2016)

Piperine Nuclear factor-κB (NF-κB), c-Fos, CREB, ATF-2, Melanoma cell line (B16F-10 piperine concentration � 2.5, 5,
and 10 μg/ml)

Pradeep and Kuttan
(2004)

FIGURE 5 |Multitarget based screening of anticancer natural compounds. Pro-inflammatory mediators like TNFα, JL2, JL12, etc. binds to the receptor on the cell
surface which undergoes a conformational change and activates JNK 1/2. JNK1/2 phosphorylation leads to apoptosis that releases inflammatory factors like NFKβ that
also releases inflammatory factors like TNF-α which plays role in cell death amplification. IL6 activates JAK/STAT pathway that results in cancer cell proliferation. TGFFβ
also activates various pathways leading to liver fibrosis. EGFR binds to the cell surface receptor that activates GRB2. Phosphorylation of GRB2 activates the
downstream pathway as GABI further activates P13K that activates AKT leading to cell survival. Natural fragments like indole, quinoline, isoquinoline, and piperidine
inhibit both the inflammation pathway and EGFR in cancer cell growth.
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in tumor growth (Rayburn et al., 2009). Various natural alkaloids
comprising indole, quinoline, isoquinoline, and piperidine
manifests COX-2 inhibition (Figure 5). Pyrano-quinolone
analogs also inhibit TNF-α and IL6 which are also pro-
inflammatory mediators. Therefore, from the above discussion,
it is clear that anti-inflammatory agents also act as anticancer
agents (Dey et al., 2020).

Naturally occurring anti-mitotic agents like Nocodazole,
Taxol, AZ138, BPR0L075, Vinblastine, Taxanes, and
Epothilones, act by inhibition of PI3K and APC and RB
pathways, and microtubule destabilizing agent which is related
to the anticancer activity (Dall’Acqua, 2014). Dolastatin-10,
Aplidine, Halichondrine-B, and Descodermolide inhibit the
microtubule growth, ultimately, acting as anti-cancer agents.
Therefore, from the above discussion, the naturally occurring
compounds act by multi-targeting anticancer agents (Kumar and
Adki, 2018).

Taylor et al. reported a rare natural product,
Deacetylnemorone member of the diterpenoid family, as an
anticancer agent which inhibits cell growth on different cancer
cell lines (Taylor et al., 2019). Deacetylnemorone acts by
resensitizing chemotherapy resistance of cancer. Activity
reported for Deacetylnemorone is anti-angiogenic and cancer
cell growth inhibitor. Curcumin was reported as a natural active
constituent used in the treatment of pancreatic cancer by the
multitarget approach. Curcumin inhibited various targets like
NF-κB, miR-221, COX-2, and their effectors such as PTEN, p27,
p57, and pro-inflammatory cytokines which ultimately causes
cancer cell growth and progression (Sahebkar, 2016). Curcumin
also inhibits phosphorylation STAT-1, STAT-3, and Notch
signaling pathways which are responsible for pancreatic cancer
cell growth. Reports also portray that curcumin is effective and
selective towards different pancreatic cancer cell lines namely
MiaPaCa-2, Panc-1, AsPC-1, BxPC-3, and Pan02.

Diederich et al. reported curcumin as a multitarget natural
compound with its application in cancer interruption and
therapy. Curcumin modulates numerous molecular targets and
blocks signaling tracks such as COX-2, STAT, NF- κB, VEGFR,
EGFR, P13/Akt, and mTOR. It also influences cell cycle
regulators like CDK, B-catenin, Tcf-4 for cancer progression
(Teiten et al., 2010; Teiten et al., 2014). Curcumin activates
the cancer cell death proteins, namely PARP, Bcl-2, Bcl-xL,
LC-3II, and cyclin-B1. Curcumin and its analogs also act
against diverse cancers like multiple myeloma, rectal cancer,
pancreatic cancer, osteosarcoma, colon neoplasm, and
colorectal cancer. Hence, curcumin is a multitargeting agent in
cancer mitigation (Teiten et al., 2010).

Another study reported piperine as an anticancer agent which
acts on various targets such as NF-κB, c-Fos, cAMP response
element-binding protein (CREB), activated transcription factor 2
(ATF-2), and proinflammatory cytokine gene expression in
B16F-10 melanoma cells. Piperine inhibited collagen matrix at
a concentration of 2.5, 5, and 10 μg/ml against B16F-10
melanoma cells at a dose-dependent analysis (Pradeep and
Kuttan, 2004). It also inhibited matrix metalloproteases with
the aid of the zymographic method. Piperine restrained
nuclear translocation of p65, p50, c-Rel subunits of NF-κB and

other transcription factors such as ATF-2, c-Fos, and CREB that
resulted in cancer growth inhibition (Pradeep and Kuttan, 2004).

THERANOSTICS PERSPECTIVE OF
NATURAL ANTICANCER COMPOUNDS

Theranostics is the combination of diagnosis and treatments. It is
a therapy in which a combination of one radioactive drug will
diagnose the tumor and other radioactive drugs will treat the
main tumor and metastatic tumors (Silva et al., 2019). This
combination will diagnose cancer at various locations
effectively and monitor the progress of the disease and guide
for another treatment of chemotherapy or surgery whichever may
be needed depending on the disease condition (Garofalo et al.,
2020).

For many years, natural products have been used for their
diverse chemical structures and unique targeted activities.
Natural products are easily compatible with the human body
and display low toxicity. Many natural products including
porphyrins, perylene quinone derivatives, curcumin are
photosensitizers and sono-sensitizers, which have been widely
applied in fluorescence imaging, diagnosis, photodynamic
therapy (PDT), and sonodynamic therapy (SDT) (Cova et al.,
2019). In PDT, excited photosensitizers oxidize cellular
macromolecules like nucleic acids and proteins, resulting in
tumour cell apoptosis by producing reactive oxygen species. In
SDT, ultrasound wave interacts with the water molecules in the
environment, causing ultrasonic cavitation during which tiny
cavities nucleate, grow, and collapse (Ma et al., 2019). Theranostic
agents like porphyrin and its derivatives are approved for
therapeutic usage in cancer management as they have lower
toxicity and appropriate biocompatibility. Hematoporphyrin
derivatives are photosensitizers, approved for clinical PDT.
Porphyrinoid biohybrid materials are approved for
phototheranostics. The light sensitivity of curcumin and its
derivatives is weaker in the therapeutic window of wavelength,
that limits their role as theranostic agents (de Araújo et al., 2020).

The theranostic role of SDT is only to tumorstastic action as it
only inhibits the tumor growth especially of solid tumors. On the
other hand, PDT has “-cidal effect” on the tumors. It is interesting
to note here that to date, there is no SDT approved for the
medicinal use however several photosensitizers are used for
cancer management as a part of photodymanic therapy. The
exact mechanism behind the SDT needs to be revealed soon, and
natural SDTwith better safety and efficacy in cancer management
must be produced (Sharma et al., 2017).

Some of the examples of natural products used as theranostic
agents are as follows:

• Porphyrin
• Perylene quinine (Hypocrellin, Hypericin, Cercosporin,
Elsinochrome)

• Cercosporin
• Elsinochrome
• Curcumin
• Pheophytin
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• Psoralens
• Berberine chloride
• Graphene

Porphyrin, as a theranostic agent, has photodynamic,
sonodynamic, and radiotherapeutic roles in the treatment of
cancer. It is also used as a diagnostic agent for fluorescence
imaging, magnetic resonance imaging, and photoacoustic
imaging. The use of porphyrin is limited as a theranostic
agent due to its poor selectivity for tumor cells. When
nanoparticles are used as carriers of porphyrins, their
anticancer effect improves. Perylene quinone has many
pigments which show chemical and biological properties,
making them diagnostic and therapeutic agents in PDT and
SDT. Some pigments such as hypocrellins, elsinochrome,
hypericin, cercosporin are included in perylenequinones.
Hypocrellin, a pigment of perylenequinone category, is
extracted and isolated from the Hypocrella bambusae, which is
parasitic on Fargesia plant, has absorption between 400–800 nm,
and has a high oxygen species yield, making it suitable for the
treatment of tumors. It is less toxic and has a fast metabolism rate
in vivo, and it is one of the best-known new generation
phototheronostic agents that has potential for the development
of drugs (Bisen, 2016; Peyvandipour et al., 2018).

Cercosporin is a photodynamic photosensitive pereylene
quinoline derivative that is often used with a co-polymer to
target carcinogenic cells. Polymer releases cercosporin in acidic
conditions and offers cancer treatment for patients. Elsinochrome
is a theranostic agent showing photodynamic property which is
used for targeted drug delivery to cancerous cells (Wilken et al.,
2011).

Pheophytin, a form of seagrass, is a natural anticancer pigment
that is evaluated in the management of adenocarcinoma A549
cells. Photo-reduction of pheophytin has been observed in
various mixtures containing PSII reaction centers. Similarly,
Psoralens (furanocoumarins) are explored for the treatment of
certain lymphomas as targeted therapeutics in conjunction with
ultraviolet rays (Shailaja et al., 2019).

Berberine chloride is an orally bioavailable, hydrochloride salt
form of berberine, a quaternary ammonium salt of an
isoquinoline alkaloid and active component of various Chinese
herbs (Coptis chinensis French, Coptis deltoidea C. Y. Cheng et
Hsiao and Coptis teetoides C. Y. Cheng) (Neag et al., 2018), with
good anticancer, photodynamic, anti-inflammatory, and anti-
lipidemic activities (Belwal et al., 2020). Berberines are
isoquinoline derivatives and belong to protoberberines
alkaloids. Berberine has been shown to have a major hormetic
dose-response, where a low dose actively promotes the
development of cancer cells whereas a high dose serves as an
anticancer agent. Furthermore, because of its widespread
presence in numerous plant species and low toxicity, berberine
hydrochloride has the potential to be a powerful anticancer agent
in the future (Singh and Sharma, 2018).

Graphene is an inorganic material that is used for making
nanocomposites for drug delivery due to its lower toxicity and
additional anticancer action (Hoseini-Ghahfarokhi et al., 2020).
Apart from being an anticancer agent, the graphene is also has

photodynamic action (Yang et al., 2019). Graphene is generally
used as a nanocarrier for drug delivery, especially anticancer drug
delivery (Jampilek and Kralova, 2021). The graphene
nanocomposites have better drug loading and protective
action, targeted delivery, are suitable for theranostic role, and
have effective photodynamic action. It is used as a theranostic
agent due to its anticancer action (Rosli et al., 2019).

NATURAL ANTICANCER COMPOUNDS
FOR PERSONALIZED MEDICINE

There is substantial increase in our understanding of health and
disease related aspects of human life due to technological
advancement and multiomics approaches. To achieve proper
effectiveness, the use of personalized pairings of precision
targeted drugs recognized by proteogenomics will necessitate
specialized modelling based on the latest methodologies (Li
and Bergan, 2020). Personalized medicine is a domain which
aims to develop therapeutics for a single subject or group of
subjects derived from current and past data capturing of
physiological health and the environment exposure. Precision
oncology has demonstrated some significant success in the last
decade, despite the fact that it is expensive (Cutler, 2020).
Consequently, the precision medicine approach, which was
endorsed in 2015, has propelled the personalized medicine
forward by necessitating the FDA to design new technologies
for evaluating personalized medicine (Krzyszczyk et al., 2018).

Well over 700 natural compounds have now been confirmed
to have pharmacological function, with many of them capable of
targeting cellular processes or deregulated genes that inhibit
tumorigenesis (Mazumder et al., 2018). For every cancer
patient or group of patients, there is unique genetic makeup
that serves as a cancer operator and can shift throughout therapy
to stimulate response processes. When it is used in conjunction
with certain drugs, several natural compounds with established
molecular targets demonstrated good therapeutic benefits by
restricting signalling proteins that facilitate tumor progression
(Cerella et al., 2015). The continuously advancing domain of
immunooncology has improved our understanding of tumor-
specific immune responses as well as the ability of targeted
chemotherapy drugs to stimulate the anti - tumor immunity
toward carcinoma. It was recently noted that targeted therapies
like oxaliplatin, that also kill cancer cells by triggering a host
immune system, can make tumours more susceptible to
checkpoint blockade treatment (Pfirschke et al., 2016). The
distribution of key anti-apoptotic Bcl-2 proteins forecasted a
complementary response (Mazumder et al., 2018). The
brominated alkaloid isofistularin-3, derived from the marine
sponge Aplysina aerophoba, is shown to suppress DNA
methyltransferase (DNMT1) (Florean et al., 2016; Mazumder
et al., 2018). In RAJI and U937 cells, isofistularin-3 combined
with tumour necrosis factor related apoptosis inducing ligand
(TRAIL) demonstrated strong synergy (Florean et al., 2016;
Mazumder et al., 2018). Recently, it was observed that
combining ursolic acid, curcumin, and resveratrol to locate
STAT3, mTORC1, and AMPK action substantially lowered
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prostate cell proliferation and attenuated glutamine metabolism,
thereby attacking a critical true sign of cellular kinetics (Kuntz et
al., 2017).

Taken together, the important development of identified
targeted agents of natural origin, as well as the immunogenic
capability of such agents when combined with existing drugs, will
contribute to future pharmacotherapy opportunities for tumour
targeting.

CONCLUSION AND FUTURE PROSPECTS

For a long time, natural phytochemicals have been proven to be
effective against different types of cancer. The opportunities and
prospects of natural products for drug discovery are being
significantly extended with the exploration of plant endophytic
fungi, which have been recognized as a decent source of certain
bioactive metabolites having an anticancer activity (Chandra,
2012). Major natural anticancer compounds like camptothecin,
taxol, vinca alkaloids, and podophyllotoxin have been obtained
from an endophytic fungus. Marine-derived bioactive
compounds also have a large potential to produce an anti-
cancer effect (Abdelmohsen et al., 2014). Similarly, bioactive
metabolites from insects have potential for drug discovery in
the rapidly growing areas of research like microbial genomics
through genome mining and metagenomics (Bachmann et al.,
2014; Charlop-Powers et al., 2014).

Drug research and production would necessitate a close
multidisciplinary partnership in the exploration of natural
product leads using combinatorial and medicinal chemistry,
complete synthesis, combinatorial biochemistry, and
nanotechnology. Natural product analysis that combines
nanotechnology and analytical methods is a dominant strategy
for identifying biologically active substances having distinct
structures as well as modes of activity. Given nature’s
immeasurable diversity, it is obvious that chemical leads

capable of interacting with all therapeutic targets can be
produced, indicating a greater potential for the production of
highly effective therapeutic agents. Several technological
advancements in the drug discovery fields will lead to
speeding up the process of finding suitable drug candidates of
natural origin that have potential anticancer activity. The
multitarget approach of drug discovery has provided an
attractive niche for medicinal scientists as it reduces the
burden of the multidrug regime for cancer management and
also reduces the side effects associated with them. Cutting edge
analytical tools and bioinformatics especially machine learning
will help in the process of drug discovery to find out the suitable
hits in the early drug discovery phase of natural anticancer
discovery. Natural phytochemicals continue to be a valuable
substitute of scaffolds with high structural diversity and diverse
antitumor activity that can be established directly or used as
starting points for modeling into new therapeutics. The
theranostic potential of such natural compounds is immense
and we will witness much future research towards such
theranostic agents of natural origin.
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