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Marcin Jasiński1, Jarosław Biliński1,2* and Grzegorz W. Basak1,2

1 Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland,
2 Human Biome Institute, Gdansk, Poland

In response to emerging discoveries, questions are mounting as to what factors are
responsible for the progression of plasma cell dyscrasias and what determines
responsiveness to treatment in individual patients. Recent findings have shown close
interaction between the gut microbiota and multiple myeloma cells. For instance, that
malignant cells shape the composition of the gut microbiota. We discuss the role of the gut
microbiota in (i) the development and progression of plasma cell dyscrasias, and (ii) the
response to treatment of multiple myeloma and highlight faecal microbiota transplantation
as a procedure that could modify the risk of progression or sensitize refractory malignancy
to immunotherapy.
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INTRODUCTION – PATHOGENESIS OF PLASMA
CELL DYSCRASIAS

Typical genetic alterations in plasma cell dyscrasias are IgH translocations, hyperdiploidy, and
cyclin D dysregulation. These are responsible for initiating changes in B-cell postgerminal centres,
which result in the transformation of normal cells into benign tumour cells that cause monoclonal
gammopathy of undetermined significance (MGUS) (1). This condition is the preclinical stage of
multiple myeloma (MM) and occurs in ~3.2% of the population aged over 50 years (2). MGUS is an
asymptomatic condition with elevated serum concentration of M protein. Only rarely does it
progress to symptomatic MM (1% of patients/year) (3), which can be associated with symptoms that
manifest as a result of hypercalcaemia, renal failure, anaemia, and bone lesions. Smouldering MM
(SMM) is an asymptomatic, intermediate stage between MGUS and MM, that carries a 10% risk of
progression to symptomatic MM per year during the first five years after diagnosis (4). If it is to be
possible to screen intensively, perform prophylactic investigations on, and treat in the early stages
only those patients who are most at risk of disease progression, accurate prognostic markers of
progression of MGUS or SMM to MM are needed.

During the past few years, evidence has emerged that human gut microbiota play an important
role in the progression of MM (5–7). The gut microbiota influence the course of MM and the disease
shapes the composition of the bacteria in the intestines (6). These interactions, as described below,
are based on the strong reliance of MM cells on proinflammatory cytokines [interleukin (IL)-6,
tumour necrosis factor (TNF)-a, IL-13] and the ability of bacteria to recycle nitrogen (8).
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Recent studies have yielded plenty of information on the
differences in microbiota among MM patients and about
longitudinal changes acquired during the treatment as well (9).
Some recently identified gut microbes are responsible for
inducing an inflammatory environment, both within the gut
layer and throughout the whole body. These proinflammatory
microbes might contribute to the progression of MGUS to MM
(5). If they do, the microbiome composition could be used as a
prognostic factor for assessing the risk of MGUS transformation
or MM progression.
GUT MICROBIOTA AND IMMUNE
SYSTEM IN HEALTH AND DISEASE,
SPECIFICALLY INFECTIONS

The colonization of the intestine by microbes plays a key role in the
maturation of the host’s immune system (10). Current knowledge
about crosstalk between gut microbiota and immune cells derives
mainly from experiments conducted on germ-free animals (11). For
instance, in germ-free mice the population of ab and gd intra-
epithelial lymphocytes is significantly reduced (12), there is no
production of IgA antibodies (13) and Th17 cells are absent (14).
One example of a complicated interplay between gut microbiota
and immune cells is the following. Polysaccharide A produced by
Bacteroides fragilis binds to TLR2/TLR1 (Toll-like receptor)
heterodimer connected with Dectin-1 (15). Then, the
phosphoinositide 3-kinase (PI3K) pathway is activated, glycogen
synthase kinase 3b inactivated, which eventually induces cAMP
response element-binding protein expression of anti-inflammatory
genes (15). Finally, the secretion of polysaccharide A by Bacteroides
fragilis leads to the differentiation of Treg cells and influences the
balance between Th1 and Th2 populations. On the other hand,
butyrate produced by the gut microbiota can promote macrophage
differentiation from monocytes through histone deacetylase 3
(HDAC3) inhibition that leads to enhanced antimicrobial host
defense (16). These are only a few examples of how intricate the
crosstalk on the line gut microbiota - immune cells is.

Gut microbiota can also predict responses to therapies
administered in oncology. Chaput et al. showed that the
presence of Faecalibacterium spp. increases the efficacy of anti-
CTLA-4 immunotherapy while probably the Bacteroides spp. is
associated with inferior responses in metastatic melanoma (17).
Moreover, it is recently hypothesized that gut microbiota
composition can influence the responses to the CAR-T therapy
(18), and bearing in mind recent papers about the efficacy of such
therapy in multiple myeloma the discussion about gut
microbiota as a predictive marker of response is warranted (19).

The impact of the interplay between the immune system and
gut microbiota in the context of infections cannot be forgotten as
patients with multiple myeloma are far more prone to infections
than the healthy population (20). The ability of microbes to
release signaling molecules into the bloodstream can modulate
the host’s response to infections via the regulation of immune
cell development (21). For instance, butyrate secreted by bacteria
promotes the differentiation of monocytes in the bone marrow to
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a tolerogenic phenotype (22). Moreover, it was recently showed
that some bacterial species could decrease the level of
corticosterone in the blood which could improve the function
of the immune system during the infection (23).
GUT MICROBIOTA AND
TUMOURIGENESIS

The available data show that the gut microbiota are more
numerous than genes, cells, and enzymatic reactions in the
host organism, which suggest their importance for its health.
In healthy persons, microorganisms are responsible for
production of vitamins K, B2 (riboflavin), B12 (cobalamin),
folates, and biotin (24), metabolism of indigestible compounds,
and protection from colonisation by opportunistic bacteria (25),
and are necessary for the development of the humoral and
cellular mucosal immune systems (26) (Figure 1). Along with
these advantages of the gut microbiome, there are also some
disadvantages. It is well established that dysbiosis, which is an
imbalance in the proportion of microbes compared to a healthy
state, plays a role in the pathogenesis of colorectal cancer (CRC)
(27). Wang et al. showed that there is a difference in the
composition of gut microbiota between patients with CRC and
healthy individuals (28). A similar influence of microbial
dysbiosis, via proinflammatory microbe-associated molecular
patterns (MAMPs) and bacterial metabolites, has been shown
in liver (29) and pancreatic (30) cancer.

The gut microbiota are accompanied by gut-associated
lymphoid tissue (GALT), which is the largest peripheral immune
organ (31). As many as 60–70% of peripheral lymphocytes are
localised within the gut mucosa, so it is not surprising that the
number of interactions between immune cells and the gut
microbiota is high (32). There are numerous examples of how the
gut microbiota and immune system influence each other within the
gut mucosa. Brandsma et al. showed that the transplantation of
proinflammatory faecal microbiota from Casp1−/− mice to Ldlr−/−

mice resulted in systemic inflammation and promoted
atherogenesis (33). In contrast, Mason et al. reported that reduced
anti-inflammatory gut microbiota was correlated positively with
depression. This correlation could be explained by inflammation
playing a role in the pathogenesis of depression (34). The crosstalk
from microbes to immune cells can be forwarded directly through
their metabolites used as messengers, such as MAMPs or damage-
associated molecular patterns (DAMPs), or through activation of
Toll-like receptors (TLRs) that in turn cause the activation of
immune cells (35, 36). Some metabolites, such as short-chain fatty
acids (SCFAs), can directly promote the generation of T regulatory
(Treg) cells (37) or are responsible for transforming growth factor-b
production in epithelial cells within the gut. This in turn promotes
Treg-cell confluence in the gut mucosa, which inhibits the activation
of immune cells (38). Germ-free (GF) mice that are deprived
completely of gut microbiota comprise excellent examples of the
importance of gut bacteria for efficient immune function (26). In GF
mice, Treg cell function is impaired, which suggests that gut
microflora are necessary for the development of a fully functional
October 2021 | Volume 11 | Article 741376
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Treg cell population (39). In GF mice, the intestinal barrier is
immature, which results in increased mucosal permeability (40).
This is a key mechanism that leads to the development of
inflammatory bowel disease or enteric infections (40).
Colonisation of GF animals with normal gut microbiota leads to
increased systemic immunological capacity, different patterns of
migration of immune cells, significant changes in the production of
specific antibodies, a general increase of immunoglobulin
production, and changes in mucosal-associated lymphocyte
tissues and cell populations (41–43).

In summary, in general, the micro-organisms in the gut are
beneficial, but under certain conditions can have a damaging
effect, in severe cases promoting the growth of cancer cells.
COMPARISON OF THE GUT
MICROBIOME IN PATIENTS WITH
PLASMA CELL DYSCRASIAS AND
HEALTHY INDIVIDUALS

In recent years, scientists have confirmed the link between
certain kinds of tumours and the composition of gut
Frontiers in Oncology | www.frontiersin.org 3
microbiota. For example, in CRC, many changes in the
composition of bacterial species that colonise the gut have
been identified and their contribution to tumourigenesis
confirmed. Specific bacterial species colonizing the gut have
even been indicated as possible markers of early diagnosis of
CRC (44).

Regarding plasma cell dyscrasias and the gut microbiome, recent
evidence shows metagenomic changes in the composition of
commensal bacteria and frequent colonisation by opportunistic
bacteria. Jian et al. performed a study on samples collected from
19 patients who had been newly diagnosed withMM and 18 healthy
controls (6). They observed significant differences in the
composition of bacteria in the gut between these two groups. One
of the main changes was the increase of nitrogen-recycling bacteria,
such as Klebsiella and Streptococcus, which are opportunistic
pathogens that are responsible for infections associated with high
mortality in this immunocompromised population. It has been
suggested that this change might be due to the high serum
concentration of urea in patients with MM, which results from
increased production of NH4

+ by tumour cells and restricted
secretion of urea due to impaired renal function (45). The
mechanism presented above is responsible attracting nitrogen-
recycling bacteria to the gut. Changes in diversity in gut
FIGURE 1 | Role of the balanced gut microbiota. Healthy gut microbiota are important in maintaining health. The figure shows the most important roles that are
played by the human gut microbiota. Created with BioRender.com.
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microbiota have been reported, which indicates that samples from
MM patients are characterised by increased diversity and poorer
interactions between genera (6), although other studies have
produced results that indicate contrary phenomena (46, 47).
Furthermore, samples from MM patients included a reduced
number of SCFA-producing bacteria, which affect tumourigenesis
in plasma cell dyscrasias (see below) (6). Other changes in the
composition of commensal bacteria, and colonisation with
opportunistic pathogens, occur because of the treatment of MM.
Unfortunately, research in this field is limited to the study of
bacterial composition only. Further research, which studies
differences in the balance and numbers, etc., of fungi, viruses, and
eukaryotic organisms are needed (Table 1).
INFLUENCE OF THE GUT
MICROBIOME ON THE DEVELOPMENT
AND PROGRESSION OF PLASMA
CELL DYSCRASIAS

As mentioned previously, MGUS is an asymptomatic state that
occurs in ~3.2% of people aged over 50 (1). Only a small
percentage of patients progress to symptomatic MM. For many
years, researchers have wanted to identify the factors responsible
for the development of plasma cell dyscrasias, and the reasons
why some patients progress to MM whereas others do not.

Researchers have shown that there are no significant genetic
differences between MGUS and MM cells. This suggests that
environmental conditions could be an important factor in
determining the risk for progression, although such factors are
not necessarily present at the time at which MGUS develops.
Therefore, tumour microenvironment seems to be a strong
predictor of MGUS progression. Given the high degree of
heterogeneity between clones in plasma cell dyscrasias, it is
probable that only clones that are developing in a favourable
niche will become an initiation point for further progression. As
mentioned previously, proinflammatory TME in the bone
marrow is needed for successful progression from MGUS to
symptomatic MM, but it is a further issue how the gut microbiota
can influence this microenvironment and contribute to
tumour progression.

Short-Chain Fatty Acids
SCFAs are bacterial products that are responsible for ion
absorption, gut motility, and modulation of immune responses
(48). SCFAs can inhibit the nuclear factor kappa-light-chain
Frontiers in Oncology | www.frontiersin.org
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enhancer of activated B cells (NF-kB) and such proinflammatory
cytokines as IL-6 and TNF-a which are playing the role in
activating osteoclasts to create niches for myeloma cells and
additionally promote differentiation of Th17 cell (49). In
contrast, SCFAs may also increase the level of IL-10 and
induce expression of FoxP3 which in turn leads to
differentiation of immunosuppressive CD4+ T cell subset
(Treg) (48). Eventually, both Treg (IL-10 and TGF-b) and
Th17 (IL-17) cells secrete cytokines that promote MM cell
proliferation via positive feedback loop (50). One SCFA,
butyrate, is reported to increase T-cell apoptosis by HDAC-
dependent Fas upregulation and consequent Fas-mediated
apoptosis of T cells. That in turn inhibit T-cell accumulation
within inflamed colonic mucosa which could prevent antigenic
stimulation known for its role in multiple myeloma development
(51). Furthermore, Jian et al. showed that SCFA-producing
bacteria such as Anaerostipes hadrus, Clostridium butyricum,
and Clostridium saccharobutylicum were reduced in patients
with MM, and that the addition of Clostridium butyricum in a
mouse model of MM resulted in mitigation of tumour
progression (6). SCFAs are also involved in the response to
treatment. Small, uncontrolled studies have indicated that SCFA-
producing bacteria play a significant role in reducing the level of
proinflammatory cytokines, thereby protecting the host from
tumour progression. Loss of SCFA-producing bacteria can result
in a higher risk of tumour progression. Bearing in mind that
specific diets can increase the population of SCFA-producing
bacteria, studies are needed to investigate whether changes in
diet in patients with MGUS can influence the risk of
tumour progression.

L-Glutamine
Jian et al. showed that stool samples from MM patients had
higher concentrations than in healthy patients of bacteria that
are involved in nitrogen utilisation and recycling, such as
Klebsiella and Streptococcus (6). The following mechanism has
been proposed to explain this phenomenon (6). MM cells are
known producers of NH4

+ (52), which results from uptake of
glutamine (53). This NH4

+ then accumulates in the bone marrow
and is released into the blood. In a healthy organism, the liver
successfully converts NH4

+ into urea in the urea cycle. However,
MM patients experience a high increase in blood NH4

+ level that
exceeds the capacity of the liver to convert it to urea and can even
result occasionally in hyperammonaemic encephalopathy (54).
In addition, monoclonal protein renal deposition and
consequent reduction in renal function mean that the process
of urea excretion is impaired severely (55). Taken together, these
factors lead to an increased concentration of urea in the blood,
such that excessive amounts of urea reach the intestinal lumen.
The presence of urea in the gut layer causes the selection of
nitrogen-recycling bacteria, such as Klebsiella and Streptococcus.
These bacteria are involved in the hydrolysis of urea and
synthesis of L-glutamine that is taken up by MM cells, which
promotes tumour progression. It is probable that MM cells
harness the gut microbiota of the host as a recycler of NH4+ to
deliver the necessary L-glutamine. In light of this, we speculate
that targeting human microbiota with natural methods, or
TABLE 1 | Summary of the alterations of the gut microbiota in MM patients.

Gut microbiota of MM patients

Frequently colonised with opportunistic bacteria (6)
Increase in the number of bacteria involved in nitrogen recycling, such as K.
pneumoniae or S, pneumoniae (6)
Increased diversity and poorer interactions between genera (6)
Reduced number of SCFA-producing bacteria (6)
Changes resulting from applied treatments especially antibiotics
October 2021 | Volume 11 | Article 741376
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antibiotics, if necessary, could be an attractive strategy to stop
this vicious cycle.

Th17 Cells
The differentiation of Th17 in GF mice is inhibited (14). Microbial
colonization, especially with segmented filamentous bacteria (SFB)
promotes induction of Th17 cells (56). Furthermore, it is already
known that Th17 elicited by SFB are of non-inflammatory
phenotype while Th17 cells induced by other bacteria Citrobacter
are secreting plenty of proinflammatory cytokines (57).

Plasma cells express IL-17 receptors on their surface and are
stimulated in vitro and in vivo via IL-17 produced by Th17 cells
(58). Of note, IL-6-STAT3 signalling pathway activated by IL-17
is relevant both for tumour (59) and plasma cell (60) growth
which suggests the role of IL-17 during different stages of MM.
IL-17 causes the upregulation of the receptor activator of the NF-
kB ligand, which results in the activation of osteoclasts (61) and
eosinophils that are producing IL-6 and TNF-a (5). Hence, IL-17
is the cytokine that bears the principal responsibility for bone
lesions in plasma cell dyscrasias. Stromal cells respond to IL-17
as well by producing IL-6 (62). Moreover, the interplay between
IL-6 and TGF-b, that are highly expressed in the bone marrow of
patients with MM, is influencing the generation of Th17
cells (49).

Prevotella heparinolytica is responsible for the differentiation
of Th17 cells and their migration to the bone marrow in the
Vk*MYCmouse model of MM (5). In mice that lacked IL-17, the
progression of plasma cell dyscrasias was delayed. Inhibition of
IL-17, IL-17 receptor A, and IL-5 in a Vk*MYC model with
Frontiers in Oncology | www.frontiersin.org 5
monoclonal antibodies results in reduced accumulation of Th17
cells and eosinophils in the bone marrow, which results in
delayed tumour progression (5).

Patients with MM have elevated serum level of IL-17 but
interestingly after therapy with bis-phosphonate level of that
cytokine is reduced (63). A higher level of IL-17 is also seen in the
blood of patients with SMM and is a predictor of rapid
progression of tumour growth. Therefore the level of IL-17
could be used as a potential marker of high-risk SMM patients
(64). Similar to the Vk*MYC model, it would be useful to initiate
studies on patients to determine which bacteria are involved in
Th17 differentiation. Using this approach, bacteria that are
involved indirectly in the development of bone lytic lesions,
which is one of the main causes of morbidity in MM patients,
could be eradicated (Figure 2).
THE LINK BETWEEN THE GUT
MICROBIOME AND TREATMENT IN
PLASMA CELL DYSCRASIAS

It is known that different results of treatment and toxicity profiles
are associated with the gut microbiome (65, 66). For instance, a
specific composition of gut microbiota is required for an optimal
response to treatment with immune checkpoint inhibitors (67).
Baruch et al. conducted a phase I study on faecal microbiota
transplantation from complete responders to treatment for
metastatic melanoma to 10 non-responders, which resulted in
FIGURE 2 | Association between the gut microbiota and tumour progression in MM patients. Recent findings show a close relationship between gut commensal microbiota
and MM cells. SCFA-producing bacteria are significantly reduced, resulting in increased levels of NF-kB, IL-6, and TNF-a, which are known to contribute to tumor progression
in MM. Another example derives from the fact that MM patients have increased nitrogen-recycling bacteria. These bacteria are involved in L-glutamine production, which is an
essential amino acid for MM cells. MM cells produce high amounts of NH4+, which is transformed in the liver into urea and reaches high concentrations in the blood and can
select nitrogen-recycling bacteria such as K. pneumoniae or S. pneumoniae. The influence of the gut microbiota on Th17 cell differentiation in MM patients remains to be
characterised, although we know that in a Vk*MYC mouse model, P. heparinolytica was responsible for that. Patients with MM have significantly higher level of IL-17 in the
blood, which is produced by Th17 cells and causes bone resorption, resulting in bone lesions that are the main symptom of this malignancy. Additionally, IL-17 activates
eosinophils that are consequently producing proinflammatory cytokines (IL-6 and TNF-a) that are involved in tumor progression. Created with BioRender.com.
October 2021 | Volume 11 | Article 741376
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partial responses in three patients and a complete response in
one (68). The gut microbiome can influence the results of
treatment, especially in respect of adverse events, and
treatment can modulate the gut microbiome.

During the last decade, new treatments for plasma cell
dyscrasias have been introduced, including immunomodulatory
drugs (thalidomide, lenalidomide, and pomalidomide),
proteasome inhibitors, and monoclonal antibodies. These have
improved the length and quality of life of patients with MM (69).
To emphasise the role of the gut microbiome in plasma cell
dyscrasias, we describe how microbes can affect the outcomes of
treatment in plasma cell malignancies. Their role is particularly
visible in respect of possible infectious complications after
treatment that are due to infection. It was recently confirmed
that treatment of MM changes the composition of the gut
microbiome in respect of diversity (70).

Pianko et al. showed that MM patients with no minimal
residual disease (MRD) after completion of upfront therapy had
greater numbers of butyrate-producing Eubacterium halii than
MRD-positive patients (71). Similarly, another butyrate
producer, Faecalibacterium prausnitzii, was associated with an
absence of MRD (71). Moreover, Peled et al. showed that
intestinal Eubacterium limosum was associated with decreased
risk of MM relapse after allogeneic haematopoietic cell
transplantation (72). These observations suggest that changes
in commensal microbiota caused by MM treatment could
influence the entire process of therapy or be a predictor of a
better response. Gopalakrishnan et al. showed how significant
the impact of the changes in the gut microflora on the response
to treatment can be. They showed that melanoma patients who
responded well to immunotherapy with anti-PD-1 agents had a
relative abundance of Ruminococcaceae family and higher alpha
diversity (diversity within one sample) in faecal microbiome
samples (73). Thus, it is possible that the composition of gut
microbiota in MM patients has a major influence on the
outcomes of immunotherapy, especially taking into account
that MM, similarly to melanoma, is closely related to
immune response.

Proteasome Inhibitors
PIs, such as bortezomib or carfilzomib are commonly used in
primary and relapsed MM. One common adverse effect is
gastrointestinal (GI) toxicity that results in diarrhoea. First, it
was thought that PIs alter gut motility or cause neurotoxicity,
resulting in autonomic neuropathy. The molecular reason for GI
toxicity is now established as an increase in TNF-a receptor 1
expression on intestinal cells and higher concentrations of IL-6,
TNF-a and IL-1b (74). However, there is a lack of evidence that
PIs influence composition of the gut microbiota. It might be that
inhibition of the NF-kB pathway is responsible for GI toxicity of
PIs (75). SCFAs can suppress the NF-kB pathway, which could
augment GI toxicity of PIs (76).

Steroids
Steroids are among the most commonly used anti-inflammatory
drugs. They are used in chemotherapy regimens for MM, as well
as in the treatment of a wide range of rheumatoid diseases.
Frontiers in Oncology | www.frontiersin.org 6
Huang et al. showed that mice that had been subjected to chronic
exposure to steroids differed in the composition of their gut
microbiota compared with their healthy counterparts (77).
Steroid-treated mice had an increase in Bifidobacterium and
Lactobacillus, which are both associated with anti-inflammatory
effects, whereas they noted an absence ofMucospirillum, which is
responsible for degradation of colonic mucin. This effect might
be explained by the decrease of mucin production in mice treated
chronically with steroids. Dexamethasone exerts its anti-
inflammatory effects by blocking the NF-kB pathway (78).
Furthermore, mice that were treated with dexamethasone
produced less IL-17 than healthy mice (77). This may be
another case in which steroids reshape the intestinal flora,
since IL-17 production depends on Th17 cell differentiation,
which is associated with specific gut microbiota. However, not
only chronic exposure to, but also acute treatment with, steroids
affected gut microbiota in mice (77). Ünsal et al. showed that
rodents that were injected with a single, strong dose of
dexamethasone underwent an increase in the number of ileal
anaerobic bacteria. Moreover, a single injection of a low dose of
dexamethasone resulted in an increase in the population of
coliform bacteria (79). However, the long-term effect of these
changes remains to be determined.

Antimicrobials
The link between antibiotics and the gut microbiome seems to be
the most examined and the influence of this group of drugs on
commensal bacteria is well established. However, although this
link has been studied intensively in healthy volunteers, there
remains a lack of wider studies with many groups of antibiotics
in MM patients. Ziegler et al. showed that levofloxacin, which is
the most commonly prescribed drug for bloodstream infections
and neutropenic fever prophylaxis, had a less damaging effect on
intestinal microbiota than broad-spectrum b-lactam (BSBL)
antibiotics (80). The latter group reduced alpha diversity. The
former was not associated with specific changes in the gut
microbiome that had been found to be associated with poor
clinical results (decrease in populations responsible for
protection against C. difficile; increase in non-Bacteroidetes
taxa, and reduction of alpha diversity). In light of their results,
the authors emphasised that fluoroquinolone antibiotics
protected patients from the negative effects of BSBLs (80). In
MM patients who had been newly diagnosed and who were at
particular risk of infection, the effect of prophylactic antibiotics
was small and there was no decrease in early mortality (81).
However, Valkovic et al. reported that MM diagnosis or
progression was frequently preceded by infection (82). That
could have been because bacterial infections are associated
with robust production of proinflammatory cytokines and TLR
activation on MM cells (83, 84). This is why prophylactic broad-
spectrum antibiotics can result in a delay in disease progression.
In respect of allogeneic stem-cell transplantation (alloSCT),
Weber et al. showed that early use of broad-spectrum
antibiotics that are active against commensal organisms, such
as Clostridiales was associated with increased transplant-related
mortality and decreased overall survival (85). Administration of
imipenem–cilastatin or piperacillin–tazobactam for neutropenic
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fever resulted in gut microbial perturbation and increased graft-
versus-host disease-related mortality compared with aztreonam
or cefepime, both of which decreased activity against commensal,
anaerobic bacteria (86). Such observations of antibiotic effects on
the response to treatment of MM need to be investigated in
patients who are treated with autologous stem-cell
transplantation (ASCT). There is also a recently published
systematic review of infections associated with selinexor in
patients with relapsed/refractory MM that also compares the
risk of infections with other novel agents. It is already known that
selinexor could prevent viral infections through blocking of
XPO1 - mediated nuclear transport which facilitates the export
of viral proteins. The authors state that randomized clinical trials
are needed to fully understand the risk of infections associated
with selinexor (87).

Autologous Stem-Cell Transplantation
D’Angelo showed that after ASCT, patients showed significantly
decreased diversity of the microbial gut population (88). El Jurdi
et al. showed an association between baseline microbiota of
patients undergoing ASCT with further regimen-related
toxicities and with the rate of neutrophil engraftment (89).
They found that bacterial diversity after ASCT recovered
within 1 month after the procedure, but that fungal
populations constantly decreased, which suggests that a longer
time is needed for the reconstitution of the mycobiome.
Although the prospective study included only 15 patients, the
results were encouraging for further studies. This group
recognised several links between the composition of the
microbiota and effects on ASCT-related toxicity and outcomes.
One of the links relied on identifying an increased population of
Bacteroides at day +7 in patients with less severe diarrhoea, while
more severe diarrhoea, nausea, and vomiting occurred in
patients with a higher prevalence of the stool populations of
Blautia and Ruminococcus. They also identified a negative
correlation between fungal phyla Glomerella presence in stools
Frontiers in Oncology | www.frontiersin.org 7
and neutrophil engraftment (89). Similar conclusions were
drawn from the results of the small pilot study with 15
patients, showing that baseline microbiota were associated with
subsequent incidence and severity of nausea, vomiting,
neutropenic fever, and rate of neutrophil engraftment (90).
Khan et al. showed recently that 534 adult recipients of high-
dose chemotherapy with ASCT had significantly decreased alpha
diversity at early pretransplant stages than healthy individuals
and that this reduction in diversity tended to be more marked in
the course of the procedure (9). The pattern of this loss of
diversity and dominance of specific taxa were similar to those
seen in patients after alloSCT. In addition, they showed that the
greater the diversity of the gut microbiota, the lower risk of
progression or death. Our group showed in a retrospective,
single-centre study that colonisation with antibiotic-resistant
bacteria had a significant influence on the outcomes of alloSCT
(91). The main finding was that the overall survival of patients
who were colonised by antibiotic-resistant bacteria was estimated
to be half that of the noncolonised group. A similar conclusion
was reached by Scheich et al. concerning the effect of colonisation
by multidrug-resistant organisms on the results of ASCT (92).

Other Treatments
There is little information on the possible influence of other
treatments, such as immunomodulatory drugs and monoclonal
antibodies, on plasma cell dyscrasias (Table 2).
CONCLUSIONS

Despite some progress in the outcomes of treatment of MM, it
remains a disease that cannot currently be cured, due to relapse or
refractoriness to any available therapy. An emerging factor that
could influence not only the refractoriness of MM but also a
progression from asymptomatic MGUS to MM is the gut
microbiota. We see that changes in the composition of
TABLE 2 | Relationship between the gut microbiota and treatment of plasma cell dyscrasias.

Treatment How it affects the gut microbiota in plasma cell dyscrasias?

PIs • There is no evidence proving the influence of PIs on gut microbiota
Steroids • Mice treated with steroids had increased Bifidobacterium and Lactobacillus population and the absence of Mucospirillum bacteria (77)

• Mice treated with dexamethasone had decreased production of IL-17 compared with an untreated group. IL-17 production is strictly related to the
presence of Th17 cells, whose differentiation in the gut was recently proved in the Vk*MYC mouse model. This indicates some relationship (77)

• Not only chronic exposure but also acute treatment resulted in alteration of the gut microbiota in rodents (79)
Antimicrobials • Levofloxacin had no significant impact on the human gut microbiota, while BSBL antibiotics caused a reduction of alpha diversity (80)

• Administration of broad-spectrum antibiotics efficient against commensal microbiota resulted in higher transplant-related mortality and decreased
overall survival (85)

• Patients treated with imipenem–cilastatin or piperacillin–tazobactam had increased risk of GVHD-related mortality compared with aztreonam or
cefepime (86)

ASCT • Patients after ASCT had decreased diversity of microbial populations in the gut and the normal composition was rebuilt within 1 month after the
procedure (89)

• There is a strong relationship between baseline microbiota of MM patients and severity of toxicity related to the procedure and with the rate of
neutrophil engraftment (89)

• Patients after high-dose chemotherapy before ASCT had significantly decreased alpha diversity of the gut microbiota compared with healthy
individuals (9)

Other
treatments

• Little is known about possible influence of gut microbiome on treatment outcomes with immunomodulatory drugs or monoclonal antibodies
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commensal bacteria can affect the process of transformingMGUS to
MM. Further, these changes are associated with colonisation with
opportunistic pathogens that can become an aetiological agent of
complications due to infection that are associated with treatment.
Probably, in the future, it will be possible to identify patients who
have an especially high risk of progression to MM, or even to
modulate intestinal microflora to reduce the risk of progression of
MGUS. It is also possible that the gut microbiota will be modulated
to reduce complications that are due to treatment and disease, or to
Frontiers in Oncology | www.frontiersin.org 8
improve treatment outcomes. However, the field of microbiota in
MM is still in its infancy and further work is required to gain a fuller
understanding of the phenomena.
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