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Abstract
Since the first hematopoietic stem cell transplant, over a million transplants
have been performed worldwide. In the last decade, the transplant field has
witnessed a progressive decline in bone marrow and cord blood utilization
and a parallel increase in peripheral blood as a source of stem cells.
Herein, we review the use of bone marrow and cord blood in the
hematopoietic stem cell transplant setting, and we describe the recent
advances made in different medical fields using cells derived from cord
blood and bone marrow.
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Introduction
The role of bone marrow (BM) as a source of hematopoietic 
stem cells (HSCs) has been well established since 1868, when  
Neumann and Bizzozero used BM to reconstitute the hemat-
opoietic system of rabbits. However, it took almost a century  
(1957) to perform the first allogeneic BM transplant in humans1. 
A few decades later, two other sources of HSCs were success-
fully used in the transplant setting: in 1981, mobilized periph-
eral blood (PB) was adopted for an autologous transplant in  
a patient with chronic myelogenous leukemia2, and in 1988, cord 
blood (CB) cells were transplanted in a patient with Fanconi’s  
anemia3. Since the first BM transplant, over a million HSC  
transplants (HSCTs) have been performed4. The widening of  
clinical indications, the gradual extension of eligibility criteria, 
and the inclusion of older patients have led to a constant 
increase in the numbers of HSCTs performed. However, in the  
last decade, PB has gradually become the most used source 
for HSCT because of (1) its ease of collection, (2) donors are  
spared from general anesthesia, and (3) the faster and higher 
engraftment rate associated with its use (Figure 1), making it the 
first choice in more than 70% of adult allogeneic HSCTs and in 
almost all cases of autologous HSCTs5–7.

Despite being gradually confined to alternative hematopoietic 
graft sources, both CB and BM still retain unique biological and 
immunological properties and represent invaluable resources 
for the treatment of many medical conditions. In this review, 
we begin by addressing the pros and cons of CB and BM in the  
transplant setting. Next, we review their use in other fields such  
as immunotherapy and regenerative medicine.

Cord blood
Allogeneic transplantation
In recent decades, CB has emerged as a feasible alternative  
source of HSCs for pediatric and adult patients with hema-
tological malignancies in need of an allogeneic transplant  
lacking a related or an unrelated donor (URD)8. CB is a very  
attractive alternative source because of the increased level of 
HLA disparity that can be tolerated. This feature is of particular 
importance for patients from racial and ethnic minorities, for  
whom it can be difficult to find a URD9. Indeed, in a recent  
National Marrow Donor Program study, an 8/8 HLA-matched 
URD was likely to be identified in 75% of white European  
patients, whereas a donor was identified in the URD registry in 
only around 20% and 35% of patients of African and Hispanic  
ancestry origin, respectively9. Nowadays, CB has been used to 
transplant over 35,000 recipients and more than 730,000 CB units 
are stored and available worldwide in public banks10.

Over the years, a number of retrospective studies have shown 
that CB transplantation (CBT) can yield disease-free survival  
(DFS) comparable to that of adult donor transplants in patients 
with hematologic malignancies11,12. In addition, many studies  
have confirmed low rates of malignant relapse after CBT com-
pared with URD transplants, indicating that CB could be the 
preferred source for patients at high risk of relapse13. CBT, when 
compared with the PB HSCT, also has the advantage of lower 
rates of chronic graft-versus-host disease (GvHD), which trans-
lates into lower long-term morbidity and mortality12. The increased 
availability of CB units with a high cellular content, the use of 
double CB grafts, the direct intra-bone infusion of CB grafts to 

Figure 1. Transplants by cell source from 1992 to 2018, unrelated donor transplants. In the last decades, the number of hematopoietic 
stem cell transplants has progressively increased along with an expansion of peripheral blood as a source of stem cells. Data are reused from 
the National Marrow Donor Program (NMDP)/Be The Match with permission.
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enhance the homing process, and numerous ex vivo expansion  
methods (major clinical trials using expanded CB units in 
HSCT are listed in Table 1) have further increased the potential  
application of this graft source14,15. Recently, Cohen et al. 
reported on outcomes of 22 patients with high- and very high-
risk hematological malignancies who received a single CB unit  
expanded by using the UM171 technology16. No graft failure 
was observed, and 1-year incidences of overall survival (OS),  
chronic GvHD-free DFS, and transplant-related mortality (TRM) 
were 90%, 74%, and 5%, respectively16. Given that the high  
rate of early post-transplant morbidity and the requirement for 
intensive early post-transplant management have markedly  
slowed down the adoption of CBT, the low rate of TRM reported 
in the latter study is of high clinical interest. Targeted care  
strategies and development of feasible and safe CB expansion  
platforms can potentially increase the utilization of CBT.

Immunotherapy
Unlike for HSCT, the use of CB cells for the development of 
adoptive therapies to treat post-transplant viral infections and  
malignant relapses has increased over the years. Virus-specific 
T (VST) cells are an appealing approach to prevent and treat  
viral reactivation in HSCT recipients, for whom long-duration  
antiviral treatments often cause unacceptable organ toxicity 
and virus resistance17. Although CB T cells are virus-naïve18,19,  
Abraham et al. have recently reported on the successful gen-
eration and infusion of CB-derived VST cells directed against  
Epstein–Barr virus, adenovirus, and cytomegalovirus in CBT 
recipients as part of their antiviral prophylaxis or treatment or  
both20–22. The CB cells were obtained by separating an aliquot  
(20%) from the original CB graft, a process that did not delay 

or negatively impact neutrophil engraftment. Although the  
process was more time-consuming compared with VST cells  
generated from other sources, this approach was safe and feasible 
and showed efficacy in both preventing and treating end-organ  
viral infections22.

Among strategies to manage post-transplant malignant relapse, 
the infusion of donor-derived lymphocytes is often performed 
to boost the graft-versus-tumor effect, but for CBT recipients 
this option is not routinely available. Case reports of re-infusion  
of lymphocytes collected directly from the CBT recipients after 
immune reconstitution, with 23 or without 24 ex vivo expansion,  
have been described, as has infusion of T cells previously  
collected from the original CB grafts and subsequently expanded 
ex vivo25. However, given the cost-effectiveness of these  
approaches, long-term safety and efficacy have to be carefully  
evaluated before they can enter the clinical routine.

Cellular immunotherapy, and more specifically autologous  
T cells genetically modified to express chimeric antigen receptor 
T (CAR-T) cells, has recently become the new frontier for the  
treatment for relapsed/refractory hematologic malignancies  
because of the ability to exert antitumoral cytotoxicity in an 
HLA-independent manner26. The use of CAR-T cells has been  
explored mainly in the autologous setting, and very few studies 
have focused on the generation of allogeneic CAR-T cells. Given 
the naïve phenotype of CB-derived T cells as well as the large  
availability of CB units for the generation of cellular products  
along with the high in vitro proliferative capacity, CB represents 
a good and safe source of lymphocytes for the generation of  
allogeneic CAR-T cells. Indeed, several preclinical studies have 

Table 1. Summary of cord blood manipulation techniques in clinical trials.

Approach Median CD34+ cell fold 
expansion (range)

Median infused 
(106) CD34+/kg 
(range)

Median days to ANC 
engraftment (range)

Group

Expansion

Cytokines (e.g., SCF, 
TPO, and G-CSF) 4 (0.1–20.0) 0.104 (0.0097–3.11) 28 days (15–49) Shpall et al.27

Copper-chelation 2.26 (0.67–19.2) 0.15 (0.05–4.63) 30 days (16–46) De Lima et al.28

Notch-ligand 164 (41–471) 6 (0.93–13) 16 days (7–34) Delaney et al.29

MSC co-culture 30.1 (0 – 137.8) 1.81 (0.09–9.88) 15 days (9–42) De Lima et al.30

Nicotinamide 72 (16–186) 3.5 (0.9–18.3) 13 days (7–26) Horwitz et al.31

SR-1 330 (67–848) 17.5 (1.4–48.3) 15 days (6–30) Wagner et al.32

UM171 28.1 (12.0–48.3) 28.75 (7.9–54.6) 18 days (12.5–20) Cohen et al.16 

Homing

CD26/DPP-4 inhibition - - 21 days (13–50) Farag et al.33

C3a priming - - 7 days (6–26) Brunstein et al.34

PGE2 exposure - - 17.5 days (14–31) Cutler et al.35

Fucosylation - - 17 days (12–34) Popat et al.36

ANC, absolute neutrophil count; C3a, complement fragment 3; DPP-4, dipeptidyl-peptidase IV; G-CSF, granulocyte colony-
stimulating factor; MSC, mesenchymal stromal cell; PGE2, prostaglandin 2; SCF, stem cell factor; SR-1, StemRegenin-1; TPO, 
thrombopoietin.
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investigated the use of CB for the generation of CB-derived  
T-cell lines possessing antileukemic activity by expressing CAR 
anti-CD1937–40. Of note is the recent generation of CB-derived 
chimeric antigen receptor natural killer (CAR-NK) cells: unlike  
CAR-T cells, CAR-NK cells can also recognize target cells in a 
CAR-independent way, thus maintaining an antitumor effect in 
case of CAR-specific antigen downregulation on tumor cells41,42.  
To overcome the intrinsic short life span of CAR-NK cells, 
the incorporation of cytokine-encoding genes (for example,  
interleukin-15) has been successfully applied to this technol-
ogy, allowing NK proliferation and survival41. Third-party 
CAR-NK cells could be selected on the basis of killer-cell  
immunoglobulin-like receptor (KIR) mismatch between 
donor and recipient and used as an off-the-shelf product  
without risk of GvHD reaction; the goals would be to speed up 
the production and increase its feasibility. Clinical trials to  
determine the efficacy of CB-derived NK cells are ongoing.

Lastly, the use of CB-derived regulatory T (T-reg) cells is 
under investigation as part of prevention of GvHD. Brunstein 
et al. reported rates of acute and chronic GvHD of 9% and 0%, 
respectively, in 11 CBT recipients who received third-party 
CB T-reg cells on day +1 after transplant43. In another study, 
five patients received an infusion of third-party CB-derived  
T-reg cells one day prior to PB SCT (n = 3) or double CBT 
(n = 2); the treatment was well tolerated, and four patients  
were off immune-suppression at the last follow-up evaluation44.  
Further studies are needed to confirm these preliminary results.

Regenerative medicine
The core of regenerative medicine is based on the identification 
of cells with repopulating and/or growth factor–secreting  
potential placed on biomimetic scaffolds forming a matrix for  
tissue regeneration. For this scope, CB cells are promising 
because of their (1) proliferative potential compared with adult-
derived cells, (2) low immunogenicity, (3) low risk of transmitting  
infections of latent viruses, and (4) ease of collection45.

With this in mind, different types of CB-derived cells have 
been examined for their “regenerative” capability. Particular  
attention has been given to the use of CB-derived mesenchymal 
stromal cells (MSCs) and endothelial progenitor cells (EPCs). 
CB-derived MSCs are pluripotent cells that display immune- 
modulatory properties and have the potential to differentiate 
into multiple lineages of mesodermal origin (mainly to produce  
osteoblasts, chondroblasts, and adipocytes) but also non-tradi-
tional lineages (for example, cardiomyocytes and hepatocytes). In  
addition, MSCs are known for the ability to accelerate healing  
processes in brain injury, in both in vitro and in vivo models, by 
inducing a neuroprotective anti-inflammatory microenvironment 
and promoting neurogenesis and revascularization. In animal 
models of dilated cardiomyopathy and myocardial ischemia,  
CB-derived MSCs have been used to improve the cardiac function 
by decreasing and preventing cardiac fibrosis, ventricle changes, 
and cellular apoptosis46,47. The use of CB-derived EPCs, like  
that of MSCs, has been extensively investigated in recent 
years; more specifically, endothelial colony-forming cells have 
shown the ability of homing into ischemic tissues, improving  
angiogenesis in preclinical models of ischemia48,49.

In the clinical setting, CB-based regenerative medicine has  
witnessed the greater innovations in the neurologic field, driven 
by the paucity of available treatments for progressive, non- 
reversible neurologic conditions. Sun et al. recently reported the 
results of a randomized placebo-controlled trial conducted in  
children affected by post-natal cerebral palsy; the authors reported 
an improvement in motor skill and white matter connectivity in 
patients who received a higher dose of autologous CB-derived  
total nucleated cells (TNCs) compared with patients who  
received either lower TNC dose or placebo50. Similarly, Huang 
et al. reported a significant clinical improvement in 54 patients 
with cerebral palsy treated with allogeneic CB-derived MSCs51. 
Encouraging results have also been achieved in autism spec-
trum disorders: repeated infusion of CB-derived MSCs were 
recently reported to be safe by Riordan et al. in a phase I trial, 
and behavioral improvement was reported in eight out of  
15 evaluable patients52. Furthermore, given the promising results 
in studies conducted on preclinical models53–55, the safety and  
therapeutic potential of CB-derived cells are under investigation 
in patients with neurodegenerative disorders, such as Parkinson’s  
disease or Alzheimer’s disease.

Ongoing phase I/II studies are exploring the role of CB-derived 
MSCs for the treatment of cardiac diseases. Of particular  
clinical interest is the observation that, in a randomized phase 
I/II clinical study, patients with heart failure who received an  
intravenous infusion of CB-derived MSCs had better post-ischemic 
myocardial remodeling and higher ventricular ejection fraction 
compared with the control group56.

The safety and feasibility of CB-derived cells have been reported 
in several case series, but owing to the heterogeneity of these  
studies along with the lack of major comparative trials, their  
clinical efficacy still needs to be proven. Indeed, to date, none of 
these applications has been formally approved for clinical use.

Bone marrow
Allogeneic transplantation
For decades, BM has been the preferred source for HSCT. In 
the early ’90s, several studies demonstrated a direct correlation  
between higher number of HSCs infused and a reduction of 
early transplant-related mortality57,58. This led to an increased  
use of granulocyte colony-stimulating factor (G-CSF)-primed 
PB, which in the last 15 years has gradually become the preferred  
graft source of HSCs5. To date, aplastic anemia is the only  
disease for which the use of BM is mandatory because of the 
unacceptably high rate of chronic GvHD observed after PB  
HSCT59–61. BM also remains the preferred source of HSCs for 
pediatric patients (Figure 2), for whom low cellularity is usually  
enough to ensure engraftment62.

Many studies have compared BM and PB. In the first randomized 
clinical trial ever conducted in patients undergoing an HSCT 
with matched related donors, Bensinger et al. found a higher and 
faster rate of engraftment after PB, as compared with patients  
receiving BM, whereas no differences were observed for  
incidence of acute and chronic GvHD63. The study suggested 
a better DFS in patients with advanced malignancies receiving  
PB63. When focusing on long-term outcomes, Friedrichs et al. 
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Figure 2. Transplants by cell source for pediatric patients from 1992 to 2017, unrelated donor transplants. In the pediatric population, 
defined as younger than 18 years, the most frequently used source is bone marrow. Data are reused from the National Marrow Donor Program 
(NMDP)/Be The Match with permission.

showed a higher incidence of chronic GvHD and longer need 
for immunosuppression therapy after HSCT using PB as source 
of HSCs64. No differences were seen for OS and quality of life  
(for example, performance status and return to work) between 
PB and BM recipients64. In 2012, the two graft sources were  
finally prospectively compared in the setting of URDs. The 
study showed a higher risk of graft failure but a lower rate of 
chronic GvHD among patients receiving BM; no significant  
differences were seen in OS between the two groups6. The main  
finding of lower chronic GvHD led the authors to recommend 
the use of BM as the preferred source for HSCT, a recom-
mendation that, however, has not been translated into clinical  
practice6.

More recently, the use of BM has re-emerged in the setting of 
haploidentical transplants (that is, from half-matched related  
donors) that have been increasingly performed in the last  
decade65. The original platform, described by Luznik et al., 
using T cells-replete, haploidentical HSCT with post-transplant  
cyclophosphamide, included BM as the preferred HSC source66; 
however, owing to the difficulty of obtaining BM, the same group 
explored the use of PB in the same setting, obtaining similar  
clinical results. As in URD transplants, these observations led  
to switching to PB as the preferred HSC source in the haploidenti-
cal setting as well66–71.

Although the use of BM is undoubtedly associated with a lower 
risk of chronic GvHD when compared with PB, the cumbersome  
process to obtain it and the slower time to engraftment have  
severely limited its application in the field of HSCT. To address 
the issue of slow engraftment and to reduce the rate of graft  

failure, some groups have investigated the use of a short course  
of G-CSF to stimulate BM before the harvest, documenting 
both an increase of progenitors and phenotypic changes in the  
lymphocyte component of the graft72,73. These observations led 
to the hypothesis that BM priming would have further low-
ered the rate of GvHD while improving engraftment. However,  
neither retrospective nor prospective studies comparing  
G-CSF–primed BM versus either unmanipulated BM or PB  
showed any differences in OS74–77. Moreover, given that this 
procedure would expose the donors both to a drug administra-
tion and to a BM harvest, the enthusiasm for this approach has  
quickly faded.

Immunotherapy
The use of BM-derived MSCs has been widely investigated 
in the setting of severe, steroid-refractory GvHD. MSCs are  
capable of migrating into inflamed tissues affected by acute  
GvHD and actively inhibit T-cell proliferation, inducing a shift 
in the T cells toward a regulatory phenotype. Since the first  
report of successful use of MSCs in a case of refractory acute 
GvHD78, several phase I/II studies have shown the safety and  
applicability of this approach. Although the heterogeneity of the 
studies using BM-derived MSCs has represented a major limita-
tion for any definitive conclusions, the use of Remestemcel-L, 
an off-the-shelf BM-derived MSC product, has been  
approved for first-line treatment of acute GvHD and for the 
treatment of steroid-refractory acute GvHD. As first-line  
treatment, Remestemcel-L in combination with steroids led to 
94% of overall responses, and 77% of those were complete79. In  
the steroid-refractory GvHD setting, Remestemcel-L infusion, 
as single agent, led to a very promising 61% of overall response 
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and significant improvement of survival80. These results led 
to an open-label phase III trial that enrolled 55 children with  
steroid-refractory acute GvHD in 32 sites across the US, and 
89% of patients had the most severe form (ClinicalTrials.gov  
Identifier: NCT02336230). The trial met the primary endpoint of 
day-28 overall response rate (69% versus 45% historical control 
rate)81. Based on these results, the use Remestemcel-L is under 
evaluation by the US Food and Drug Administration as the first 
approved treatment of steroid-refractory acute GvHD.

Regenerative medicine
BM cells are as valuable as CB cells as a source for the regen-
erative medicine field82. Indeed, autologous and allogeneic BM  
aspirates, BM concentrates, and BM-derived cells have been 
extensively investigated to treat musculoskeletal conditions,  
especially for bone and cartilage damage such as osteoarthritis, 
bone fractures, or congenital skeletal malformations83,84.

Besides musculoskeletal conditions, BM-derived cells, such 
as EPCs, MSCs, and mononuclear cells, have been used to treat 
cardiac, endocrine (with a special focus on diabetes mellitus),  
and neurologic disorders. Whereas early phase I and II clinical 
trials have shown promising outcomes in patients receiving  
intracardiac injection of BM-derived cells after myocardial  
infarction, randomized placebo-controlled phase III studies 
have shown contradictory results in terms of overall clinical  
impact85–87.

BM-derived MSCs have been adopted for treating diabetes,  
showing the potential to improve the glycemic curve in pre-
clinical models by differentiating in vitro into insulin-producing 
cells and by exerting a protective role against immune-mediated  
destruction of pancreatic beta cells in type 1 diabetes88,89. Within 
a cohort of 30 patients with type 2 diabetes requiring multiple 
oral anti-hyperglycemic drugs plus high-dose insulin, Bhansali 
et al. showed a significant reduction in insulin requirement  
after the infusion of BM-derived MSCs compared with patients 
receiving placebo90.

More recently, several early phase clinical trials have investi-
gated the role of BM-derived MSCs and mononuclear cells for 
the treatment of neurological conditions, including refractory  
multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain 
injury, and cerebrovascular attacks91–95. In all cases, the treatment 
has been shown to be safe and feasible, although the clinical  
efficacy remains controversial.

Lastly, increasing interest has been raised around BM-derived 
MSC-secreted exosomes, extracellular nucleic acid-containing  
(for example, microRNA) and protein-containing vesicles that  
play a significant role in immune response and signal trans-
duction. In preclinical studies, the administration of cell-free  
MSC-derived exosomes has been shown to improve cellular 
protection and regeneration in animal models of osteoporosis,  

bone fracture, optic nerve injury, traumatic brain injury, necrotizing 
enterocolitis, and other morbid conditions96–100.

Conclusions
Much has been learned since the first HSCT performed in the 
late ’50s. The use of HSCT for patients with hematological  
disease continues to increase because of a constant decrease 
in transplant-related morbidity and mortality and a consequent  
improvement of clinical outcomes. Owing to the growing  
enthusiasm for PB as a source of stem cells, the use of CB and 
BM has decreased in recent years: according to the National  
Marrow Donor Program, CB and BM are being adopted in only 
16% and 19% of all HSCTs, respectively. Although BM and CB 
transplantations are established practices for the treatment of  
hematological malignancies in adult and pediatric patients, the 
high transplant-related mortality due to delayed hematopoietic  
recovery (CB) and the difficulty of its acquisition (BM) have 
helped slow down the widespread adoption of both. There are 
several ongoing challenges to expand the use of CB. Although 
a number of methods to increase engraftment speed have been  
successfully investigated, the cost of CB grafts and the lack of  
substantial improvement in early post-transplant supportive 
care represent major unmet issues. For BM, the main limitation  
remains related to the difficulty and the invasiveness of its  
collection. Despite the undeniable advantage of a lower risk of 
chronic GvHD and consequently of a better quality of life, its use 
has not increased.

In recent years, we have learned more about the properties of 
CB and BM as well as their application to regenerative medi-
cine and immunotherapy. Although there have not been major 
safety concerns regarding the use of CB-derived and BM-derived  
products, most of the clinical trials have been conducted on very 
small or heterogeneous cohorts (or both), using different cell  
populations, cell doses, and routes of administration. Randomized 
placebo-controlled studies are needed to better determine the  
efficacy of these approaches before translating them into stand-
ard clinical practice. With the development of new technologies  
allowing better characterization, selection, and expansion of  
different cell populations from CB and BM, we could envision 
a progressively higher utilization of these cell sources, not only  
in the transplant field but also in many other fields of medicine.
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natural killer cells; CAR-T cells, chimeric antigen receptor  
T cells; CB, cord blood; CBT cord blood transplant; DFS, dis-
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granulocyte colony-stimulating factor; GvHD, graft-versus-host 
disease; HSC, hematopoietic stem cell; HSCT, hematopoietic 
stem cell transplant; MSC, mesenchymal stromal cell; NK 
cells, natural killer cells; OS, overall survival; PB, peripheral  
blood; TNC, total nucleated cell; T-reg, regulatory T cell;  
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virus-specific T cell.
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