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Abstract: The surface of dental implants plays a vital role in early and more predictable osseointegra-
tion. SLA (sandblasted large grit and acid-etched) represents the most widely accepted, long-term
clinically proven surface. Primarily, dental implants are manufactured by either commercially pure
titanium (CP-Ti) or Ti6Al4V ELI alloy. The acid etch behavior of CP-Ti is well known and its effects on
the surface microstructure and physicochemical properties have been studied by various researchers
in the past. However, there is a lack of studies showing the effect of acid etching parameters on
the Ti6Al4V alloy surface. The requirement of the narrow diameter implants necessitates implant
manufacturing from alloys due to their high mechanical properties. Hence, it is necessary to have an
insight on the behavior of acid etching of the alloy surface as it might be different due to changed com-
positions and microstructure, which can further influence the osseointegration process. The present
research was carried out to study the effect of acid etching parameters on Ti6Al4V ELI alloy surface
properties and the optimization of process parameters to produce micro- and nanotopography on
the dental implant surface. This study shows that the Ti6Al4V ELI alloy depicts an entirely different
surface topography compared to CP-Ti. Moreover, the surface topography of the Ti6Al4V ELI alloy
was also different when etching was done at room temperature compared to high temperature, which
in turn affected the behavior of the cell on these surfaces. Both microns and nano-level topography
were achieved through the optimized parameters of acid etching on Ti6Al4V ELI alloy dental implant
surface along with improved roughness, hydrophilicity, and enhanced cytocompatibility.

Keywords: dental implants; osseointegration; titanium alloy; acid etching; microtopography;
nanotopography

1. Introduction

Dental implants were introduced by Brånemark in 1960 for the replacement of missing
teeth [1]. The well documented long term clinical result favors titanium and its alloy as
the gold-standard material for dental implant application [2–4]. Titanium exhibits the
best combinations of properties like strength, corrosion resistance, and biocompatibility as
desirable for the bone–implant application. According to the ASTM standard, six types
of titanium are available for biomedical implant applications including four grades of
commercially pure titanium and two alloy forms (Ti6Al4V and Ti6Al4VELI grade). CP-Ti
is an unalloyed pure form of titanium that contains only traces of other elements (i.e.,
carbon (C), nitrogen (N), oxygen (O), and iron (Fe). From Grades 1–4, there is an increase in
oxygen content, which improves the mechanical properties of titanium. However, the alloy
exhibits better mechanical properties than all grades of CP-Ti [3]. Ti6Al4V and Ti6Al4V-ELI
alloys have a biphasic composition consisting of alpha and beta phases. Aluminum in
these alloys act as an alpha phase stabilizer and vanadium acts as a beta phase stabilizer.
Ti6Al4V ELI has a low concentration of interstitial elements O and C, which improves
ductility compared to Ti6Al4V [3].
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In the dental implant market, most commercial dental implants are made up of either
Grade 4 CP-Ti or Ti6Al4VELI alloys. CP-Ti possesses good corrosion resistance while alloy
has more strength (ultimate tensile, yield, and fatigue strength) required for long-term
performance [3,4]. Therefore, depending on the clinical situations like lesser space or
reduced bone quantity, which need narrow-diameter implants or where the occlusal forces
are high, a dental implant must be manufactured from high strength material to prevent
fatigue failure. Although both CP-Ti and Ti alloys are biocompatible, their surfaces are
bioinert and it almost takes 3–6 months for them to osseointegrate with the surrounding
bone. However, with the increase in the horizon of implant dentistry, there is a need for
implant placement in less ideal bone conditions. Moreover, the introduction of newer
protocols requires either immediate implant placement after extraction or immediate or
early loading after implant placement. Therefore, there is a need to make the implant
surface bioactive or conducive to accelerate the process of osseointegration. In the literature,
various methods of surface modifications have been used to modify the titanium dental
implant surfaces [5,6]

The sandblasting and acid etching process has been used commonly for dental implant
surface modification to produce the SLA surface and clinically, these surfaces have been
used actively for the past 3–4 decades. This combination introduces both macro- and
microroughness necessary for the early osseointegration process [7]. Both sandblasting
and acid etching are subtractive methods of surface modification. Acid etching creates pits
or grooves on the metal surface by the process of selective corrosion [4]. The exact topog-
raphy and dimensions of pits and resulting surface roughness depend on the types and
combinations of acids used, their concentration, temperature, and duration of treatment.
Besides dual roughness, the acid etching provides benefits like smoothening of sharp edges
produced by sandblasting, removes any residual embedded blast media, contaminated
oxide layer from the titanium surface, and provides modified chemistry, resulting in a
bioactive surface. Various studies have documented the role of the etched surface over the
machined and blasted surface [8].

Moreover, the reason for using a combination of methods is that the blasting pro-
cedure hypothetically achieves an optimal roughness for mechanical fixation, whereas
the additional etching introduces micron level topography, which modulates the early
host tissue response required for faster osseointegration. The resulting surface has an
improved potential for protein adhesion, considered to be important for the early bone-
healing process [9]. Etched surfaces have been reported for more bone apposition [10] and
enhanced interfacial strength as measured by removal torque or push-out tests compared
to machined surfaces [11]. Nanotechnology for dental implant surfaces has evolved in
the recent past, and its success has been proven both in vitro and in vivo [12–15]. Both
micro and macro thread geometry of dental implants are responsible for the transmission
of load at various implant and bone interfaces, thus affecting the long-term outcomes of
osseointegration [16–18].

In the literature, most of the studies have been conducted on CP-Ti disc samples to
show the effect of different acids and their process parameters (i.e., concentration, duration,
and temperature on surface topography and chemistry [8,19–24]), although the SLA surface
has been used by various dental implant manufacturers where those implants have been
characterized by various researchers [25,26].

However, to the best of our knowledge, no studies have documented the simultaneous
effect of acid etching on the thread geometry of the Ti6Al4V ELI alloy dental implant
product, its surface properties, and cytocompatibility. Moreover, fewer studies have been
conducted on the SLA surface of grade 5 titanium alloys, but the effect of the etching
parameter has not been discussed with regard to the surface morphology [27,28]. Since the
Ti6Al4V ELI alloy is also used for the fabrication of dental implants by various manufactur-
ers and possesses a heterogeneous composition a compared to CP-titanium, SLA surface
fabrication on this alloy also needs the optimization of the acid etching process parameters.
Therefore, this research endeavor aims to provide insights into the effect of the acid etching
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process parameters on the Ti6Al4V ELI alloy dental implants’ surface physicochemical
properties and cytocompatibility, along with the optimization of micron- and nano-level
topography on a patented dental implant system [29].

2. Materials and Methods

Dental implants (n = 57) and titanium discs (n = 63) were machined from a Ti6Al4V ELI
(ASTM grade 23) 5 mm diameter rod in a 10-axis Turn-Mill machine, as shown in Figure 1.
These machined implants and discs were cleaned in a mild detergent (Omega Supreme
USA) and volatile solvent (3M™ Novec™ Engineered Fluids, India) in an ultrasonic
cleaner (Crest ultrasonics, India) to remove machining chips as well as oil and any organic
contaminations. Implants were blasted with large grit alumina particles (250–400 microns)
in a sandblaster to obtain the roughness (Ra) of 1.5–2 microns. After sandblasting, the
samples were cleaned in an ultrasonic cleaner (Crest ultrasonics, India) in deionized (DI)
water to remove any loosely embedded blasting particles. After cleaning, samples were
dried in a vacuum oven at 60–80 ◦C. Samples were further classified into control and
experimental groups. Acid etching was carried out on these samples in HF, HCl, and
H2SO4 (CDH, India), as per Table 1. Figure 2 illustrates the outline of the proposed study
parameters, surface characterization, and cytocompatibility methods. The nano- and micro-
SLA surfaces on the titanium dental implants were optimized by conducting the first
etching in HF for 30 s without heating, and a second etching in a mixture of H2SO4 (96%)
and HCl (37%) in a 1:2 ratio by volume, heated at a temperature of 80 ◦C for 3 min followed
by 60 ◦C for 2 min under agitation. Post etching cleaning was done in hot deionized water
in an ultrasonic bath. This optimized surface was studied in detail and compared with the
acid-etched surface without heating the acid solution, as shown in Figure 2.
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Figure 1. (A) Photograph of (i) machined, (ii) sandblasted, (iii) sandblasted and acid-etched at room
temperature (R.T.), (iv) sandblasted and acid-etched at high temperature (HT) implants. (B) Disc
samples in similar processing conditions.

The surface morphology of these experimental and control implants was studied by a
field emission scanning electron microscope (FESEM, FEI Quanta 200F, The Netherlands)
at a 20 kV acceleration voltage, and vacuum pressure was maintained below 1 × 10−5 torr.

A 3D optical profilometer for surface roughness testing (KLA Tencor, Lengen,
Germany) was used to analyze the surface roughness of the titanium specimens. White
light optical interferometry (a non-contact method) was used to measure in a vertical scan-
ning interferometry mode at a magnification of 20×. A 250 × 250 µm2 area was scanned
at three random sites and Ra was calculated by inbuilt software and parameters were
recorded after applying a Gaussian filter. 3D images were also recorded from the virtual
reconstruction at a magnification of 20×. The arithmetical mean roughness (Ra) from three
areas was averaged out and standard deviations were calculated.
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Table 1. Experimental parameters used in the study.

Acid Etching Group Etching Solution Temperature Time
Single Step HF Only R.T. 30 s

Double step (Room
temperature-RT)

A HF (1st etching)
H2SO4 +HCl (2nd etching)

RT
RT

30 s
1 min

B HF (1st etching)
H2SO4 + HCl (2nd etching)

RT
RT

30 s
5 min

C HF (1st etching)
H2SO4 + HCl (2nd etching)

RT
RT

30 s
10 min

Double step (Different
temperatures)

A HF (1st etching)
H2SO4 + HCl (2nd etching)

RT
40 ◦C

30 s
5 min

B HF (1st etching)
H2SO4 + HCl (2nd etching)

RT
80 ◦C

30 s
5 min

C HF (1st etching)
H2SO4 + HCl (2nd etching)

RT
120 ◦C

30 s
5 min

Double step (High
temperature-HT)

A HF (1st etching)
H2SO4 + HCl (2nd etching)

RT
60–80 ◦C

30 s
1 min

B HF (1st etching)
H2SO4 + HCl (2nd etching)

RT
60–80 ◦C

30 s
5 min

C HF (1st etching)
H2SO4 + HCl (2nd etching)

RT
60–80 ◦C

30 s
10 min
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A vision microscope (Banbros, India) was used to study the optical profile of the
dental implant thread geometry. Surface hydrophilicity was studied after being washed
with distilled water in an ultrasonic cleaner for 30 min and vacuum dried. The wettability
of the titanium disc specimens was examined by an optical contact angle (C.A.) measuring
device (Kruss, Germany) using 2 µL of distilled water.

Surface chemical composition was evaluated using X-ray photoelectron spectroscopy
(XPS, Multi-Technique Scanning XPS Microprobe, Versa Probe III USA). This method allows
for the qualitative and quantitative estimation of all elements present in the sample, except
hydrogen (H) and helium (He) and generates a photoelectron spectrum, with characteristic
peaks for each element. Implants (as received without sputtering) were mounted on a
60 mm sample plate using double-sided nonconductive adhesive tape, with tape only
contacting the support screw. Spectra were collected using a dual-beam neutralization
system, consisting of low energy (~1 eV) electrons and low energy (~8 eV) argon ions. The
area located in the middle part of the implant surface was randomly selected to evaluate
the surface chemical composition. A monochromatic Al Kα (1486.6 eV) X-ray source was
used with a 45◦ takeoff angle of photoelectrons. A 100 µm diameter 25 W X-ray beam was
used at 280 eV analyzer pass energy with 1 eV/step for survey scan. For narrow scans, a
100 µm diameter 25 W X-ray beam was used at 55 eV pass energy with 0.1 eV/step for Ti
2p, C 1s, O 1s, Al 2p, V 2p, N 1s, and 69 eV pass energy with 0.125 eV/step Ca 2p, S 2p, Si
2p, F 1s, and Fe 2p.

X-ray diffractometry (XRD) measurements were carried out on the three different
regions of the implants in a D/Max Ultima X-ray diffractometer (Rikagu, Tokyo, Japan).
Cu-Kα1 radiation was used in a 20–80◦ two theta (2θ) angle range with a grazing incidence
of 3 degrees.

Human osteosarcoma MG-63 cell lines were procured from the National Center for
Cell Science (NCCS), Pune, India. Cells were cultured in Dulbecco’s modified Eagle
medium (DMEM) supplemented with FBS (10%) and penicillin/streptomycin (1%) in a
CO2 incubator at 37 ◦C. Titanium samples (2 × 5 mm diameter) were packed in class
1000 cleanroom and sterilized by gamma radiation (25 Gray) at the Shri Ram Institute
of Industrial Research, Delhi, India. Cell viability and proliferation were studied by the
MTT (3-(4,5-dimethyl thiazolyl-2)-2,5-diphenyltetrazolium bromide) assay. Samples were
seeded with the cell density of 5000 cells/cm2 in 24-well plates and the MTT assay was
conducted after three and seven days of culture. Commercially available MTT from Sigma
was used to study the MG-63 cell proliferation on different titanium surfaces. After three
and seven days of cell culture, discs were rinsed with PBS and transferred to 96-well plates
and incubated with the MTT reagent for 4 h in an incubator. There was a formation of a
purple color formazan crystal due to cleavage of the tetrazolium ring by the mitochondrial
dehydrogenase of live cells. After incubation, dimethylsulfoxide (DMSO) was added to
dissolve the formazan crystals and the optical density of the resulting purple solution was
measured spectrophotometrically at a 574 nm wavelength.

FESEM evaluation of cell adhesion and morphology was conducted after 4 and 24 h
of the cell culture period. For FESEM, disc samples were fixed with 4% formaldehyde after
4 and 24 h of culture, washed with phosphate buffer solution (PBS) and then sequentially
dehydrated in a series of alcohol (50–100%). After gold sputter coating, FESEM (FEI Quanta
200F, The Netherlands) was used to evaluate cell adhesion and proliferation on the disc
surface.

Live and dead cell staining was done with Live/Dead Cell Double Staining Kit (Sigma-
Aldrich, India) after 24 h of culture duration. This kit contains Calcein-AM, which stains
viable cells green and propidium iodide (P.I.) solutions stain dead cell nuclei in red. Cell
culture media were removed from the incubated disc samples without agitating the well
plate followed by incubation with 2 mL PBS containing 2 µM of Calcein AM and 4 µM of P
for 20 min. The sample surface was evaluated under a FLUOVIEW FV1200 confocal laser
scanning microscope following staining [30].
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Immunofluorescence staining with rhodamine-phalloidin and 4′,6-diamidino-2-pheny
lindole (DAPI) was done 24 h after cell culture. Disc samples were washed with PBS and
then fixed with 4% formaldehyde for 20 min. Again, the samples were washed with PBS
and blocked with the 1% BSA solution for 1 h, and then disc samples were again washed
with PBS and stained with rhodamine-phalloidin for 20 min and DAPI for 5 min. Cell
morphology was seen under a FLUOVIEW FV1200 confocal laser scanning microscope.

All the experiments were conducted in a triplicate manner. Experimental data are
presented with the mean and standard deviation (SD) and the results were evaluated
statistically using two-way ANOVA test and Bonferroni post-hoc test (OriginPro 2016)
between two groups (* p < 0.05).

3. Results
3.1. Effect of Different Etching Parameters on SEM Topography

Figure 3A,B show the SEM topography of sandblasted dental implant etched with
HF (15% HF w/v for 30 s at room temperature). The sandblasting of the dental implant
surface with alumina particles (250–400 microns) resulted in a surface topography with
craters and pits of 10–40 microns. This surface topography can be depicted as rough but
not porous. The beta phase was observed in the form of crystals on this surface, as they
become prominent due to the selective dissolution of the alpha phase by HF. The size of
beta crystals was found in the range of 0.5–2 microns.
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Figure 3. SEM images of sandblasted dental implant acid-etched with HF for 30 s at room temperature
at (A) 2000× and (B) 5000×.

Figure 4 shows the surface topography after the second etching (subsequent to the first
etching in HF) in a mixture of H2SO4 + HCl solution at room temperature with different
durations and temperatures. It is demonstrated in Figure 4A that when etching was done
for 1 min duration, there was no significant difference in topography compared to the
etched surface with HF only. When the etching duration was increased to 5 min, the
formation of ridge and groove types of topography started (Figure 4B). Furthermore, when
the duration was extended to 10 min of acid etching, the grooves and ridges became more
prominent (Figure 4C). However, the presence of beta phase crystals was observed on all
surfaces irrespective of the duration of etching times, although a relatively slight reduction
in the number of crystals could be seen in these SEM images.
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etching with HCl + H2SO4 at room temperature (A–C) for a duration of (A) 1 min, (B) 5 min, (C)
10 min; (D–F) second etching with HCl + H2SO4 for a duration 3 min at (D) 40 ◦C, (E) 80 ◦C, and
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Figure 4D–F represents the SEM micrograph of the dual acid-etched implant surface
after the second etching in a H2SO4 + HCl mixture at different temperatures (at 40 ◦C,
80 ◦C, and 120 ◦C) for a duration of 3 min. There is a partial etch groove and ridge type
of topography with retained beta crystal when the second etching was done at 40 ◦C, as
shown in Figure 4D. A porous topography was obtained when etching was done at 80 ◦C
with uniform etching of both alpha and beta phases, as depicted in Figure 4E. At 120 ◦C,
an entirely different etched topography was observed in the form of globules with grooves.
These globular structures were not porous; instead, they showed a multidirectional rough
and groovy topography together, suggesting a higher etch rate (Figure 4F). Figure 4G–I
represents the SEM micrograph of the dual acid-etched implant surface after the second
etching in the H2SO4 + HCl mixture at a higher temperature (80 ◦C). Here also, experi-
ments were conducted for three-time parameters (i.e., 1 min, 5 min, and 10 min). When
etching was conducted for 1 min, although there was the formation of distinct porous
microstructure, the formed pores were superficial in morphology and remnants of beta
crystals were observed on the surface (Figure 4G). When the duration of acid etching was
increased to 5 min, a three-dimensional porous structure was obtained, as depicted in
Figure 4H. This surface was highly porous and the beta crystal phase was not seen on the
surface. Furthermore, when the duration of etching was increased to 10 min, a loss in the
porous microstructure was noticed due to further etching action of the acids, leading to
flattening of ridges resulting from sandblasting (Figure 4I).

For the optimization of both nano- and micron-topography, the second etching of the
final surface was done initially for 3 min at 80 ◦C, followed by 2 min at 60 ◦C. This results
in a porous surface with a pore size distribution in the micron, sub-micron, and nano range.
The larger pores were in the 2–5 micron range and the smaller pores were in the 50–200 nm
range, as shown in Figure 5.
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Figure 5. SEM images of sandblasted dental implant acid-etched with HF for 30 s (RT) and second
etching with HCl + H2SO4 at HT for a duration of 5 min at 20,000×magnification.

Figure 6 shows the comparative topography of the present SLA surface on the alloy
surface and SLA surface of the commercial marketed implant. The commercial implant
surface showed a nearly uniform topography of fine cone like projections in the micron
size range, as shown in Figure 6B. However, as described above, the alloy SLA surface
exhibited a porous topography with a pore size ranging from the nano to micron size and
had smaller pores inside the larger pore, as depicted in Figure 6A.
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Figure 6. Comparative SEM images of (A) SLA surface of Ti6Al4V ELI grade alloy etched at 80 ◦C
for 5 min and (B) SLA surface of Neobiotech commercial dental implant.

3.2. Effect of High Temperature (HT) on Thread Geometry of the Dental Implants

Optical profilometry images of dental implants (machined and sandblasted conditions)
under a vision microscope are shown in Figure 7. There is a slight rounding of micro
threads in an acceptable range as depicted in Figure 7C after sandblasting compared to
machined implants when blasted with an appropriate combination of grit size, the pressure
of blasting, and duration of blasting to achieve the desired surface roughness in the range
of 1.5 to 2 microns. When acid etching was carried out with H2SO4 + HCl for 10 min at high
temperature, the depth of the micro thread was reduced to less than half of the original
thread depth, which is unacceptable, as shown in Figure 7G. Additionally, it was observed
that there was almost no change in thread depth compared to the blasted implant when
acid etching was done for 5 min at 80 ◦C.
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Figure 7. Profile images of dental implants under vision microscope: (A,B) machined implant, (C,D) sandblasted implant,
(E,F) etched at HT for 5 min, (G,H) Etched at HT for 10 min.

3.3. Surface Roughness and Hydrophilicity

The 3D image and profile images of machined, sandblasted, sandblasted and acid-
etched surfaces at RT and HT are shown in Figure 8A–D. Machining grooves and ridges
could be observed on the machined titanium surface (Figure 8A), which corresponds to
sharp peaks and valleys in the profile image. However, the overall average roughness
of machined samples was below 0.5 microns. Figure 8B represents the 3D image of the
sandblasted sample where the formation of the crater and ridge could be observed, and the
profile image of this surface was very irregular due to non-uniform removal of material
due to the sandblasting procedure. Figure 8C,D shows the 3D image of sandblasted
and acid-etched surfaces at RT and HT, respectively. The superimposition of submicron
roughness profile over the roughness resulted from sandblasting, and there was an overall
reduction in peak height due to the etching process on the sandblasted surface. However,
the roughness profile of thee RT etched surface was slightly less regular compared to the
HT etched surface. The Ra values of the sandblasted and acid-etched surfaces were in the
range of 1.6 to 2.1 microns, as shown in Table 2.

Table 2. Ra Value of the different experimental surfaces of the dental implant.

Surface Type Ra in µm Contact Angle in Degree

Machined 0.357 ± 0.132 110 ± 5
Sandblasted 2.1 ± 1.1 100 ± 2

Sandblasted and acid-etched at RT (10 min) 1.7 ± 1.2 70 ± 7
Sandblasted and acid-etched at HT (5 min) 1.6 ± 1.2 40 ± 3

The surface hydrophilicity of the etch surfaces was determined by measuring the static
contact angle by the sessile drop method. The machined surface showed an obtuse contact
angle (110◦), suggesting a hydrophobic surface. Acid-etched samples at room temperature
samples had a 70◦ contact angle, and sample etched at a higher temperature showed a
more hydrophilic surface with a contact angle of 40◦.
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Figure 8. Ra value measurement: (A) machined, (B) sand blasted, (C) sand blasted and acid-etchedat
RT (10 min), and (D) sand blasted and acid-etched at HT (5 min.).

3.4. XPS and XRD Analysis of Surfaces

XPS analysis was performed to study the surface elemental compositions and oxi-
dation state of elements present on the surface. The elemental composition of implant
surfaces etched at room temperature and high temperature is shown in Table 3. XPS survey
spectra showed comparative peaks of different elements on the RT etched surface and
HT etched surface. There was an increase in the intensity of C, O, and F peaks on the RT
acid-etched surface, whereas the HT acid-etched surface showed the increased intensity of
the Ti peak. Detailed elemental scans of Ti, Al, V, C, O, and F with deconvoluted spectra
were evaluated and reported in Table 4 with the binding energy of all elements. It was
found that the titanium was present in the Ti(III) and Ti(IV) oxidation state on the RT
etched surface while on the HT etched surface, metallic titanium peaks were also detected
at a 459.63 eV binding energy, as shown in Table 4. Detailed narrow scan of Al and V also
showed metallic peaks on the HT acid-etched surface, suggesting a thin oxide layer on the
HT etched implant.

Table 3. Elemental composition (in %/) of the implant surface after RT and HT acid etching treatment
as evaluated by XPS survey.

Elements C O TI AL V F

RT Ac-id-Etched
Implant 46.3 39.8 9.1 1.3 0.1 3.4

HT Ac-id-Etched
Implant 30.9 28.6 39 0.8 0.1 0.6
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Table 4. XPS binding energies of Ti2p, Al2p, V2p, C1s, O1s, and F1s at the surface of the titanium surface etched at room
temperature and high temperature.

Room Temperature (RT) Acid-Etched Titanium Alloy
Dental Implant Surface

High Temperature (HT) Acid-Etched Titanium Alloy
Dental Implant Surface

Peak Position % Area Oxidation State Peaks Position % Area Oxidation State

TI

453.48 0.00 Ti(0) 2p3/2 (Ti metal) 453.43 4.18 Ti(0) 2p3/2 (Ti metal)
455.22 0.00 Ti(II) 2p3/2 Ti-O 454.99 1.28 Ti(II) 2p3/2 Ti-O
457.30 2.05 Ti(III) 2p3/2 Ti2O3 456.98 5.61 Ti(III) 2p3/2 Ti2O3
458.84 64.62 Ti(IV) 2p3/2 TiO2 458.69 55.60 Ti(IV) 2p3/2 TiO2
459.68 0.00 Ti(0) 2p1/2 (Ti metal) 459.63 2.09 Ti(0) 2p1/2 (Ti metal)
460.82 0.00 Ti(II) 2p1/2 Ti-O 460.59 0.64 Ti(II) 2p1/2 Ti-O
462.90 1.03 Ti(III) 2p1/2 Ti2O3 462.58 2.81 Ti(III) 2p1/2 Ti2O3
464.51 32.31 Ti(IV) 2p1/2 TiO2 464.36 27.80 Ti(IV) 2p1/2 TiO2

AL
74.76 81.61 Al2O3 71.32 11.89 Metal
76.34 18.39 AlF3 74.22 88.11 Al2O3

V 515.85 100.00 Oxide
511.74 5.95 Metal
515.41 94.05 Oxide

C
284.79 84.11 C–C, C–H 284.79 88.22 C–C, C-H
286.27 9.61 C–O 285.92 8.77 C–O
288.78 6.28 O–C=O 288.75 3.01 O–C=O

O
530.19 45.27 Metal oxide 530.17 55.68 Metal oxide
531.83 54.73 Organic, sulfates 531.69 44.32 Organic, sulfates

F
684.89 73.77 Fluoride

685.01 100.00 Fluoride686.38 26.23 AlF3

There was a significant decrease in carbon signals at the HT acid-etched surface
compared to RT. Binding energy at 284.79 corresponded to C of C–H (hydrocarbon), 286.27
corresponded to C–O, and 288.78 to O–C=O. Oxygen spectra consisted of four components
TIO2, TiOH, O–C=O, and H2O. In the case of the O1s spectrum, the signal corresponding
to oxygen atoms of TiO2 was increased at the RT surface, suggesting a thicker oxide layer.
However, the ratio of TiOH/TiO2 was increased on the HT etched surface compared
to the RT surface, hence a greater hydrophilic surface. High-resolution spectra of F on
the RT etched surface showed the presence of AIF3 and TiF6, whereas the HT etched
surface showed only a small peak of TiF6. The presence of AIF3 and TiF6 on the RT etched
surfaces might explain the slower etch rate of the second etchant (HCl + H2SO4) at room
temperature.

XRD graph of both the surfaces is shown in Figure 9. Peaks at HT acid-etched samples
were nearly similar to the machined surface [31,32]. The intensity of βTi 110 peak at 38.43°
theta angle was higher on the RT acid-etched surface compared to the HT acid-etched
surface. However, the αTi 101 peak intensity at 40◦ theta angle was reduced on the RT
acid-etched surface compared to the HT etched surface. Hence, the XRD cross confirmed
the SEM finding that the RT acid-etched surface had more β phases exposed on the surface.
The XRD results also showed that there were no TiH2 peaks on both the RT and HT
acid-etched surfaces. Moreover, anatase phase peaks were not detected on both surfaces.

3.5. In Vitro Biocompatibility Study of Two Implant Surfaces

Figure 10 shows representative SEM images of cells adhered to the different surfaces
after 24 h of cell culture. There was around a two times increase in the number of adhered
cells on the RT and HT etched surface compared to the machined surface. On the machined
samples, cells exhibited rounded cell morphology. Cells showed rounded to polygonal
morphology with thin cell periphery on the RT etched surface cells. In contrast, the HT
acid-etched surface demonstrated round to elongated morphology and more extended
multiple filopodia, depicting more focal contacts. In high magnification, the extension of
filopodia to the porous topography in the case of HT can clearly be seen.
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Figure 9. XRD diffractogram of the HT and RT etched surface of the Ti6Al4V alloy.

In Figure 11, the SEM morphology of cells is shown after three days of cell culture. All
three surfaces displayed a well-spread morphology. However, the machined on showed no
filopodia, whereas the RT etched surface exhibited small filopodia extension and the HT
etched surfaces showed the communication of cells through larger filopodial extensions, as
shown in Figure 11F.

Cell proliferation was studied on days 3 and 7 of cell culture. Figure 12 shows the
bar diagram of relative optical density of MG 63 cells on the machined, RT, and HT etched
surfaces estimated by the MTT assay. There was a statistically significant increase in the
proliferation on the HT etched surface (* p < 0.05) compared to the machined surface on
day 7.

Figure 13 shows the fluorescent images of live and dead after 24 h of cell culture on the
machined and different etched surfaces. Calcein stains live cells as green and propidium
iodide (PI) stains dead cells in red. All surfaces showed good cell viability, suggesting a
good cytocompatibility of the surfaces. However, cells had more spreading and filopodial
extensions on a HT etched surface, similar to the results obtained from FESEM. Figure 14
shows the fluorescent microscope images of cells adhered to different surfaces where the
cell cytoskeleton (actin filament) was stained by rhodamine-phalloidin and DAPI stained
cell nucleus. There was an increase in cell numbers on the HT acid etched surface compared
to the RT etched and machined. On the RT etched surface, actin filaments were spread in
irregular directions whereas on the HT etched surface, they run along the long axis of the
cell. Cells had a more spread morphology on the HT etched surface compared to the RT
etched and machined surface.
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Figure 14. Confocal images of MG63 cells on machined (A), RT etched (B), and HT etched (C) surfaces
as cytoskeleton stained with rhodamine-phalloidin and nucleus stained with DAPI after 24 h of
culture.

4. Discussion

In the present study, the acid etching procedure was optimized for the Ti6Al4V
ELI dental implant surface to achieve a micro- and nanotextured surface with improved
hydrophilicity and surface roughness. HF was used to remove the passive oxide layer as it
possesses a natural tendency to react with the titanium present in the TiO2 layer. However,
as the etch rate of HF was very high and uncontrollable, HF alone cannot produce the
desired surface microtopography. Moreover, there was a preferential etching of the alpha
phase by HF in the case of TI6Al4V alloy, resulting in the residual beta phase, as shown in
Figure 2. The preferential etching of the alpha phase over the beta phase was due to the fact
that the beta phase had a higher concentration of vanadium, while the alpha phase consists
of aluminum and the standard potential of vanadium was higher than aluminum, which
is considered more novel and more resistant to etching [31,32]. The presence of the beta
phase residue may result in ion leaching from the implant surface in vivo due to corrosion
and in the short- or long-term may lead to osteolysis, bone loss, and implant failure [33–37].
Therefore, second etching is necessary to remove these unstable crystals and to produce
the desired topography. H2SO4 and HCl are the most widely used etchant combination for
titanium dental implants [19,22,38–43].

In this study, instead of the sequential use of these acids, the mixture of H2SO4 + HCl
acids was used to reduce the number of etching steps (as there is no reaction between
these two acids and these can be mixed). The etching of Ti6Al4V at room temperature by
H2SO4 and HCl takes a very long time to achieve a micro-texture because of the slower
etch rate of titanium at room temperature by these acids [44]. The present study reports
that even after 10 min of etching, the desired micro and nanotopography could not be
achieved, although roughness and wettability were in the acceptable range. Moreover,
the extension of etching duration for a longer time may lead to the formation of titanium
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hydride (TiH2), leading to the brittleness of the surface layer, resulting in ion leaching
creating short-term pain and inflammation and bone loss in the longer term as understood
from the literature [9,45–50]. In the present study, XRD analysis showed no TiH2 peak on
both room temperature and high temperature etch surfaces. This can be explained on the
basis that titanium alloy possesses phase α and β, CP-Ti only has α phase and the β phase
can accommodate more H2 generated during the process of etching due to the presence of
a body centered cubic (bcc) structure. However, the extension of etching duration might
lead to the excess generation of H2, hence precipitation of TiH2 needles [25]

The present investigation evaluated the surface chemical composition with XPS,
a suitable demonstrated technique in the literature to quantify the elemental chemical
composition present on the surface [48]. The XPS study result showed an increase in the
intensity of C, O, and F peaks on the room temperature samples, suggesting their higher
concentration since these elements can either be absorbed from the atmosphere or can
be incorporated during the manufacturing process itself. The presence of the increased
amount of C–H on the room temperature surface indicates an increase in the amount of
hydrocarbon contamination. The machining and sandblasting procedure can contaminate
the oxide layer, which needs to be removed during the subsequent acid etching process [48].

The presence of oxygen was evident on both surfaces since, in addition to being
present in the atmosphere, it was part of the metallic oxides used during the sandblasting
processes. However, etching with HF removed the oxide layer, but again, as the process
was not done under an inert atmosphere and a second etching was carried out at room
temperature, there was again an increase in oxide layer thickness on the room temperature
acid-etched surfaces while the high temperature acid-etched surface displayed metallic
pecks of T, V, and Al, suggesting a thin oxide layer and the capability of high temperature
acid to remove the oxide layer during process. Therefore, it has been suggested that the
Ti implant surface should contain a high Ti/C ratio [51,52]. The presence of a high Ti/C
ratio and Ti–OH groups is an important feature because it is strongly related to surface
wettability, as observed in the present research work and also in the literature [50]. During
the manufacturing process of the implants due to contact with the organic lubricating oil, a
large number of hydrocarbons are easily attached on the surface, thereby increasing the
carbon content and reducing the property of Ti [48].

Biocompatibility of the optimized AE surface was greater, which can be attributed
to the greater hydrophilic surface, less carbon contamination, higher Ti/C ratio, increase
in TiOH group on the Ti surface, and the presence of nanotopography along with micro-
topography. Surface micro- and nanotopography, surface roughness, and hydrophilicity
enhanced the process of osseointegration [51,52] as osteoblasts (key player cell for bone
deposition) were stimulated by the microenvironment regulating bone remodeling on
rough micro and nanotextured surfaces. These surfaces modulate the process of protein
absorption, cell recruitment, cell adhesion, the formation of focal contact, cytoskeletal
organization, proliferation, gene expression, and cell differentiation [53–56].

Saulacic et al. [57] stated that acid etching of the Ti6Al4V alloy is typically not an
appropriate treatment due to its biphasic nature. Acid etching leads to an enrichment
of the surface with the vanadium rich β Ti phase. However, the present research helped
in partially disapproving this statement by providing proof of concepts. According to
the present research work, it is the parameters of acid etching and type of acid that can
be used to provide the acid-etched surface that is similar or even more porous than the
CP-Ti surface without enriching the surface with the β Ti phase. As parametric studies
of acid etching on alloy surfaces are lacking in the literature and most of the implant
manufacturing companies do not disclose the exact etching process, there was a general
agreement not to perform acid etching process on alloy surface implants.

Recently, Budei et al. [23] compared the morphology of different dental implant
systems and concluded that different companies used either Ti Grade 4 or the Ti6Al4V-ELI
alloy. Although they studied the morphology, they did not discuss this in terms of the
remaining β Ti phase on the surface of the alloy implants. However, they concluded that
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the surface morphology was different for each implant system. Similar to our observations,
Tait et al. [45] observed the SEM morphology of the osteotite surface and concluded that
the acid etching was not sufficient to dissolve both α and β phases of the alloy; hence,
the deposition of sharp white grains of the β phase look like alumina particles rich in
vanadium.

In the present study, the second step of acid etching was done in a mixture of H2SO4
+ HCl at 60–80 ◦C temperature, and it was found that 5 min of duration was sufficient to
achieve the controlled nano- and microtopography devoid of beta crystals. These surfaces
were more hydrophilic, with fewer chances of hydrogen embrittlement. The novelty of
this research work includes a detailed step-by-step effect of the acid etching process was
studied on the Ti6Al4V alloy dental implant surface for the first time, which was necessary
to explain the previous work. This study provides a future direction for a better surface
modification of the Ti6Al4V alloy implant surface by various companies. This work might
further increase the popularity of using Ti6Al4V alloy implants, requiring more strength
without fear of vanadium toxicity.

In short, it can be concluded that although acid etching is a necessary process on the
titanium dental implant surface in order to improve its in vivo bioactivity, over-etching
or under-etching of the titanium alloys may lead to a compromise in either mechanical
properties, corrosion resistance, or biocompatibility. Hence, the type and concentration
of acids and their sequence of process and duration must be optimized for each type of
desired microstructure and material composition as well as thread type

The major limitations of the present study include the use of the MG-63 cell line for
conducting a cytocompatibility study. In future work, human mesenchymal stem cells and
human fetal osteoblast cells can be used. More detailed differentiation and mineralization
studies and osteogenic markers studies can be carried out. Moreover, future in vivo and
human clinical trials are necessary to prove the applications of the results from the present
study.

5. Conclusions

In this study, the parameters of acid etching were optimized for dental implants
made of the Ti6Al4V ELI grade. This study also concludes that the etching behavior of
the titanium alloy is different than CP-Ti. Acid etching of the titanium alloy by HF is
only insufficient as it preferentially dissolves the alpha phase and exposes the beta phase
boundaries, increasing the susceptibility of decreasing the corrosion resistance of the alloy.
Shorter duration acid etching with H2SO4 + HCl at room temperature has a minimal effect
on surface topography. Even after 10 min of acid etching at room temperature, there was
no significant change in topography and we were unable to remove beta crystals that might
be unstable and affect the osseointegration process. Acid etching with a combination of
acids at higher temperatures can produce micro- and nano-level topography in a shorter
duration with a uniform etching of both alpha and beta phases. Higher temperature acid
etching improves the surface roughness by superimposing the micro- and nano-roughness
on the macro roughness introduced by the sandblasting procedure. High-temperature acid
etched surfaces are more hydrophilic and displayed an enhanced cytocompatibility to the
room temperature etched surface.
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surfaces, Figure S4: High resolution deconvoluted XPS spectra of core level Ti2p, Al2p, V2p, C1s,
O1s and F1s at the surface of Titanium surface etched at room temperature and high temperature.
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