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BAG3 promotes pancreatic ductal adenocarcinoma
growth by activating stromal macrophages
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The incidence and death rate of pancreatic ductal adenocarcinoma (PDAC) have increased

in recent years, therefore the identification of novel targets for treatment is extremely

important. Interactions between cancer and stromal cells are critically involved in tumour

formation and development of metastasis. Here we report that PDAC cells secrete BAG3,

which binds and activates macrophages, inducing their activation and the secretion of PDAC

supporting factors. We also identify IFITM-2 as a BAG3 receptor and show that it signals

through PI3K and the p38 MAPK pathways. Finally, we show that the use of an anti-BAG3

antibody results in reduced tumour growth and prevents metastasis formation in three

different mouse models. In conclusion, we identify a paracrine loop involved in PDAC growth

and metastatic spreading, and show that an anti-BAG3 antibody has therapeutic potential.

DOI: 10.1038/ncomms9695 OPEN

1 BIOUNIVERSA s.r.l., Fisciano, Salerno 84084, Italy. 2 Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno 84081, Italy.
3 Department of Pharmacy, Division of Biomedicine ‘‘A. Leone’’, University of Salerno, Fisciano, Salerno 84084, Italy. 4 Pathology Unit, Istituto Nazionale
Tumouri Fondazione ‘‘G. Pascale’’, Naples 81100, Italy. 5 Animal facility, Istituto Nazionale Tumouri Fondazione ‘‘G. Pascale’’, Naples 81100, Italy.
6 Reconstructive Microsurgery, Department of Oncology, Careggi University Hospital, Florence 50139, Italy. 7 Institut de Génétique Moléculaire de
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P
ancreatic ductal adenocarcinoma (PDAC) is the only one of
the five most lethal malignancies for which both the
incidence and death rate have increased in recent years1,2.

This is due to the fact that it is frequently detected only in an
advanced stage and to its resistance to current therapies; therefore
the identification of novel targets for treatment is of great clinical
importance. Of particular interest is the identification of
molecules that mediate the interaction between the tumour
and the surrounding stroma, including tumour-infiltrating
macrophages, which are critically involved in pancreatic tumour
formation, progression and metastatization3–16.

We have previously reported the intracellular expression of
BAG3 (Bcl-2-associated athanogene 3) in 346/346 PDAC biopsies
and its correlation with prognosis17. BAG3 belongs to a family of
co-chaperones that interact with the ATPase domain of the heat
shock protein (Hsp) 70 through a structural domain known as the
BAG domain18,19. Bag3 gene expression is constitutive only in a
few normal cell types, including skeletal muscle and cardiac
myocytes, while can be induced by different types of stress in
many other cell types. Interestingly, BAG3 is constitutively
expressed in several primary tumours or tumour cell lines, where
it has been shown to exert a pro-survival role through various
mechanisms that vary according to cellular context20–22.
Recently, we reported that BAG3 is also detectable in serum
samples from PDAC patients23, suggesting a role for secreted
BAG3 in tumour development. Here we show that indeed BAG3
is released by PDAC cells and activates macrophages through a
specific receptor, IFITM-2 (Interferon-Induced Transmembrane
Protein 2). BAG3-activated macrophages secrete factors that
stimulate PDAC cell proliferation. Interruption of this loop
through an anti-BAG3 monoclonal antibody impairs tumour
growth and metastasis formation.

Results
BAG3 is released from PDAC cells and activates macrophages.
We initially investigated extracellular release of BAG3 from five
different human PDAC cell lines. All the tested cell lines
expressed intracellular BAG3 protein and appeared to release it in
the culture supernatant (Fig. 1a). Differential centrifugation of
subcellular fractions shows that BAG3 is detectable in both the
exosome and soluble fractions of PANC-1 and MIA PaCa-2 cell
lines (Fig. 1b). BAG3 also co-localizes with Rab7a, a cytosolic
marker for endosomes, suggesting that it might be secreted
through the exosomal pathway (Fig. 1c)24. BAG3 release was also
detectable in serum samples obtained from (nu/nu) mice
orthotopically xenografted with MIA PaCa-2 cells (Fig. 1d).

Importantly, BAG3 serum amounts appeared to correlate with
tumour size. Moreover BAG3 secretion does not appear to be a
specific feature of human PDAC cell lines, as we could detect
BAG3 in sera from Pdx-Cre; KrasG12D, Ikkalpha f/f mice25 that
spontaneously develop PDAC, while it was undetectable in
Pdx-Cre, Ikkalpha f/f mice that only develop pancreatitis
(Fig. 1e).

We first hypothesized that released BAG3 could act as an
autocrine factor, however, we could not detect binding of
fluorescein isothiocyanate (FITC)-conjugated recombinant (r)
BAG3 to the surface of PDAC cell lines (Supplementary Fig. 1A).
Nevertheless, we detected binding of BAG3 to the surface of the
murine macrophage cells J774.A1 and human monocytes (Fig. 1f
and Supplementary Fig. 1B). We therefore tested if BAG3 was
capable of activating J774.A1 cells. On incubation with rBAG3,
J774.A1 cells release nitrites and express higher amounts of
COX-2 (Cyclooxygenase-2) and iNOS (Nitric Oxide Synthase-2,
Inducible) revealing macrophage activation (Fig. 1g,h). Moreover,
J774.A1 cells incubated with BAG3 showed increased IL-6
(Interleukin-6) mRNA levels and IL-6 secretion (Fig. 1i).
Notably, IL-6 is one of the main factors released in the
PDAC microenvironment and known to play a role in
tumour development26–28. Importantly, a monoclonal anti-
BAG3 antibody, that we generated, inhibited the binding of
BAG3 to the surface of J774.A1 cells (Supplementary Fig. 1C)
and consequently blocked their activation (Fig. 1l,m), while, as
expected, it had no effect on lipopolysaccharide (LPS)-dependent
activation (Supplementary Fig. 1D). Furthermore, non-specific
macrophage activation due to potential LPS contamination of
rBAG3 preparations can be excluded, since pre-treatment with
polymyxin B did not affect BAG3-dependent IL-6 release
(Supplementary Fig. 1D).

These results were confirmed using primary monocytes from
the peripheral blood of healthy donors. Purified (498% CD14þ )
monocytes from four different donors appeared to release IL-6 on
incubation with rBAG3 (Fig. 2a). Moreover, we found that
conditioned medium from PDAC cells was effective in activating
human peripheral blood monocytes, as indicated by IL-6 release,
and that the addition of anti-BAG3 mAb to cell cultures
abrogated this effect on IL-6 production (Fig. 2b) and on
induction of IL-10 and iNOS (Fig. 2c). Similar results were
obtained using an F(ab’)2 fragment of the antibody (Fig. 2d),
further confirming antibody specificity.

Macrophages release factors that promote PDAC cell growth.
We assumed that BAG3-activated macrophages might release

Figure 1 | BAG3 is released from PDAC cells and activates macrophages. (a) PDAC total proteins (T) and proteins from supernatants (S) were

analysed by western blotting (WB) using an anti-BAG3 pAb. Anti-calnexin and anti-GAPDH were used as controls. (b) PDAC proteins: total (T),

from supernatants (S), from exosomes (E), extracellular (not associated to exosomes) (F), were analysed by WB using an anti-BAG3 pAb. Anti-Rab-4a was

used as exosomes marker. Anti-calnexin, anti-calregulin and anti-GAPDH were used as controls. (c) MIA PaCa-2 was analysed for BAG3 co-localization

with Rab7a by immunofluorescence; overlap coefficient (ImageJ software) was 0.8 (scale bar, 20mm). (d) MIA PaCa-2 was transplanted in the pancreas of

nude mice. The graph depicts mean (±s.e.m.) of tumour areas (measured by ultrasound imaging) at indicated times in three animals. Serum levels of

BAG3 were analysed from sera pooled from the three animals by WB using an anti-BAG3 mAb. rBAG3 was loaded as a control. (e) Sera from normal

pancreas, chronic pancreatitis and PDAC-carrying mice were immune-precipitated with an anti-BAG3 mAb. BAG3 was assessed by WB using the anti-

BAG3 pAb. (f) J774A.1 was incubated with FITC-conjugated rBAG3 and analysed by confocal microscopy. A rhodamine-conjugated anti-b-integrin mAb

was used as plasma membrane marker (scale bar, 20mm). (g) J774A.1 was incubated for 24 h with rBAG3 or BSA; nitrite release was measured in

supernatants using Griess reagent. Data are from duplicate samples and confirmed in two separate experiments. Error bars indicate s.d. (h) J774A.1 was

treated for 16 h with LPS, rBAG3 or BSA. Protein extracts were analysed by WB using the indicated antibodies. a-tubulin antibody was used as loading

control. (i) J774.A1 was treated with rBAG3 for the indicated times; then cell total RNA was extracted and IL-6 evaluated in the supernatants by ELISA test.

Data are from triplicate samples and repeated two times. Error bars indicate s.d. (l) J774A.1 cells were incubated with LPS, rBAG3 or BSA for 24 h in the

absence or presence of an anti-BAG3 mAb (320 mg ml� 1). Murine IgG1 were used as negative control. Supernatants were analysed with a mouse IL-6

ELISA Kit. Data are from duplicate samples and confirmed in two separate experiments. Error bars indicate s.d. (m) Cells were treated as described above

and nitrite release measured as described in g. Data are from duplicate samples and confirmed in two separate experiments. Error bars indicate s.d.

P values were calculated by Student’s t-test: ***Po0.001.
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factors that sustain PDAC tumour growth and metastasis
formation. Indeed, we found that proliferation of two different
human PDAC cell lines, MIA PaCa-2 and CFPAC-1,
was enhanced by addition of conditioned medium from

BAG3-activated monocytes cultures (Fig. 2e,f), but not by treat-
ment with rBAG3 (Fig. 2e,f no donor). As BAG3 does not
function in an autocrine manner, anti-BAG3 mAb treatment of
those cell lines did not alter their growth (Supplementary
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Fig. 2A,B). The stimulatory effect of the supernatants was not
proportional to their IL-6 content (Table 1), indicating that it was
not attributable exclusively to the effect of this cytokine. This
was confirmed by the fact that an anti-IL-6 receptor mAb

(Toclizumab), while antagonizing 480% the effect of rIL-6
(10 ng ml� 1) on MIA PaCa-2 cell proliferation, inhibited only
partially (o25%) the effect of the conditioned medium from
BAG3- stimulated monocytes (Fig. 2g and Table 2).
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Identification of BAG3 receptor. Since BAG3 binds to the
surface of monocytes/macrophages and activates them, we aimed
to identify the cell surface receptor for BAG3. For this, J774
macrophages were incubated with His-tagged recombinant BAG3
and subjected to plasma membrane fractionation, sequential
centrifugation, identification of BAG3-containing fractions
by western blotting, extraction of membrane proteins using
detergents and finally isolation of BAG3-containing complexes by
affinity chromatography on nickel-charged resin (Supplementary
Fig. 3A,B). Liquid chromatography–tandem mass spectrometry
(LC–MS/MS) analysis of BAG3-co-purified proteins identified
a small number of proteins. Among these, IFITM-2
(Supplementary Fig. 3C and Supplementary Table 1) was the only
transmembrane protein and therefore a potential candidate as a
cell surface receptor for BAG3. The binding between BAG3 and
IFITM-2 was also confirmed by co-immunoprecipitation
(Supplementary Fig. 3C). To confirm the role of IFTM-2 as BAG3
receptor, we analysed BAG3 binding and cell activation on
IFITM-2-silenced J774.A1 cells (Fig. 3a). Indeed, binding of

FITC-rBAG3 (Fig. 3b) and release of IL-6 (Fig. 3c) were both
inhibited by IFITM-2 silencing by 475%. We then investigated
the potential signalling pathways downstream of BAG3 binding
to IFITM-2 focusing on the PI3K (phosphatidylinositol 3-kinase)
and the p38 MAPK pathways known to be involved in COX-2,
iNOS and IL-6 induction in macrophages29–31. As shown in
Fig. 3d, treatment with rBAG3 results in phosphorylation of AKT
and p38. Phosphorylation of AKT was detectable earlier than p38
phosphorylation and more persistent. Furthermore the PI3K
inhibitor LY294002 and the p38 inhibitor SB203580 effectively
inhibited AKT and p38 phosphorylation (Fig. 3e), as well as IL-6
release (Fig. 3f). As shown in Fig. 3g, we confirmed that BAG3
signalling is mediated by IFITM-2 since its silencing abrogated
BAG3-induced phosphorylation of AKT and p38.

Since it is well-known that BAG3 binds to and cooperates with
Hsp70 (ref. 18), it is possible that the effects we observed are also
dependent on Hsp70 (ref. 19). However using a BAG3 mutant
(R480A)32 that no longer binds to Hsp70 or YM-1, a specific
inhibitor of the interaction between BAG3 and Hsp70 (ref. 33),
we were able to demonstrate that indeed BAG3 binding to
macrophages and their consequent activation do not require
the interaction between BAG3 and Hsp70 (Supplementary
Figs 4 and 5).

Effect of BAG3 blocking on tumour growth and metastasis.
Finally, we tested if neutralization of PDAC-released BAG3 by an
anti- BAG3 mAb also impairs tumour growth and metastatic
spreading in vivo. To this end, we established a patient-derived
xenograft (PDX) model of PDAC. As shown in Fig. 4a (and
Supplementary Fig. 6A), mice transplanted with the PDX, treated
with the anti-BAG3 mAb administered every 48 h, showed a
significant delay of the growth of xenografted tumours
compared with the control group. Similar results were obtained
while treating with the anti-BAG3 mAb, a graft obtained by s.c.
injection of a murine Kras-driven pancreatic cancer cell
line (mt4-2D)34 in C57BL6 syngeneic mice (Fig. 4b and
Supplementary Fig. 6B), showing that the antibody is effective
also in the presence of a fully developed immune system. We next
investigated the effect of anti-BAG3 mAb treatment with the
same dosage and administration schedule described above in an
orthotopic PDAC model. In this model, MIA PaCa-2 cells were
grafted into the pancreas of nude mice. This model has the
advantage of resulting in the metastatic spreading of the primary
tumour. In this model, treatment with anti-BAG3, but not with a
control IgG, resulted in highly (470%) reduced tumour volumes
(Fig. 4c) and in complete prevention of metastatic spreading
(Table 3). The anti-BAG3 mAb we used in our experiments

Table 1 | IL-6 contents in LPS and BAG3-stimulated
monocytes.

IL-6 (ng ml� 1)

Control LPS
(10 ng ml� 1)

LPS
(100 ng ml� 1)

rBAG3
(6 lg ml� 1)

Donor 1 1.6 2.8 3.8 3.6
Donor 2 2.0 2.6 5.0 5.4
Donor 3 10.5 12.5 12.6 17.0
Donor 4 6.9 7.8 5.9 9.0
Donor 5 4.7 8.2 8.3 8.1

IL-6, interleukin-6; LPS, lipopolysaccharide; BAG3, recombinant Bcl-2-associated athanogene 3.

Table 2 | Percentage of PDAC cell growth inhibition by
Tocilizumab.

% of cell growth inhibition (±s.d.)*

Tocilizumab Human IgG

rIL-6 82±6.2 7±2.4
rBAG3 stimulated donor 4 22±6.2 0±0.0
rBAG3 stimulated donor 5 9±0.8 0±0.0

PDAC, pancreatic ductal adenocarcinoma; rBAG3, recombinant Bcl-2-associated athanogene 3;
rIL-6, recombinant interleukin-6.
*Data are from duplicate samples.

Figure 2 | PDAC cell supernatants activate macrophages that in turn secrete molecules that promote PDAC cells proliferation. (a) Isolated human

monocytes (498% CD14þ ) were treated with LPS or rBAG3 for 16 h. Then, supernatants were analysed with human IL-6 ELISA. Data are from duplicate

samples and obtained in two separate experiments. Error bars indicate s.d. (b) Isolated human monocytes (498% CD14þ ) were cultured in RPMI

supplemented with 0.15% FBS (control medium) or in MIA PaCa-2-conditioned medium and treated for 16 h with an anti-BAG3 monoclonal antibody at the

indicated concentrations. Unrelated murine IgG1 were used as negative control. After treatment, supernatants were collected and analysed with a human

IL-6 ELISA Kit. Data are from triplicate samples and obtained in two separate experiments. Error bars indicate s.d. (c) Cells were treated as described above.

Cells were then harvested for total RNA extraction and analysed by reverse transcription–PCR (RT–PCR). (d) Isolated human monocytes were cultured in

RPMI supplemented with 0.15% FBS (control medium) or in MIA PaCa-2-conditioned medium, and treated with the F(ab’)2 fragment of an anti-BAG3

monoclonal antibody. F(ab’)2 fragments of a non-specific murine IgG1 were used as negative control. After treatment, supernatants were collected and

analysed with a human IL-6 ELISA Kit. Data are from duplicate samples and repeated two times. Error bars indicate s.d. (e) MIA PaCa-2 and CFPAC-1

(f) cells were cultured in DMEM supplemented with 0.15% FBS (no donor) or conditioned medium from monocytes treated with LPS or rBAG3 for 16 h at

the indicated concentrations. After 72 h incubation, cells were analysed by MTT assay. Data are from duplicate samples. Error bars indicate s.d.

(g) MIA PaCa-2 cells were incubated with human recombinant (r) IL-6 (10 ng ml� 1) or conditioned medium from donor 4 or donor 5 monocytes

stimulated with rBAG3 (6 mg ml� 1) for 16 h. An anti-IL-6 receptor monoclonal antibody (20mg ml� 1) was added to inhibit IL-6 activity. After a 72-h

incubation, cells were analysed by MTT assay. Data are from duplicate samples. Error bars indicate s.d. P values were calculated by Student’s t-test

and represented as follows: *Po0.0540.01; **Po0.0140.001; ***Po0.001.
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appears to bind also murine BAG3 as shown by
immunoprecipitation and staining of mouse heart tissue
(Supplementary Fig. 6C,D). Importantly, no loss of weight
(data not shown) or anatomical changes in main organs
(Supplementary Fig. 6E) was observed in the group of animals
treated with the anti-BAG3 mAb, excluding unwanted toxic
effects. In accordance with our proposed mechanism-of-action, a
comparison of tumour biopsies from anti-BAG3 mAb-treated or
control animals showed a significant reduction in the number of

stromal macrophages in the BAG3 mAb-treated group (Fig. 4d,e),
confirming the capacity of the mAb to modulate monocyte/
macrophage activation and infiltration of tumour stroma.
Furthermore, analysis of macrophage infiltration in nine
patients with stage 3 PDAC indicates a significant correlation
between BAG3 expression and the number of infiltrating
macrophages (Fig. 4f,g). Finally the impact of depleting secreted
BAG3 in PDAC tumours is also reflected in a general decrease of
macrophage-released cytokines (Fig. 4h).
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Figure 3 | IFTM-2 acts as a BAG3 receptor. (a) J774.A1 were plated in 24-well plates at 40% confluence. After 24 h, cells were transfected with an

IFITM-2-specific siRNA (si-IFITM-2); a non-targeted (NT) siRNA was used as a control. After 48 h, cells were harvested and total cell extracts were

analysed by WB with an anti-IFITM-2 polyclonal antibody; an anti-GAPDH antibody was used as a loading control. (b) J774.A1 were transfected as

described above. After 48 h, cells were harvested, stained with FITC-conjugated rBAG3 and analysed by flow cytometry. Data are from triplicate samples

and confirmed in three separate experiments. Error bars indicate s.d. (c) J774.A1 were transfected as described above. After 16 h of stimulation with rBAG3,

IL-6 content was analysed in supernatants by ELISA. Data are from triplicate samples and confirmed in three separate experiments. Error bars indicate s.d.

(d) J774.A1 cells were treated with rBAG3 (6mg ml� 1) and cells harvested at the indicated time points. Cell extracts were analysed by western blotting

using anti-phospho-AKT and anti-phospho-p38 polyclonal antibodies; anti-GAPDH was used as a loading control. (e) J774.A1 cells were incubated for

30 min with the PI3K (LY294002) or p38 (SB203580) inhibitors, then rBAG3 (6 mg ml� 1) was added for additional 8 h to the cultures. Proteins were

analysed by WB using anti-phospho-AKT and anti-phospho-p38 polyclonal antibodies; anti-GAPDH was used as a loading control. (f) J774.A1 cells were

incubated for 30 min with the PI3K (LY294002) or p38 (SB203580) inhibitors, then rBAG3 was added for additional 16 h to the cultures. IL-6 content in

supernatants was analysed by ELISA. Data are from duplicate samples and repeated three times. Error bars indicate s.d. (g) J774.A1 were transfected with

si-IFITM-2, a non-targeted (NT) siRNA was used as a control. Cells were incubated with rBAG3 (6 mg ml� 1) for 16 h, then total protein extracts were

analysed by WB with the indicated antibodies. P values were calculated by Student’s t-test and represented as follows: **Po0.0140.001; ***Po0.001.
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Discussion
It is well-known that inflammation plays a pivotal role in tumour
initiation, promotion, development and metastasis35, in part
through the action of secreted cytokines. This link between
inflammation and cancer has extensively been shown also for
PDAC. Indeed, PDAC growth and metastatic spreading appears
to require the activity of a number of factors expressed in the
tumour stroma, such as TGF-b, IL-6, CTGF (Connective Tissue
Growth Factor), midkine, IGF-1 (Insulin-Like Growth Factor 1),
IL-17 and others26–28,36–44; moreover these in turn activate
stromal and infiltrating cells26–28,42–44. We have now identified a
novel BAG3-mediated paracrine loop involving activation of
macrophages and possibly other micro-environmental cells that
support PDAC development and metastasis formation. Our
in vivo experiments strongly support the tumour promoting effect
of circulating BAG3 via modulating macrophage responses. The
results obtained with the use of a syngeneic mice model suggests
that this role is also exerted in the presence of a fully developed
immune system. Additional studies, however, are required to fully
dissect the effect of BAG3 in immune-competent mice. Though
immune cells can execute anti-tumour responses, they are
frequently educated by the tumour cells to become immune
suppressors (for example, myeloid-derived suppressor cells and
regulatory T cells). It is tempting to speculate an implication of
BAG3 in the immune escape of pancreatic tumour cells.

We here report that through the release of BAG3, PDAC cells
stimulate macrophage activation and the release of cancer
cell-sustaining factors. Analogous paracrine interactions were
described for other tumours, for instance, Lewis Lung Carcinoma
cells secrete a proteoglycan, versican, that activates macrophages
through Toll like receptors45. Similarly on irradiation, melanoma
cells release soluble factors that induce an inflammatory response
that promotes tumour regrowth46.

Notably, we could identify the receptor that mediates BAG3
activation of macrophages: IFITM-2 that belongs to a recently
discovered family of proteins47. IFITM-2 is required for BAG3
binding and signalling, as its silencing results in almost complete
abrogation of BAG3 binding to the macrophage surface and their
activation via AKT and p38 phosphorylation. Importantly
blocking this paracrine loop with an anti-BAG3 antibody
results in reduced tumour growth and metastatic spreading.
Our results suggest that this pathway is a potential target for
designing novel therapeutic approaches against this deadly
disease. Moreover since several other cancer types express
intracellular BAG3 (refs 20,21), they might also release it to the
extracellular environment, extending the potential of the
therapeutic use of BAG3-blocking antibody. Finally the fact that
we are interfering with secreted BAG3 and not the intracellular
one suggests that this approach should not be toxic for those
tissues such as heart and muscle in which this protein is essential.
This is confirmed by our preliminary results in mice.

Methods
Cell cultures. The murine macrophage cell line J774.A1 was purchased from the
American Type Culture Collection (ATCC, Manassas, VA, USA) and cells were
cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10%
heat-inactivated foetal bovine serum (GIBCO, Life Technologies, Grand Island,
NY, USA), penicillin and streptomycin (P/S, 100 U ml� 1) (Lonza, Walkersville,
MD, USA), L-glutamine (2 mM) (Lonza) and sodium pyruvate (1 mM)
(EuroClone, MI, Italy). The human pancreatic cancer cell lines BxPC3, CFPAC-1,
HPAF-2, PANC-1 and MIA PaCa-2 were obtained from ATCC. On receipt, each
cell line was expanded, cryopreserved as low-passage stocks and tested routinely for
mycoplasma immediately before use in an experiment. BxPC3 cell lines were
cultured in RPMI-1640 (EuroClone) medium supplemented with 10% FBS and
1% P/S. HPAF-II were cultured in Eagle’s Minimum Essential Medium (Lonza)
supplemented with 10% FBS and 1% P/S. CFPAC-1 cell lines were cultured in
Iscove’s Modified Dulbecco’s Medium (Gibco). PANC-1 and MIA PaCa-2 were
cultured in DMEM medium containing 10% FBS and 1% P/S; 2.5% of horse serum

(Gibco) was added in MIA PaCa-2 culturing medium. Human peripheral blood
mononuclear cells were isolated by Lymphocyte Separation Medium (17-829F,
Lonza) density gradient centrifugation. Monocytes (498% CD14þ ) were isolated
using the Monocyte Isolation Kit II (Miltenyi Biotec, Miltenyi Biotec S.r.l., BO,
Italy) according to the manufacturer’s protocol and cultured in RPMI-1640
medium supplemented with 10% FBS and 1% P/S. All cell lines were grown at
37 �C in a 5% CO2 atmosphere.

Isolation of exosomes from cell culture supernatants. PANC-1 cells
(6.5� 105 cm� 2) were incubated for 16 h in DMEM medium without FBS.
Conditioned medium was collected and centrifuged for 20 min at 2,000g at 4 �C;
the supernatant was transferred and centrifuged 30 min at 10,000g at 4 �C to
remove cellular debris. The supernatant was then transferred to ultracentrifuge
tubes and centrifuged for 60 min at 100,000g at 4 �C; the obtained pellet was
washed in PBS and centrifuged for 60 min at 100,000g at 4 �C and used to
determine exosomes protein content. Supernatants were precipitated using acetone
and used to determine protein contents in supernatants depleted of vesicles.

Measurement of NO2
� in supernatants. NO2

� amounts were measured by
Griess reaction. Briefly, 100 ml of cell culture medium were mixed with 100 ml
of Griess reagent and incubated at room temperature for 10 min. Then, the
absorbance at 550 nm was measured in a Titertek microplate reader (Dasit,
Cornaredo, Milan, Italy). The amount of NO2

� (as mM) in the samples was
calculated from a sodium nitrite standard curve.

Antibodies. Anti-BAG3 rabbit pAb (polyclonal Antibody) and murine mAbs
(monoclonal Antibodies) and their F(ab’)2 fragments were obtained from
BIOUNIVERSA s.r.l., SA, Italy. The rabbit polyclonal anti-BAG3 was raised against
the full-length BAG3 recombinant protein and used for western blotting at a
1:10,000 dilution. The anti-BAG3 murine mAb used in in vitro and in vivo studies
specifically interacts with a portion of BAG3 protein (from aa 385 to aa 399) not
overlapping the BAG domain. This was produced in endotoxin-free conditions by
Nanotools (Teningen, DE), as well as control unrelated murine IgGs. The anti-
BAG3 monoclonal murine clone AC-1 used for stainings specifically interacts with
the BAG3 region from aa 18 to aa 33. Anti-GAPDH (6C5) antibody (sc-32233,
1:5,000), anti-phospho-p38 antibody (sc-17852-R, 1:1,000), anti-calnexin (H-70)
antibody (sc-11398, 1:1,000), anti-Rab-4a (D-20) antibody (sc-312, 1:1,000) and
anti-b-integrin-PE antibody (sc-13590, 1:200) were provided by Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Anti-phospho-Akt antibody (9271, 1:1,000)
was provided by Cell Signaling (Boston, MA, USA). Anti-iNOS (610431, 1:5,000)
and anti-COX-2 (610203, 1:5,000) antibodies were provided by BD Transduction
Laboratories (San Diego, CA, USA). Human IgGs (I2511, 320 mg ml� 1) and mouse
IgG1s (ABIN125733, 320 mg ml� 1) were provided by Sigma-Aldrich (St Louis,
MO, USA) and Gmbh (Aachen, Germany), respectively. The anti-IL-6 receptor
mAb Tocilizumab (20 mg ml� 1) was purchased from Hoffmann-La Roche
(Germany). The anti-IFITM-2 antibody (12769-1-AP, 1:1,000) was purchased from
Proteintech (Chicago, IL, USA). DyLight 488-conjugated anti-rabbit IgG antibodies
(1:500), 594-conjugated goat anti-mouse antibodies (1:500), mouse IgG F(ab’)2

fragment (015-000-006, 320 mg ml� 1) and peroxidase-conjugated secondary
antibodies (1:5,000) were purchased from Jackson immunoresearch Laboratories
(Baltimore, PA, USA).

Chemicals and reagents. MTT ([3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide]) (M2128), LPS (LPS from Escherichia Coli 0111:B4) (L4391),
Polymyxin B sulphate (P0972), FluoroTag FITC conjugation kit (FITC1-1KT) and
BSA (albumin from bovine serum) (A9418) were purchased from Sigma-Aldrich.
Mouse IL-6 ELISA (88-7064-88) and Human IL-6 ELISA (88-7066-88) kits were
provided by eBioscience (San Diego, CA, USA). Recombinant (r) BAG3 was
produced as referenced in ref. 48. The PI3K inhibitor (PI3Ki) LY294002 and the
p38 inhibitor (MAPKi) SB203580 were purchased from Calbiochem (Darmstadt,
Germany). Monocyte Isolation Kit II (130-091-153) was purchased from Miltenyi
Biotec S.r.l. (Bergisch Gladbach, Germany). Lymphocyte Separation Medium was
obtained from Lonza.

Cell transfections. Cells were transfected with IFITM-2-specific siRNA
(si-IFITM-2) (Santa Cruz, CA, USA) or with a non-targeted (NT) siRNA (Santa
Cruz, CA, USA) as a control, by using Transfectin (Bio-Rad, Hercules, CA, USA).

Reverse transcription–PCR. RNA extraction was performed in phenol/
chloroform (5:1) followed by overnight isopropanol precipitation. RNA was then
pelleted by centrifugation at 15,000g for 30 min., washed two times with 70%
ethanol and centrifuged at 15,000g for 30 min each time. Pellets were air-dried and
resuspended in 30ml of RNase-free water. One microgram of RNA was reverse-
transcribed using the QuantiTect Reverse Transcription kit (205310, QIAGEN,
Hilden, Germany) according to manufacturer’s protocols. About 2 ml of the
obtained complementary DNA were amplified in a total reaction volume of 20 ml.
Complementary DNAs were analysed by PCR using HotStarTaq Master Mix
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(Qiagen), 0.6 mM primers (IL-6: forward (FW) 50-CACGGCCTTCCCTACTT
CAC-30, reverse (RW) 50-TGCAAGTGCATCATCGTTGT-30 ; IL-10: FW 50-TGA
TGCCCCAAGCTGAGAAC-30, RW 50-GCATTCTTCACCTGCTCCAC-30 ;
COX-2: FW 50-ATCTACCCTCCTCAAGTCCC-30 , RW 50-AACAACTGCTCAT
CACCCC-30 ; iNOS: FW 50-ATTCCCAGCCCAACAACAC-30 , RW 50-TGAAAA
ATCTCTCCATTGCCC-30) and RNase-free water. PCR products were detected by

electrophoresis in 2% agarose gel (Sigma-Aldrich) and ethidium bromide staining.
Uncropped blots and gels are shown in Supplementary Figs 7 and 8.

Western blot. Cells were harvested and lysed in a buffer containing 20 mM
HEPES (pH 7.5), 150 mM NaCl, 0.1% Triton (TNN buffer) supplemented
with a protease inhibitors cocktail (Sigma) and subjected to three cycles of
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freezing–thawing. Lysates were then centrifuged for 20 min at 15,000g and stored at
� 80 �C. Protein amount was determined by Bradford assay (Bio-Rad, Hercules,
CA) and 30 mg of total protein were separated on 10% SDS–PAGE gels and
electrophoretically transferred to nitrocellulose membrane. Nitrocellulose blots
were blocked with 10% nonfat dry milk in TBST buffer (20 mM Tris-HCl at pH 7.4,
500 mM NaCl and 0.01% Tween), and incubated with primary antibodies (used at
1:1,000 dilution) in TBST containing 5% nonfat dry milk overnight at 4 �C.
Immunoreactivity was detected by sequential incubation with horseradish
peroxidase-conjugated secondary antibodies (used at 1:5,000 dilution) and ECL
detection reagents (Amersham Life Sciences Inc., Arlington Heights, IL, USA).
Signal detection was performed using ImageQuant LAS 4000 (GE Healthcare,
USA). Densitometry of bands was performed with ImageJ software (NIH, USA).
The area under the curves, each relative to a band, was determined and the
background was subtracted from the calculated values. Uncropped blots and gels
are shown in Supplementary Figs 7 and 8.

Animal studies. The research protocol was approved by the Ethics Committee of
National Cancer Institute G. Pascale Foundation–IRCCS of Naples, in accordance
with the institutional guidelines of the Italian Ministry of Health, protocol n. 49546.
Informed consent for the use of human specimens was approved by the
‘S.S. Annunziata’ Hospital Ethical Committee and obtained for all patients for this
study. Sample size was chosen to ensure adequate and statistically significant
results. Female CD1 nu/nu mice (6-week-old; Harlan Laboratories, Italy) were
housed five per cage with food and water available ad libitum and maintained on a
12-h light/dark cycle under standard and specific pathogen-free conditions. Mice
were acclimatized for 1 week before receiving injection of cancer cells. A total of
20 mice were used in this experiment and maintained in a barrier facility on
HEPA-filtered racks. Animals were individually identified using numbered ear tags.
All experiments were conducted in a biological laminar flow hood, and all surgical
procedures were conducted with strict adherence to aseptic techniques. The mice
were anesthetized using isoflurane. For injecting cancer cells, mice were prepped
with 10% povidone-iodine. A longitudinal median laparotomy with a xipho-pubic
incision was made, and the tail of the pancreas exteriorized gently. MIA PaCa-2
cells (1� 106) were suspended in 40ml of PBS 1� in a 1 ml syringe. Using a 25G
needle, cells were injected into the tail of the pancreas and the injection point
dubbed with sterile cotton. Once homeostasis was confirmed, the tail of the
pancreas was returned into the abdomen and the wound was closed as a single
layer using interrupted 5.0 silk sutures and skin staples. Three weeks after cell
injection, tumour area was assessed using Vevo 2100 (Visualsonics, Canada) under
anaesthesia. Mice were randomized into two groups in which tumour area average
was B20 mm2: the control group received i.p. injection of 20 mg kg� 1 of control
mouse IgGs while the experimental group received 20 mg kg� 1 of the murine
anti-BAG3 mAb. Mice were treated every 48 h. At the end of the experiment
animals were killed, and tumour and serum samples were collected for further
analysis. For PDX model, fresh surgical human pancreatic carcinoma specimen was
obtained from a patient who had undergone pancreatic resection at the Chieti

University Hospital. Excess tumour tissue, not needed for clinical diagnosis was cut
into 3–5 mm3 pieces in antibiotic-containing RPMI medium and then washed in
cold sterile PBS. Pieces of non-necrotic tissue were selected and implanted in
7-week-old female NOD/ SCID mice into an s.c. pocket made by a small incision in
the right flank of four animals. Tumour growth was monitored once per week by
palpation. Once tumours reached a volume of about 500 mm3, explanted tumour
specimens were cut and transplanted as described above into nuþ /nuþ female
mice to generate F0 cohort. The F0 tumours were then used to generate an F1
cohort, which was used for anti-BAG3 mAb studies. Initially, 15 mice were used for
F1 tumour expansion. Mice were divided in two arms consisting of six mice each in
which tumour volume average was B100 mm3. One group received i.p. injection
every 48 h of 20 mg kg� 1 anti-BAG3 mAb in PBS, whereas the other received PBS
only (control group). Animals were weighted and tumour volume was measured by
caliper twice weekly. Tumour volume is expressed in mm3 as calculating using the
formula D� d2/2 were D is the longer diameter and d is the shorter diameter.
At the end of the experiment animals were killed, and tumour and serum samples
were collected for further analysis. For syngeneic model, mt4-2D murine cells
(0.25� 106) were suspended in a solution 1:1 PBS 1� /matrigel and injected into
the right flank of female C57BL6 mice (6-week-old; Harlan Laboratories). After
10 days, mice were divided in 2 arms consisting of 10 mice each in which tumour
volume average was B100 mm3. One group received i.p. injection every 48 h of
20 mg kg� 1 anti-BAG3 mAb in PBS, whereas the other received unrelated IgGs for
4 weeks. Animals were weighted and tumour volume was measured by caliper
twice weekly. Serum samples from Ikkalpha f/f mice were kindly provided by
Prof. Karin M. lab. Normal pancreas sera were from mice on normal diet of age 18
months; chronic pancreatitis sera were from Pdk-cre; Ikkalpha f/f at same age and
same diets of normal controls. PDAC serum samples were collected from Pdx-Cre;
KrasG12D; Ikkalpha f/f at the age of 4 months when tumour was already very
advanced.

Immunoprecipitation from mice sera. Blood samples were collected from the
right retroorbital plexus of anesthetized mice. For immunoprecipitation of BAG3
protein from mice sera the anti-BAG3 mAb AC-1 was coupled to Dynabeads
(Invitrogen) following the manufacturer’s instructions. About 60 ml of mouse sera
were immunoprecipitated at 4 �C overnight and then analysed by western blot
using a rabbit anti-BAG3 polyclonal primary antibody.

Immunofluorescence. For paraffin-embedded sections, immunofluorescence
protocol included deparaffination in Clear-Rite 3 (ThermoScientific, Waltham,
MA, USA) rehydration through descending degrees of alcohol up to water,
non-enzymatic antigen retrieval in sodium citrate buffer 10 mM, 0.05% Tween,
pH 6.0, for 3 min in microwave at 700 W. After washing, non-specific binding
was blocked with 1% FBS in PBS 1� . Sections were then incubated with several
primary antibodies: anti-F4/80 and anti-CD68 polyclonal antibodies obtained from
Abcam (Cambridge, U.K. at 1:200) and anti-BAG3 monoclonal antibodies
(BIOUNIVERSA s.r.l. at 1:240), overnight at 4 �C in a humidified chamber.
After another washing step, sections were incubated with the secondary antibodies.
Nuclei were counterstained with 1 mg ml� 1 Hoechst 33342 (Molecular Probes,
Oregon, USA). Negative controls were performed using all reagents except the
primary antibody. For cell cultures, cells were cultured on coverslips in six-well
plates to 60–70% confluence; after 16 h, coverslips were washed in 1� PBS and
fixed in 3.7% formaldehyde in PBS 1� for 30 min at room temperature, and then
incubated for 5 min with PBS 1� /0.1 M glycine. After washing, coverslips were
permeabilized with 0.1% Triton X-100 for 5 min, washed again and incubated
with blocking solution (10% normal goat serum in PBS 1� ) for 1 h at room
temperature. Following incubation at 4 �C overnight with 3 mg ml� 1 of RAB7a
polyclonal antibody and 3 mg ml� 1 of anti-BAG3 mouse monoclonal antibody

Figure 4 | Anti-BAG3 mAb affects PDAC tumour growth and metastatic spreading. (a) In vivo response of a PDX tumour to treatment with vehicle (PBS)

or anti-BAG3 mAb. Tumour volume was assessed by caliper. Results are expressed as mean fold change (±s.e.m.). (b) In vivo response of a syngeneic

tumour (mt4-2D murine cells injected into C57BL6 mice) to treatment with control unrelated IgGs or anti-BAG3 mAb. Tumour volume was assessed by

caliper. Results are expressed as mean fold change (±s.e.m.). (c) MIA PaCa-2 were transplanted orthotopically in the pancreas of nude mice. After tumour

establishment, monitored by ultrasound imaging, animals were treated with control unrelated IgGs or anti-BAG3 mAb. Box-and-whisker graph depicts

tumour volumes measured using an automated caliper ex vivo at the end of the experiment. The horizontal line represents the mean while whiskers s.d.

(d) Tumour specimens were analysed by immunofluorescence using anti-F4/80. Relative fluorescence area of F4/80-positive cells was calculated as ratio

to DAPI staining using ImageJ software from at least three images from � 10 field magnification. Error bars indicate s.d. (e) Representative images from the

experiment described above (scale bar, 50mm). (f) Samples from nine patients with stage 3 PDAC were stained with BAG3 and CD68. High BAG3

positivity was assigned when 450% of neoplastic cells were found positive, while with less we assigned a low positivity. Representative images from

the two groups are shown (scale bar, 5 mm). (g) Box-and-whisker graph showing the number of macrophages into the two groups obtained by counting

CD68-positive cells in at least five fields per patient sample. The horizontal line represents the mean while whiskers s.d. (h) Tumours from 6 anti-BAG3

mAb-treated mice and 5 control IgG-treated mice were analysed for cytokine contents using Myriad RBM Mouse Inflammation MAP v. 1.0 array. The graph

depicts cytokines’ fold change of anti-BAG3 mAb- with respect to IgG-treated tumours (±s.e.m.). The red dashed line represents the mean concentration

of each cytokine in IgG-treated samples that was set equal to 1. Some cytokines from the panel were excluded since undetectable in our samples. P values

were calculated by Student’s t-test and represented as following: *Po0.0540.01; **Po0.0140.001; ***Po0.001.

Table 3 | Peritoneal metastasis inhibition by anti-BAG3 mAb.

Animals without
peritoneal metastasis

Animals with
peritoneal metastasis

Control 4 5
Anti-BAG3 mAb 7 0

BAG3, recombinant Bcl-2-associated athanogene 3; mAb, monoclonal antibody.
P¼0.03 calculated with Fisher’s exact test for 2� 2 contigency table.
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AC-1, coverslips were washed three times with PBS 1� . After incubation with
secondary antibodies at room temperature for 45 min, coverslips were again
washed three times in PBS and then in distilled water. The coverslips were then
mounted on a slide with interspaces containing moviol. Samples were analysed
using a confocal laser scanning microscope (Leica SP5, Leica Microsystems,
Wetzlar, Germany). Images were acquired in sequential scan mode by using the
same acquisitions parameters (laser intensities, gain photomultipliers, pinhole
aperture, objective � 63, zoom 2) when comparing experimental and control
material. For figure preparation, brightness and contrast of images were adjusted
by taking care to leave a light cellular fluorescence background for visual
appreciation of the lowest fluorescence intensity features and to help comparison
among the different experimental groups. Final figures were assembled using
Adobe Photoshop 7 and Adobe Illustrator 10. Leica Confocal Software and ImageJ
were used for data analysis.

Immunohistochemistry. Four-micron-thick sections of each tissue, mounted on
poly-L-lysine-coated glass slides, were analysed by immunohistochemistry (IHC)
using the anti-BAG3 mAb AC-2 (BIOUNIVERSA s.r.l.). IHC protocol included
deparaffination in Clear-Rite 3, rehydration through descending degrees of alcohol
up to water, incubation with 3% hydrogen peroxidase for 5 min to inactivate
endogenous peroxidases, non-enzymatic antigen retrieval in EDTA at pH 8.0 for
30 min at 95 �C. After rinsing with phosphate-buffered saline (PBS 1� ), samples
were blocked with 5% foetal bovine serum in 0.1% PBS/BSA and then incubated for
1 h at room temperature with the mAb in saturating conditions. The standard
streptavidin–biotin linked horseradish peroxidase technique was then performed,
and 3,30-diaminobenzidine was used as a substrate chromogen solution for the
development of peroxidase activity. Finally, the sections were counterstained with
haematoxylin; slides were then coverslipped using a synthetic mounting medium.

Cytokines determination. Five tumours from anti-BAG3 mAb-treated mice and
six tumours from control IgG-treated mice were collected, weighed and added to
9� volume of lysis buffer (50 mM Tris-HCL with 2 mM EDTA, pH 7.4) to which
protease and phosphatase inhibitors were added. Tissues were processed by a
Potter-Elvehjem homogenizer. Following homogenization, lysates were centrifuged
for 2 min in a microfuge at 13,000g. Each sample was analysed using Myriad RBM
Mouse Inflammation MAP v. 1.0 array (Austin, TX, USA).

Identification of IFITM-2 as receptor for BAG3. Murine J774.A1 macrophages
were incubated with His-tagged recombinant rBAG3, mechanically lysed and
subjected to membrane fractionation. Plasma membrane proteins were natively
solubilized using 1% CALX173ACE Calixar molecule and His-tagged rBAG3
containing complexes were pulled down by affinity chromatography. Protein
sample was precipitated by 20% trichloroacetic acid and resuspended with 25 mM
(NH4)HCO3, 2% sodium deoxycholate, pH 8.0, prior to the trypsic digestion. After
sodium deoxycholate removal by trifluoroacetic acid precipitation, samples were
analysed by LC–MS/MS, identifying IFITM-2 as a potential receptor for BAG3. In
detail, digested samples were preconcentrated using an Acclaim PepMap100 C18
capillary-column (5mm, 100 Å, 300mm� 5 cm, Dionex, Courtaboeuf, France) with
98/2 H2O/ACN, 0.05% TFA buffer. Peptides separation were then carried out using
an Acclaim PepMap100 C18 nano-column (3 mm, 100 Å, 75 mm� 15 cm, Dionex)
with 10/80 H2O/ACN, 0.1% formic acid buffer. MS/MS were performed with a
LTQ Velos linear ion trap mass spectrometer (Thermo Scientific). Data were
analysed with ProteomeDiscoverer 1.1 software (MASCOT algorithm, v2.2.4) using
the SwissProt database (UniprotKB, v12/2012) with the following criteria: enzyme:
trypsin; max missed cleavage: 2; FDR: 0.01 and 0.05; precursor mass tolerance:
0,4 Da; fragment mass tolerance: 0,4 Da; dynamic modification: oxidation (M)
et deamidated (NQ); Static modification: carbamidomethyl (C).

J774.A1 macrophages not incubated with rBAG3 served as negative control.
To validate IFITM-2 as a receptor of BAG3, murine J774.A1 macrophages were
incubated with His-tagged recombinant rBAG3. After mechanical cell lysis and
membrane fractionation by sequential centrifugations, plasma membrane
complexes were natively extracted with 1% CALX173ACE Calixar molecule.
Partners interacting with IFITM-2 were co-immunoprecipitated by immuno-
affinity chromatography using an anti-IFITM-2 agarose resin. Interactions of
IFITM-2 with rBAG3 were monitored by western blot. J774.A1 macrophages not
incubated with rBAG3 served as a negative control.

Statistical analysis. Results are expressed as mean±s.d. or ±s.e.m. Data were
analysed by Student’s t-test using MedCalc statistical software version 13.3.3
(Ostend, Belgium). P values from 0.01 to 0.05, from 0.001 to 0.01 oro0.001
were considered significant (*), very significant (**) or highly significant (***),
respectively.
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