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Abstract

Background

Epidermal Growth Factor Receptor (EGFR) molecular analysis is performed to assess the

responsiveness to Tyrosine Kinase Inhibitors (TKIs) in patients with Non-Small Cell Lung

Cancer (NSCLC). The existence of molecular intra-tumoral heterogeneity has been

observed in lung cancers. The aim of the present study is to investigate if the percentage of

mutated neoplastic cells within the tumor sample might influence the responsiveness to

TKIs treatment.

Material and methods

A total of 931 cases of NSCLC were analyzed for EGFR mutational status (exon 18, 19, 20,

21) using Next Generation Sequencer. The percentage of mutated neoplastic cells was cal-

culated after normalizing the percentage of mutated alleles obtained after next generation

sequencer analysis with the percentage of neoplastic cells in each tumor.

Results

Next generation sequencing revealed an EGFR mutation in 167 samples (17.9%), mainly

deletions in exon 19. In 18 patients treated with TKIs and with available follow-up, there was

a significant correlation between the percentage of mutated neoplastic cells and the clinical

response (P = 0.017). Patients with a percentage of mutated neoplastic cells greater than
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56%, have a statistical trend (P = 0.081) for higher Overall Survival (26.3 months) when

compared to those with a rate of mutated neoplastic cells lower than 56% (8.2 months).

Conclusions

The percentage of EGFR-mutated neoplastic cells in the tumor is associated with response

to TKIs. A “quantitative result” of EGFR mutational status might provide useful information in

order to recognize those patients which might have the greatest benefit from TKIs.

Introduction

The adenocarcinoma tumor subtype accounts for about the 40% of all Non-Small Cell Lung

Cancer (NSCLC) [1]. Molecular tests, such as analysis of Epidermal Growth Factor Receptor

(EGFR) mutations (exons 18, 19, 20, 21) and Anaplastic Lymphoma Kinase (ALK) fusion gene,

are prescribed in non-squamous NSCLC to determine the responsiveness to Tyrosine Kinase

Inhibitors (TKIs) or ALK inhibitors, respectively [2]. EGFR mutations are approximately pres-

ent in 10% of lung adenocarcinoma in Caucasian population [3–12] and TKIs based therapy is

strongly recommended as first-line treatment in presence of these gene markers [13–22].

For this reason, EGFR mutations are crucial biomarkers to select patients for TKIs based

treatment, and guidelines for molecular diagnosis have been outlined by oncologic societies

both in Europe and in the United States [2, 23]. The greater part of all activating mutations

that confer sensitivity to TKI (up to 80–90%) are either deletions in EGFR exon 19 or the p.

L858R mutation (exon 21), but a variety of activating EGFR mutations can also occur (e.g.

p.G719X in exon 18) [23].

Patients with non-squamous NSCLC harboring EGFR activating mutations or clinical fea-

tures that suggest their presence, have been enrolled in randomized clinical trials where TKIs

were compared to platinum-based chemotherapy in first-line treatment settings: results have

clearly shown that TKIs improve prognosis and quality of life of patients when compared to

traditional chemotherapy [13–18].

In spite of the high clinical evidence to employ TKIs (afatinib, erlotinib and gefitinib) in the

early phases of the treatment of patients with advanced NSCLC harboring sensitive mutations,

the duration of the clinical response is variable, and about 20% of patients undergoes tumor

progression during TKI therapy. Well known explanations for this “resistance” are: i) molecu-

lar alterations in genes other than EGFR (e.g additional mutations downstream of EGFR along

the MAPK/Kinase pathway) [24]; ii) mutations of EGFR conferring resistance (e.g EGFR
p.T790M) [25]. An additional explanation may be the EGFR mutation heterogeneity within

the tumor [22]. In this last instance, assessment of EGFR mutation heterogeneity in NSCLC

may recognize those patients with EGFR mutations that might benefit most from TKI therapy.

Next Generation Sequencing (NGS), that allows quantitative assessment of mutated alleles per-

formed in lung [26, 27], gastrointestinal tract [28], pancreatic [29, 30], thyroid [31, 32], and

renal tumors [33], has demonstrated the existence of heterogeneity of the driving molecular

alterations, not only within the primary tumor, but also between the primary and its metastasis

[29, 31]. Recently, Bria et al. showed a relevant relationship between the heterogeneity of

EGFR mutations in NSCLC and duration of clinical response after TKI treatment: patients

with a high proportion of EGFR mutated alleles responded better to TKIs [26].
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This study investigates for the first time whether, not only the frequency of EGFR mutated

allele, but also the percentage of EGFR mutated neoplastic cells has an influence on the

response to TKIs.

Material and methods

Overall, a total of 931 cases of NSCLC were analyzed for EGFR mutational status (exons 18, 19,

20, 21) (Fig 1).

To address if EGFR mutation heterogeneity could influence the response to TKIs, the per-

centage of EGFR-mutated alleles was evaluated using a high sensitive approach (NGS: 454

GS-Junior, Roche), previously used to quantify mutated allele percentages of tumor samples.

All the samples were collected as part of routine diagnostic protocols and retrieved from the

archives of Anatomic Pathology of Bellaria-Maggiore Hospitals (Azienda USL Bologna, Italy)

and collected during routine clinical care.

Biological assessment was performed in the Molecular Diagnostic Unit, Azienda USL di

Bologna. Diagnoses were centrally reviewed by two pathologists (AC, GT) and classified

according to WHO criteria [1]. In 18 cases with advanced NSCLC with mutated EGFR treated

in first-line with TKIs (15 with erlotinib and 3 with gefitinib) follow-up (FU) data was available

because patients have been referred to Medical Oncology Bellaria Hospital (AUSL Bologna,

Italy) (Fig 1).

The study was approved by Ethic Committee of Azienda Sanitaria Locale di Bologna (num-

ber of study CE 16013, protocol number 234/CE of 22nd March 2016, Bologna, Italy). The eth-

ics committee waived the requirement for patient written consent. EGFR mutational analysis

is part of the routine diagnostic workup of patients with NSCLC lesions treated at Azienda

USL di Bologna and by necessity the authors had access to information identifying the

Fig 1. Flow chart of the cases analyzed.

https://doi.org/10.1371/journal.pone.0177822.g001
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patients. All information regarding the human material used in the study was managed using

anonymous numerical codes.

EGFR mutational analysis

DNA was extracted starting from one or two cytological smears (depending on the total

amount of neoplastic cells in the analyzed specimens) and from one or two 10μm-thick FFPE

slides. Area of interest was scraped using a sterile blade according to the pathologist selection.

DNA from cytological smears was extracted using Epicentre MasterPure DNA purification

kit (Epicentre, Madison, WI, USA) according to manufacturer’s indications. DNA from FFPE

samples was extracted using the QuickExtract DNA Extraction Solution (Epicentre, Madison,

WI, USA).

EGFR analysis was performed using previously described primers and protocol.[27] In 129

(77.2%) specimens also KRAS (exons 2 and 3) mutational analysis was performed, as previ-

ously described [34, 35]. Only nucleotide variations observed in both strands were considered

for mutational call. Ambiguous base calls associated to stretches of homopolymers four-base-

pair or longer were not considered mutated due to the limitations of the pyrosequencing

chemistry that is used by 454-NGS [36]. Based on previously published data [27, 37], we estab-

lished as criteria to define a sample mutated the identification of the mutation in at least 10

reads and in at least 1% of the total number of reads analyzed.

Percentage of mutated neoplastic cells

The proportion of neoplastic cells was expressed as a percentage after evaluation by two

pathologists (AC, GT). As the estimate of this percentage is critical for the study it was carefully

analyzed as follows. Two types of specimens were analyzed: formalin fixed paraffin embedded

(FFPE) tissue specimens and Papanicolau (PAP) stained cytology slide smears obtained after

fine needle aspiration of the tumor mass. For FFPE specimens, the tumor area marked on the

hematoxylin and eosin (HE) section used as DNA extraction control was evaluated microscop-

ically. As this control section was the last cut after four 10um-thick sections, the proportion of

neoplastic cells was also evaluated on the original HE section used for the histopathological

diagnosis. The tumor cell percentage difference between these two HE sections was always

<10%, and the area marked on the DNA extraction control HE to guide the selection of the

material scraped for DNA analysis was used to evaluate the percentage of neoplastic cells.

For PAP stained cytology slides, the percentage of neoplastic cells was evaluated on the

entire surface area marked to scrape cellular material for DNA analysis.

To avoid the bias due to the larger size of tumor cells, the microscopic analysis of tumor cell

content was always based on the evaluation of tumor cell nuclei vs. the number of nuclei of

non-neoplastic cells (the surface areas occupied by the tumor cells vs. non-tumor cells was not

taken into account). The two pathologists evaluated the percentage of neoplastic cells indepen-

dently. The greatest difference in the neoplastic cell content among the two pathologists was

±10% (average absolute difference: 8%), and the mean percentage values for each case was

used for the study.

The percentage of mutated alleles obtained using NGS was normalized to the proportion of

neoplastic cells in each tumor using the following formula [32]:

Percentage of mutated neoplastic cells ¼ ½ðMR � 2Þ=X� � 100

where MR is the percentage of mutated reads according to NGS and X is the estimated per-

centage of neoplastic cells. For all cases the tumor was postulated to be euploid.
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Evaluation of clinical response to TKI therapy

Restaging exams have been planned as daily clinical practice and the response rate was evalu-

ated using RECIST criteria [38]. We divided patients based on the responsiveness to TKIs in 4

categories: complete response (CR), partial response (PR), stable disease (SD) and progression

of disease (PD). Progression-Free Survival (PFS) was calculated from the time of diagnosis to

the date of the progression of disease documented by clinical exam or radiological assessment.

Overall Survival (OS) was defined as the time from the initial diagnosis until death.

Statistical analysis

Data are reported as means, medians, ranges and frequencies. Survival data (median survival

times with 95% confidence interval) were computed by the means of the Kaplan-Meier proce-

dure. Spearman’s correlation, Kruskal-Wallis test, Breslow-Wilcoxon test and Cox propor-

tional hazards model were applied. Receiver–operating characteristics (ROC) curves were

plotted. The area under the ROC curve (AUC) was computed together with the 95% CI. The

best cut-off was calculated using the method of maximization of the Youden’s index [39].

The SPSS (Version 13.0 for Windows; SPSS Inc., Chicago, IL, USA) was used as a statistical

package. Two-tailed P values less than 0.05 were considered significant.

Results

EGFR mutational analysis and clinical responses

NGS revealed EGFR mutations in 167 (17.9%) patients of whom 94 (56.3%) females and 73

(43.7%) males, aged from 33 to 87 years (mean: 68.3 years). Specimens have been obtained

from the lung primary in 111 (66.5%) and in 56 cases (33.5%) from tumor metastases (brain,

bones, lymph-nodes). The 167 mutated samples were 82 (49.1%) FFPE tissue specimens and

85 (50.9%) cytology specimens.

The mean of analyzed reads in the 167 EGFR mutated samples was 936 (coverage: 115x

-3,080x), the mean of mutated alleles in the 167 samples was 25.2% (range: 2% - 90%). No dif-

ferences in the clonal distribution of EGFR mutations were observed. Specifically, we did not

identify any statistical difference in the percentage of mutated neoplastic cells with G719X vs.

Exon 19 Deletion vs. Exon 20 insertion vs. p.L858R vs. p.L861X (p = 0.6636). No correlation

was observed between patients age and percentage of mutated neoplastic cells (r2 = 0.040,

p = 0.607). EGFR mutations are summarized in Table 1. More than one mutational event was

identified in 26 cases (15.6%): 6 cases had double EGFR mutations, in 20 cases a KRAS muta-

tions co-existed with EGFR mutation.

In 3 of the 6 cases with double EGFR mutations the discrepancy in the proportion of reads

carrying the two mutations was divergent (>10%), implying the presence of two different

EGFR-mutated clones. In the remaining cases, it is likely that mutations occurred in the same

neoplastic cell clone: in two cases the percentage of the alleles with the two mutations was

exactly the same (mutations in haplotype); in the remaining case the difference in the propor-

tion of reads carrying the two mutations very low (<10%).

A total of 18 patients with EGFR mutation, but no KRAS mutation, were treated in first-line

with TKIs: their clinical and EGFR molecular status is summarized in Table 2 and S1 Table.

Correlation between the percentage of EGFR mutated neoplastic cells

and response to TKIs

In the 18 cases treated with EGFR-TKIs (Table 2), the mean of the neoplastic cells in the sam-

ple analyzed was 46.1% (range: 5% - 70%) and the median percentage of mutated alleles was

EGFR mutated cells and response to TKIs
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21% (range: 5.0% - 70.0%). The median of mutated neoplastic cells was 74.8% (range: 23.3% -

110%) (S1 Table).

In 6 samples the percentage of mutated cells calculated according to the formula shown

above was higher than 100%, reflecting EGFR gene amplification with mutant allele-specific

imbalance (MASI) [21, 40, 41].

A trend (P = 0.068) was observed between the percentage of mutated alleles and responsive-

ness to TKIs classified according to the PR>SD>PD scale. No statistical correlation was

observed with PFS (P = 0.268) and OS (P = 0.708).

We found a strong correlation (P = 0.017) between the percentage of EGFR mutated neo-

plastic cells and clinical response to TKIs classified according to the same PR>SD>PD scale.

No relationship was observed in PFS (P = 0.512) and OS (P = 0.334).

Table 1. Type of detected EGFR mutations in the 167 mutated specimens.

EGFR Mutation Exon Number of mutations (%) % range of mutated allele Notes

G719X a 18 13 (7.8) 4–90

p.G719A (c.2156G>C) 9 (69.2) 9–90

p.G719S (c.2155G>A) 4 (30.8) 4–33

Del Ex19 19 85 (50.9) 2–90

p.E746_A750delELREA b

(c.2235_2249del15)

42 (49.4) 2–90

p.E746_S752delELREATS

(c.2236_2256del21)

4 (4.7) 2–39

p.E746_T751delELREAT c

(c.2235_2252del18)

8 (9.4) 2–75

p.K745_A750delKELREA

(c.2234_2248del15)

4 (4.7) 5–55

p.L747-A750delLREA

(c.2239_2248del10)

4 (4.7) 4–52 p.L747_A750delLREAinsP (n = 2);

p.L747_A750delLREAinsS (n = 1)

p.L747_E749LRE

(c.2239_2247del9)

5 (5.9) 5–80 p.L747_E749 + p.K745E (n = 2)

p.L747_P753delLREATSP

(c.2238_2258del21)

7 (8.2) 2–55 p.T747_P753 + p.A755D (n = 1)

p.L747_S752delLREATS

(c.2238_2256del19)

6 (7.1) 2–45

Other Ex19 deletions 5 (5.9) 3–88 p.R748_A750delREA+p.L747F (n = 1);

p.L747_T751delLREAT (n = 2);

p.R745_A750delRELREA (n = 2)

Ex20 insertion 20 5 (3.0) 21–62

p.T790M c,d

(c.2369C>T)

20 2 (1.2) 53–60

p.L858R b,d,e

(c.2573T>G)

21 32 (19.2) 2–65

p.L861X 21 8 (4.8) 3–60

p.L861Q (c.2582T>A) 6 (75.0) 3–60

p.L861P (c.2582T>C) 2 (25.0) 5–9

Other Mutations e 18–21 28 (16.8) 2–55

a In two sample a double mutation p.G719X + p.E709A was observed;
b In one sample a double mutation DEL E746_A750 + p.L858R was observed;
c In one sample a double mutation DEL E746_T751 + p.T790M was observed;
d In one sample a double mutation p.L858R + p.T790M was observed;
e In one sample a double mutation p.L858R + p.E709A was observed.

https://doi.org/10.1371/journal.pone.0177822.t001

EGFR mutated cells and response to TKIs

PLOS ONE | https://doi.org/10.1371/journal.pone.0177822 May 16, 2017 6 / 13

https://doi.org/10.1371/journal.pone.0177822.t001
https://doi.org/10.1371/journal.pone.0177822


We tried to identify those patients that could benefit most from TKIs therapy. For this, we

looked for a threshold of EGFR mutated neoplastic cells that could differentiate “responders”

(PR group) from “non-responders” (PD/SD group). We calculated and plotted the AUC curve

for the percentage of EGFR mutated neoplastic cells. A threshold of 56% EGFR mutated neo-

plastic cells was identified as the percentage of neoplastic cells that best correlates with

response to TKIs (AUC: 0.813, 95% CI 0.603–1.022, P = 0.026, Fig 2). In fact, patients with a

Table 2. Molecular and clinical characteristics of patients treated with EGFR-TKIs.

Features Value Percentage

Mean age (years) 68.4

Sex

- Male 5 27.8%

- Female 13 72.2%

Site

- Lung 16 88.8%

- Lymph node 1 5.6%

- Pleural effusion 1 5.6%

Mean % neoplastic cells 46

EGFR mutationa

- p.E746_A750delELREA

(c.2235_2249del15)

5 27.8%

- p.L747_P753delLREATSP

(c.2238_2258del21)

2 11.1%

- p.L747_E749LRE

(c.2239_2247del9)

2 11.1%

- p.E746_T751delELREAT

(c.2235_2252del18)

1 5.6%

- p.E746_S752delELREATS

(c.2236_2256del21)

1 5.6%

- p.L747-A750delLREA

(c.2239_2248del10)

1 5.6%

- p.L747_E749LRE

(c.2239_2247del9)

1 5.6%

- p.L858R

(c.2573T>G)

3 16.7%

- p.E709A/p.G719Aa

(c.2126A>C / c.2156G>C)

1 5.6%

- p.G719S/p.L861Qa

(c.2155G>A / c.2582T>A)

1 5.6%

EGFR Exon

- 18/18a 1 5.6%

- 18/21a 1 5.6%

- 19 13 72.2%

- 21 3 16.7%

Mean % EGFR mutated cells 74.8

Response to treatment

- Progression Disease 4 22.2%

- Stable Disease 6 33.3%

- Partial Response 8 44.4%

- Complete Response 0 0.0%

a In two patients two EGFR mutations were detected. DEL: deletion

https://doi.org/10.1371/journal.pone.0177822.t002
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percentage of mutated neoplastic cells equal or lower than 56% had a median OS of 8.2 months

(95% CI: 5.4–11.0) compared to the 26.3 months OS (95% CI: 16.5–36.0) of patients with more

than 56% mutated neoplastic cells, although the difference did not reach a statistical signifi-

cance (P = 0.081, Fig 3).

Discussion

EGFR mutations are a key biomarker to select patients with NSCLC for TKI therapy [13–18,

22]. Some studies have noted that the load of EGFR mutated alleles associates positively with

the response to TKIs [22, 26]. In 2011 Zhou et al. observed that the abundance of EGFR

mutated alleles correlates with PFS in patients that received gefitinib [22]. Recently, Bria et al.
in a series of 17 patients, stratified in three groups based on the time of tumor progression,

found a statistical trend between the proportion of mutated alleles obtained after NGS muta-

tion analysis and the duration of clinical response to TKIs, no differences were found for PFS

and OS [26].

In a similar cohort of patients, we observed only a statistical trend between the percentage of

EGFR mutated alleles and the clinical response classified as ordinal categories (PR>SD>PD).

Fig 2. Receiver operating characteristic (ROC) curve examining the relationship between the

neoplastic cell percentage and the clinical response to TKIs. Area under the curve (AUC): 0.813, 95% CI

0.603–1.022, P = 0.026. The dotted diagonal line shows the expected ROC curve for a random correlation.

https://doi.org/10.1371/journal.pone.0177822.g002
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The correlation was instead very strong (P = 0.017) when the percentage of mutated neoplastic

cells was considered as opposed to that of EGFR mutated alleles.

In the study mentioned above, Zhou et al. did not address the issue of the proportion of

EGFR mutated neoplastic cells influence on TKI response, but used as cutoff for case selection

tumors with >50% neoplastic cells [22]. In our study, we actually attempted to determine the

proportion of mutated neoplastic cells that best identifies the subset of patients that benefits

most from TKIs therapy: patients with a NSCLC harboring EGFR mutations in more than 56%

of neoplastic cells have a median OS trice longer in comparison to that of patients harboring

tumors with a lower percentage of mutated neoplastic cells. The difference in OS between the

two groups falls short of statistical significance (P = 0.081), most likely due to the limited num-

ber of the case available for follow up.

Currently, commercial available mutation-specific antibodies allow to detect only two acti-

vating EGFR mutations: delE746_A750ELREA and p.L858R. Immunohistochemistry with

these antibodies can identify the percentage of mutated neoplastic cells with good specificity,

but with highly variable sensitivity (from 40 to 60%) [37]. Therefore, immunohistochemistry

with mutation-specific antibodies may be a useful as “screening” method, but cannot replace

sequencing of the mutated hot spots.

In approximately one third of our cases the calculated percentage of mutated neoplastic

cells was above 100%, most likely reflecting the well-known occurrence of amplification of

mutated EGFR alleles in lung adenocarcinoma [21, 40, 41]. It should be noted that NGS is not

the ideal technique to identify chromosomal gains (i.e. amplification), that are specifically

identified by fluorescence in situ hybridization. In our cohort of patients this finding did not

influence the clinical response to TKIs (data not shown). This is consistent with a detailed

study addressing the issue of EGFR mutant allele-specific imbalance in NSCLC that showed

how this molecular event does not predict response to TKI therapy [40].

In approximately 15% of our EGFR mutated tumors we identified more than one mutation

(two EGFR mutations or KRAS and EGFR mutations). The allelic frequency of these concomi-

tant mutations was quite different (data not shown), supporting the hypothesis of different

Fig 3. Relationship between Overall Survival (OS) and percentage of mutated neoplastic cells

(threshold 56%).

https://doi.org/10.1371/journal.pone.0177822.g003
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clones in the same tumor, as previously demonstrated in lung cancer [26, 27], as well as in

other neoplasms of the thyroid [31, 32], gastrointestinal tract [28], kidney [33] or pancreas

[29, 30].

This study indicates that EGFR mutation heterogeneity within the tumor is an additional

variable that may predict response to TKIs: the percentage of mutated neoplastic cells has an

impact on clinical response. Our findings highlight the importance of pre-analytic evaluation

of neoplastic material and the use of sensitive quantitative techniques (e.g. NGS technology)

for mutation detection. Not only a “qualitative” (presence and type of mutation) data, but also

“quantitative” analysis of the EGFR mutational load may be necessary in order to recognize

those patients likely to receive the greatest benefit from TKIs treatment.

Supporting information
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