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Abstract

Background and purpose

Few tools are available to predict tumor response to treatment. This retrospective study

assesses visual and automatic heterogeneity from 18F-FDG PET images as predictors of

response in locally advanced rectal cancer.

Methods

This study included 37 LARC patients who underwent an 18F-FDG PET before their neoad-

juvant therapy. One expert segmented the tumor from the PET images. Blinded to the

patient´s outcome, two experts established by consensus a visual score for tumor heteroge-

neity. Metabolic and texture parameters were extracted from the tumor area. Multivariate

binary logistic regression with cross-validation was used to estimate the clinical relevance of

these features. Area under the ROC Curve (AUC) of each model was evaluated. Histopath-

ological tumor regression grade was the ground-truth.

Results

Standard metabolic parameters could discriminate 50.1% of responders (AUC = 0.685).

Visual heterogeneity classification showed correct assessment of the response in 75.4% of

the sample (AUC = 0.759). Automatic quantitative evaluation of heterogeneity achieved a

similar predictive capacity (73.1%, AUC = 0.815).
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Conclusion

A response prediction model in LARC based on tumor heterogeneity (assessed either visu-

ally or with automatic texture measurement) shows that texture features may complement

the information provided by the metabolic parameters and increase prediction accuracy.

Introduction

Advances in disease diagnosis and treatment have improved the outcome of Locally Advanced

Rectal Cancer (LARC). Nonetheless, most therapeutic decisions are still based on the Tumor,

Node and Metastasis staging system (TNM), together with the distal and circumferential resec-

tion margin [1–6]. LARC tumors are a highly diverse group of lesions that may exhibit differ-

ent responses to the same treatment, even in the same stage [7]. Therefore, early identification

of responders to neoadjuvant treatment (NAT) could facilitate the development of tailored

cancer therapies [4].

Medical imaging tools such as metabolic 18F-Fluorodeoxyglucose (FDG) PET imaging

have become crucial in oncology for staging and treatment evaluation [8,9]. Over the past

decades, 18F-FDG PET semi-quantitative metabolic activity descriptors derived from the

Standardized Uptake Value (SUV), such as SUVmean and SUVpeak have been clinically

used due to their prognostic ability [10–15]. More recent research recalls the interest of

other parameters such as Total Lesion Glycolysis (TLG) and Metabolic Tumor Volume

(MTV). These metrics provide information about metabolic activity in the whole volume.

Indeed, TLG and MTV prognosis accuracy has been reported to be significantly higher than

that of SUV values [16–18].

Nevertheless, the prognostic capacity of these metabolic features, even when combined

with volume descriptors, is very limited. Over the last years, tumor heterogeneity has shown to

be an additional source of information related with both prognosis and survival. It can be

hypothesized that heterogenous phenotypes in the macroscopic scale can be related to under-

lying tumor pathophysiology and thus capture tumor aggressiveness [19].

Recently, radiomics has emerged as a way of quantifying tumor heterogeneity captured by

radiological scans. The limited size of the available datasets for these purposes presents a limi-

tation for deep learning approaches. Indeed, the approach of radiomics is still primarily based

on handcrafted features used for regular machine learning predictive modelling [20]. Different

radiomic based Texture Analysis (TA) approaches have attempted to objectively capture het-

erogeneity information from 18F-FDG PET imaging studies [21–26]. Several flaws affect the

corroboration of texture analysis as a valuable predictor of therapeutic response, as most of the

published studies up to date did not perform multivariate analysis of the texture analysis fea-

tures nor performed a solid cross-validation [27]. Moreover, the quantitative texture features

obtained are complicatedly related to both the pathophysiological tumor processes and the

visual appearance of the images. This impairs a straightforward clinical usage of heterogeneity

features.

The aim of this multi-disciplinary study was to retrospectively evaluate the predictive capac-

ity of visually- and quantitatively assessed texture features in comparison with standard meta-

bolic parameters. A visual assessment scale of tumor texture and an open-source and carefully

revised workflow to automatize the texture analysis were introduced. Moreover, a multivariate

analysis combined with cross-validation was applied to generate robust results and their clini-

cal value was assessed.
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Materials and methods

Patients

Thirty-seven LARC patients, either cT3-4 or cN+ according to the American Joint Committee

on Cancer (AJCC), were selected. The inclusion criteria, staging and follow-up have been

reported elsewhere [28]. Patients underwent an 18F-FDG PET/CT study before their

treatment.

The study followed the recommendations of the Helsinki declaration and was approved by

the Institutional Ethics Committee from Gregorio Marañon hospital. Signed informed consent

from all patients was obtained and all images were anonymized.

Treatment

All the patients followed the following treatment regime:

Neoadjuvant chemotherapy. Consisted in two FOLFOX cycles every two weeks. Each

cycle consisted in Oxaliplatin 85mg/m2 on day one, intravenous Leucovorin 200mg/m2 on

days one and two and intravenous 5-FU 400mg/m2 on days one and two.

Chemoradiotherapy. Two weeks after both cycles of chemotherapy, patients had five to

six weeks of chemoradiotherapy (CRT). Pelvic radiotherapy was performed at a cumulative

dose of 45–50.4 Gy (1.8 Gy daily fractions). Oral chemotherapy consisted in Tegafur at 1,200

mg/day on days one to four. Radiotherapy conformal three-dimensional plans followed the

International Commission on Radiation Units and Measurements (ICRU) specifications and

were delivered with 15 MV photon beams.

Surgery. Six weeks after CRT, resection was performed. Six senior surgeons participated.

No strict criteria for surgical procedure was present but appropriateness of the safe distal mar-

gin distances and total mesorectal excision was mandatory.

Intraoperative radiotherapy. After surgery, patients received a 10–12.5 Gy intraoperative

electron beam radiotherapy (IOERT) to the posterior pelvic cavity. Details have been already

described elsewhere [28,29].

Postoperative chemotherapy. Adjuvant chemotherapy was selected consisting in either

two FOLFOX cycles every two weeks or four to six cycles every four weeks of an intravenous

5- FU-370-425 mg/m2 and Leucovorin 20-25mg/m2/day in days one to five.

Evaluation of treatment outcome

One pathologist examined all the resected specimens after NACT, CRT and surgery and evalu-

ated the changes suffered after treatment following recommendations by Quirke et al. [30,31].

Specimens were staged according to the sixth edition of AJCC classification (ypTNM). The

response to NAT was classified according to the tumor regression grade (TRG) scale [32]:

TRG 0, no response; TRG 1, residual cancer outgrowing fibrosis; TRG 2, fibrosis outgrowing

residual cancer cells; TRG 3, presence of residual cancer cells; and TRG 4, complete histopath-

ological response. Applying this method, tumors were classified into NAT responders (TRG

3–4) or non-responders (TRG 0–2).

PET/CT image acquisition protocol

Patients underwent PET/CT imaging before any of their treatments started. All the PET stud-

ies were obtained in the Nuclear Medicine department from Clinical La Luz de Madrid using a

dedicated Philips Gemini TF model (standard bore, 70 cm) PET/CT simulator with an axial

field of view = 18 cm (reconstructed field of view: 25,6,57.6 or 67,6 cm), and spatial resolu-

tion = 4.7 mm full-width half maximum. The scanner was equipped with a high light output
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scintillator (LYSO) that has high sensitivity, improved energy resolution and achieves a faster

system timing resolution of approximately 600 ps, enabling better time of flight measurement.

3D PET/CT scans with 16-slice CT (slice thickness 3mm, reconstruction slice thickness

1mm and interval 1.5 mm) were acquired through the pelvis from the anal verge to the iliac

crests in all patients. CT data was not acquired using a low-dose protocol. A rectal cancer CT

scan protocol was used for volumetric analysis [33]. The contrast agent was not administered

in these CT acquisitions. There are no differences in CT acquisitions among patients.

Whole-body PET emission images were acquired 45 min after intravenous injection of 5

MBq of FDG per kilogram of body weight. After radiotracer injection, patients rested and

were orally hydrated (>0.5 L of water). Patient preparation included fasting for at least 6 h

before the scan. In the morning of the scan day, patients were given a cleansing enema. PET

data were normalized (to correct the system response) and corrected for attenuation, scatter

radiation, random coincidences, dead time and decay. PET studies were normalized with

respect to the blood glucose level measured before FDG administration [22,23]. Reconstruc-

tion was performed using weighted ordered subsets expectation maximization (2 iterations

and 16 subsets) followed by the application of a smoothing filter (0.5 Hanning) and trilinear

interpolation. The PET scans had a voxel size of 4x4x4 mm and a matrix size of 144x144x87

voxels.

PET data analysis

The processing workflow of this study is summarized in Fig 1. One experienced nuclear medi-

cine specialist, blinded to the pathological status of the patients, obtained a Volume of Interest

(VOI) by segmenting the tumor with a threshold of 40% of the maximum activity. Features

related to tumor metabolism were calculated using 3-D Slicer open-source software Version

4.0.0. Harvard University, Cambridge, (MA) [34] and the PET-indiC module (Ethan Ulrich,

University of Iowa). For verification, a second nuclear medicine specialist examined the VOIs

based on the abovementioned scale and agreed on the classification performed.

Table 1 presents the complete list of metabolic parameters measured, classified into two

sets: 1) standard clinical metabolic features (SUVMax, SUVPeak, Metabolic Tumor Volume

Fig 1. Summary of the workflow implemented for the estimation of the heterogeneity in the PET images: 1) The Volume of Interest (VOI) corresponding to the tumor

is extracted and the image quantized to 64 levels; (a) Quantitative metrics are measured: 2a. The metabolic parameters described in Table 1; 3a. The texture features–

First order, local (Gray Level Co-occurrence Matrix (GLCM)), regional (Gray Level Run Length Matrix (GLRLM)).

https://doi.org/10.1371/journal.pone.0242597.g001
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(MTV) and Total Lesion Glycolysis (TLG)), referred to as CLINICAL, and 2) the complete set

of metabolic variables, referred to as ALLMET. Characteristics referring to quartiles in glycoly-

sis are the lesion glycolysis calculated from the respective quarter of the grayscale range of the

tumour region.

Heterogeneity visual assessment

The same nuclear medicine specialist also classified all tumors in PET images according to two

visual scales by examining the whole tumour volume (Fig 2). The ‘heterogeneity’ visual scale

defined a zero (0) score when tumors were homogeneous in appearance or a one score (1) oth-

erwise. The ‘pattern’ visual scale assigned a zero (0) score to nodular tumors and one (1) to

multinodular or cavitated lesions. A second nuclear medicine expert examined the visual scor-

ing and both found consensus on the final classification.

Heterogeneity automatic assessment

Tumor VOIs were discretized to 64 gray levels as a way of normalizing the data, allowing inter-

patient comparison using the following equation [23]:

V xð Þ ¼ 64
IðxÞ � min

i2O
i

max
i2O

i � min
i2O

iþ 1

where V is the intensity of the resampled image, I represents the intensity of the original image

and O is the set of voxels inside the VOI. The range of 64 gray values has been previously iden-

tified as a tradeoff between noise removal and information loss [23]. Different image texture

definitions were used to obtain the heterogeneity automatic analysis (Table 1). The complete

set of automatic texture descriptors will be referred to as TEXTURE parameters.

In a first step, global texture features were extracted. They consist on a set of first and higher

order statistics extracted from the gray-level histogram allowing the quantification of overall

global changes in intensity within the VOI.

Secondly, intensity variations were studied with second-order or local texture features by

using the gray level co-occurrence matrix (GLCM) [35]. Six statistics explaining local intensity

variations were selected from the 21 originally described [35], based on previous literature to

define the smallest set of GLCM features able to capture texture information [35–38]. To cap-

ture changes in local intensity beyond direct neighbors and reduce noise in the measurements

[38,39], these features were calculated in a patch-wise manner using square kernels of different

sizes, selected after examining the images and estimating the distance between voxels that

characterized the texture pattern: 1,3,5,7 and 9 pixels.

Finally, intensity changes were studied using third-order or regional texture features using

the Gray Level Run Length Matrix. Ten different statistics capturing regional texture measures

were obtained from this matrix.

All texture features were calculated for the whole tumour volume. The first-order and

third-order texture features were calculated using the Heterogeneity-CAD module (Narayan,

V. et al, Harvard Medical School), from 3D Slicer [40,41]. We used in-house developed soft-

ware to obtain GLCM texture metrics with respect to tumor volume, according to previous

guidelines [35]. The Python software is available upon request.

Immunohistochemistry staining and evaluation

A representative biopsy sample from each of the 37 patients was obtained for immunohis-

tochemistry (IHC) procedures previous to the start of treatment. The standardization,
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preparation and staining was automatically done with a Dako Techmate device. Tumor sec-

tions were stained with commercially available monoclonal antibodies for key molecules in

cancer. Some are involved in tumor growth, progression, proliferation, metastasis capacity and

suppression (Namely, Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2), Ki-67 pro-

tein, cyclooxygenase-2, E-cadherin and p-53 oncogene). Others are involved in cell apoptosis

and growth (Namely, B-cell lymphoma-2 (BCL-2) and c-erb b2 oncogene).

The following preparations were used: VEGFR-2 (dilution 1:100, Flk-1; NeoMarkers), Ki-

67 (prediluted MIB-1 clone; DAKO), COX-2 (dilution 1:200, clone RB9072-P; NeoMarkers),

E-cadherin (prediluted; clone NHC38; DAKO), p-53 (dilution 1:50, IgG2b DO-7 clone; Novo-

castra), BCL2 (dilution 1:80, IgG1 bcl-2/100/D5 clone; Novocastra) and c-erb b-2 (dilution

Table 1. List of computed features from FDG-PET.

METABOLIC (ALLMET)

CLINICAL: REST:

1. SUVPeak
a

2. SUVMax
a

3. Total Lesion Glycolysis (TLG)a

4. Metabolic Tumor Volume (MTV)a

5. SUVMean

6. Standardized Added Metabolic Activity

(SAM)

7. SUVMin

8. First Quartile

9. Median

10. Third Quartile

11. Upper Adjacent

12. Q1 Distribution

13. Glycolysis Q1

14. Q2 Distribution

15. Glycolysis Q2

16. Q3 Distribution

17. Glycolysis Q3

18. Q4 Distribution

Glycolysis Q4

TEXTURE

GLOBAL:

1. Maximum Intensity

2. Energy

3. Mean Intensity

4. Entropy

5. Median Intensity

6. Minimum Intensity

7. Range

8. Mean Deviation

9. Kurtosis

10. Root Mean Square

11. Variance

12. Standard

13. Deviation

14. Uniformity

15. Skewness

16Coefficient of Variation

LOCAL (GLCM)b

1. Energy

2. Entropy

3. Cluster Shade

4. Contrast

5. Cluster Prominence

6. Inverse Difference Momentum Normalized (IDMN)

REGIONAL (GLRLM)

1. Short-Run Emphasis (SRE)

2. Run-Length Non-Uniformity

(RLN)

3. Long-Run Emphasis (LRE)

4. Run Percentage (RP)

5. Gray-Level Non-Uniformity

(GLN)

6. Low Gray-Level Run Emphasis

(LGLRE)

7. High Gray-Level Run Emphasis

(HGLRE)

8. Long-Run Low Gray Level Emphasis

(LRLGE)

9. Short-Run Low Gray Level Emphasis

(SRLGE)

10. Long-Run High Gray Level Emphasis

(LRHGE)

11. Short-Run High Gray Level Emphasis

(SRHGE)

Note: Q1-4 refers to the quartile.
a denotes those parameters that belong to the CLINICAL set of metabolic features.
b denotes the set of parameters that have been combined at five different offsets (odd distances from one to ten

voxels).

https://doi.org/10.1371/journal.pone.0242597.t001
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1:40, IgG1 Clon 10A7; Novocastra). Slides were then evaluated in a light microscope at four

representative areas at x20 and x40 magnification. Positive and negative controls were pro-

vided respectively by normal tissue and omission of antibody. The level expression of each

marker in each patients’ sample was assessed by two pathologists in a quantitative percentage

from 0 to 100 based on IHC staining presence and intensity. They were blinded to patients’

characteristics and to the rest of IHC biomarkers. Staining was re-evaluated later and the

results were reproducible. The staining expression level was used for later comparison with

radiomic features.

Statistical analysis

Quantitative comparisons between responders and non-responders were carried out using the

Mann-Whitney’s U test for continuous variables and χ2 test for discrete variables.

Correlation between features used for modelling is presented in S1 Fig. Stepwise multivari-

ate binary logistic regression (Forward Wald’s, p< 0,05 for feature inclusion) was used to

assess the predictive ability of parameters extracted from pretreatment 18F-FDG PET regard-

ing patient´s response to NAT. To better validate and avoid over-fitting, multivariate binary

logistic models were evaluated using a k-fold cross-validation (k = 5) where 80% of the dataset

was used as training data and the remaining 20% was used as validation set. Mean accuracy

and mean area under the ROC curve (AUC) from all the runs were used to assess the accuracy

in the prediction of response, and 95% confidence intervals are reported in both cases.

The relationship between PET quantitative parameters and IHC biomarkers was assessed

by means of Pearson correlation coefficient.

For evaluating the correlation between visual scales and automatically computed texture

metrics, principal components were extracted from the automatically computed features for

each patient scan. Contribution of each individual feature into the principal components can

be found in S2 Fig. Principal components with eigenvalue greater than one were used. The cor-

relation of the principal components with the visual scale was evaluated with the Spearman

non-parametric correlation test.

Results

Baseline patient and tumour characteristics

No significant differences were found between treatment responders and non-responders in

terms of clinical (age, gender, time between first PET scan and first NACT session, distance to

anal verge and clinical staging risk group) and IHC characteristics (Table 2). Additionally, Fig

3 presents the most representative slice of each patient–selected to be the one containing SUV-

max of the resampled scans used for the analysis.

Visual scales for tumor response assessment

The comparison between responders and non-responders in the visual heterogeneity and pat-

tern scales (Table 3) yielded statistically significant differences between groups (χ2 = 11.926,

p = 0.003 in the case of visual heterogeneity and χ2 = 7,423, p = 0.013 in the case of visual pat-

tern, degrees of freedom (dof) were 35 in both cases). The ‘heterogeneity’ visual scale is a

Fig 2. Major axial plane of the extracted VOI from four of the tumors analyzed with VOI boundaries shown in yellow.

(a) and (c) show an example of homogeneous tumors with zero score in the visual heterogeneity scale; (b) and (d)

show an example of heterogeneous tumors with score one in the visual heterogeneity scale. (e) and (g) show an

example of tumors with zero score in the visual pattern scale; (f) and (h) show an example of tumors with score one in

the visual pattern scale.

https://doi.org/10.1371/journal.pone.0242597.g002
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dichotomic value that classifies the tumors in terms of their visual homogeneity in appearance.

The ‘pattern’ visual scale classifies between nodular tumors and multinodular or cavitated

lesions. They were correlated with r = 0.75 and p = 0.0012 (dof = 35).

Accordingly, prognostic ability of the visual heterogeneity and pattern scales were statisti-

cally significant in the univariate binary logistic regression (p = 0.003 and p = 0.015, respec-

tively). After cross validation, accuracy of prediction was 75,437±0,881% with an AUC of

0,759±0,009 for the visual heterogeneity scale and 69,268±0,890% with an AUC of 0,691±0,008

for the visual pattern scale.

When building a multivariate model to predict response including both visual scales, only

visual heterogeneity remained statistically significant (p = 0.003). Furthermore, when the

Table 2. Comparison of the baseline clinical and immunohistochemistry (IHC) characteristics of the patients. The p-value corresponds to the χ2 test for gender and

clinical staging risk group (degrees of freedom are 35 in both cases) and to the Mann-Whitney U test in the rest of variables.

Variable All patients

(n = 37)

Responders

(n = 18)

Non-responders

(n = 19)

p—

value

Clinical Gender, n (%)

Male 26 (70.27%) 13 (72.22%) 13 (68.42%) 0.91

Female 11 (29.73%) 5 (27.78%) 6 (31.58%)

Age (years), mean (standard deviation) 61.76 (8.65) 64.28 (7.63) 59.37(9.08) 0.07

Time between scan and first NACT session (days), mean

(standard deviation)

156.00 (40.67) 164.78 (45.96) 147.68(34.11) 0.13

Distance to anal verge (cm), mean (standard deviation) 7.41 (3.29) 8.27 (3.95) 6.58(2.32) 0.12

Clinical staging risk group, n (%)

Intermediate: T2 N1 or T3 N0 8 (21.62%) 5 (27,78%) 3 (15.79%) 0.66

Moderately high: T3 N1, T4 N0 27 (72.97%) 12 (66.67%) 15 (78.95%)

High: T3 N2, T4 N1/2 2 (5.41%) 1 (5.56%) 1 (5.26%)

IHC stains from diagnostic

biopsy

Ki67, mean (standard deviation) 77.97 (17.62) 79.72 (16.13) 76.32 (19.21) 0.32

p53, mean (standard deviation) 58.84 (40.97) 52.50 (40.59) 64.84(41.51) 0.15

VEGFR, mean (standard deviation) 83.78 (13.44) 86.11 (28.73) 81.58(38.04) 0.43

COX-2, mean (standard deviation) 58.78 (38.82) 51.94 (38.16) 65.26 (39.35) 0.12

BCL—2, mean (standard deviation) 1.21 (6.60) 2.22 (9.43) 0.26 (1.15) 0.49

CERB– 2, mean (standard deviation) 12.30 (26.60) 17.5 (35.82) 7.37 (12.29) 0.43

E-cadherine, mean (standard deviation) 90.27 (13.64) 90.56 (14.34) 90.0(13.33) 0.41

https://doi.org/10.1371/journal.pone.0242597.t002

Fig 3. Comparison of the most representative slide for each patient from the resampled scans used for the

heterogeneity analysis. Each slide was selected to contain the SUVmax in the tumour VOI of each patient. Non-

responders and responders are located in the left and right sides while the vertical order is given by decreasing uptake–

selected to be descending SUVmean.

https://doi.org/10.1371/journal.pone.0242597.g003
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logistic regression model included together the heterogeneity visual scale and clinical meta-

bolic features (CLINICAL), only the visual heterogeneity remained statistically significant

(p = 0.003).

Tumor response prediction using quantitative texture features

Responders and non-responders showed statistically significant differences for several meta-

bolic and texture features (Table 2).

Afterwards, we used multivariate binary logistic regression to study the response predictive

ability of the metabolic and quantitative texture features. Multivariate binary logistic regres-

sion models were fed with the statistically significant factors that appeared for each set of vari-

ables (CLINICAL, ALLMET, TEXTURE, ALLMET-TEXTURE). Their corresponding ROC

curves are shown in Fig 4.

When fitting a model with the set of four metabolic features with reported prognosis capac-

ity in previous literature (CLINICAL), only Total Lesion Glycolysis (TLG) resulted statistically

significant (p = 0.0488). After cross validation, the model obtained an accurate prediction in

50,149±0,293% of the cohort, with an AUC of 0,685±0,010.

When using the whole set of 19 metabolic variables (ALLMET), TLG was no longer

significant, while Glycolysis Q1 (p = 0,046) remained significant. The results with this

Table 3. Comparison of the visual scoring system and PET parameters in responders and non-responders together with the χ2 test results and Mann-Whitney U

test results respectively.

Non-Responders Responders p- value (χ2)

Heterogeneity Homogeneous (0) 5 14 0,003�

Heterogeneous (1) 14 4

Visual Pattern Nodular (0) 2 9 0,013�

Multinodular or

cavitating(1)

17 9

Non- Responders Responders p- value (Mann-

Whitney U)Median Minimum Maximum Median Minimum Maximum

Metabolic SAM 112,554 44,545 367,764 77,916 13,093 270,784 0,049�

TLG 112,554 44,545 367,764 77,916 13,093 270,784 0,049�

Glycolysis Q1 42,948 11,036 164,781 27,009 5,426 96,47 0,042�

Glycolysis Q2 38,388 9,487 127,259 24,796 3,883 120,262 0,061

Q1 Distribution 45,337 21,594 62,6 44,929 36,301 57,692 0,641

Texture Global COV 0,227 0,203 0,356 0,245 0,2 0,534 0,013�

Local

(GLCM)

Distance one

voxel

IDMN 0,459 0,328 0,582 0,4 0,309 0,59 0,039�

Contrast 222,422 102,549 498,948 295,176 90,339 563,788 0,046�

Distance three

voxels

Energy 0,012 0,002 0,138 0,025 0,007 0,222 0,408

Distance five

voxels

Energy 0,111 0,006 0,262 0,048 0 0,175 0,036�

Distance seven

voxels

IDMN 0,179 0 0,525 0,116 0 0,172 0,035�

Distance nine

voxels

Cluster Shade 52,12 0 399,925 0,002 -38,334 323,58 0,050�

Energy 0,012 0 0,171 0,015 0 0,108 0,766

Only those variables that remained significant (p-values marked with �) either here or in further analysis are shown. Note: SAM stands for Standardized Added

Metabolic Activity, Q1 and Q2 refer to the first and second quartiles respectively, COV stands for Coefficient of Variation and IDMN stands for Inverse Difference

Moment Normalize.

https://doi.org/10.1371/journal.pone.0242597.t003
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model after cross-validation yielded an accuracy of 63,586±0,986% with an AUC of 0,694

±0,011.

When entering the 57 automatic texture features (TEXTURE), GLCM Energy at distances

of three (p = 0,035), five (p = 0, 01) and nine voxels (p = 0,004) together with IDMN at distance

seven voxels (p = 0,023) were significant. When cross-validation was performed in this model,

an accuracy of 73,051±0,922% with an AUC of 0,815±0,009 were obtained.

When combining metabolic (ALLMET) and texture (TEXTURE) features, Glycolysis Q1

(p = 0,041 and GLCM Energy at distances of five (p = 0,037) were detected as statistically sig-

nificant. The results after cross-validation showed an accuracy of 70,154±0,883% with an AUC

of 0,768±0, 01. The correlation of radiomic features is presented in S1 Fig.

Correlation of quantitative PET parameters with biomarkers expression

To study the biological meaning of the PET quantitative parameters that remained significant

in the tumor response prediction models above (TLG, Glycolysis Q1, GLCM Energy at dis-

tances of three, five and nine voxels and GLCM IDMN at distance of seven voxels), their

Fig 4. Comparison of the ROC curves using the different sets of features proposed to predict tumor response.

https://doi.org/10.1371/journal.pone.0242597.g004
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correlation with VEGFR-2, Ki-67, COX-2, E-cadherin, p-53, BCL-2, c-erb b-2 was studied

using Pearson correlation.

VEGFR-2 significantly correlated with GLCM Energy at distance three voxels (r = -0,398,

p = 0,016) and with IDMN at distance seven voxels (r = -0,374, p = 0,025). COX-2 significantly

correlated with Glycolysis Q1 (r = -0,366, p = 0,024). E- cadherin significantly correlated with

GLCM Energy at distance three voxels (r = 0,382, p = 0,02). Ki-67 significantly correlated with

TLG (r = -0,337, p = 0,041) and Glycolysis Q1 (r = -0,366, p = 0,026). The degrees of freedom

are 35 for all the correlation tests above.

Correlation of visual and quantitative heterogeneity measurements

To study the relationship between the visual scales proposed and automatic texture, principal

components were extracted from TEXTURE database. Ten principal components were

obtained with a cumulative variance explained of 90,938%.The absolute value of the contribu-

tion of each radiomic feature to each principal component is presented in S2 Fig.

A Spearman correlation matrix was computed including the first five principal components

that explained 74,099% of the cumulative variance and both visual scales. The first principal

component (explained variance of 33,281%) correlated significantly with visual heterogeneity

(r = 0.430, p = 0.048, dof = 35) and visual pattern (r = 0.499, p = 0.02, dof = 35). The rest of the

principal components were not significantly correlated with any of the visual scales.

Discussion

This study shows that tumor heterogeneity in 18F-FDG PET images can discriminate between his-

topathological responders and non-responders. This information can be of great interest when

selecting the best approach for managing colorectal cancer patients as the treatment can be tailored

accordingly. The correct identification of non-responders allows their NAT to be intensified. Also,

the response prediction could guide optimization of the surgical approach by using less-aggressive

alternatives, and even mild postoperative chemotherapy could be prescribed in these cases.

Predictive capacity of metabolic (SUV related) features

Uptake parameters from PET defining the tumor metabolism (SUV, MTV, and TLG) are the only

features used clinically to evaluate the tumor aggressiveness and therapy effectiveness. The predic-

tion capacity of these clinical parameters (CLINICAL) was analyzed to establish the reference level

achieved. This reference was later compared to the prediction achieved with the new variables in

order to address the relevance of texture parameters. Since results obtained for CLINICAL variables

showed poor ability to predict response to NAT, additional parameters related to tumor uptake

(ALLMET) were introduced, but only one variable (Glycolysis Q1) remained significant in the mul-

tivariate analysis. As shown in Table 2 and Fig 3, only patient information and PET uptake parame-

ters show a poor ability to discriminate between responders and non-responders in this cohort.

Predictive capacity of texture features

Quantitative heterogeneity features (TEXTURE) seemed to outperform accuracy of metabolic

descriptors (AUC of 0,815 and 0,694, respectively). It can be noted that the ability to predict the

response is increased as compared with the reference parameters (CLINICAL). When texture is

combined with metabolic features (ALLMET-TEXTURE), the AUC reaches 0,768. Given the con-

fidence intervals obtained, the difference of prediction accuracy between using texture alone or

combined with metabolic parameters is not significant. These results suggest that the use of texture

features may be a promising approach to predict tumor response to NAT.
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In the multivariate analysis, several local texture parameters–i.e., study of PET intensity dif-

ferences in different neighborhoods capturing changes in uptake values of different localities

of the tumour—showed significant association with tumor response. The parameters that were

significantly associated with response in our model are consistent with others reported previ-

ously [27], although there is a high variability in the results obtained with local texture. Soussan

et al. [21] and Tixier et al. [23] reported how GLCM features could predict tumor response to

treatment in breast and esophageal cancer. Conversely, Lemarignier et al. [42] and Nakajo

et al. [24] observed no relationship in the same types of cancer. This discrepancy can be due to

a GLCM analysis [21,23,24,43] performed at only one-voxel distance, which is a parameter

dominated by noise rather than by real intensity differences in this type of images [41,42]. In

our work, the use of different distances chosen based on visual differences in intensities,

GLCM characteristics showed higher ability to predict tumor response.

No significance was found neither in with global texture metrics (i.e gray-level histogram

statistics capturing intensity changes across the whole lesion assuming tumour heterogeneity

is well-mixed) nor with regional texture descriptors (i.e. Gray Level Run Length Matrix) in the

multivariate analysis. These parameters have been reported to be associated with response and

long-term outcome in several types of cancer. Tixier et al. [23] and Nakajo et al [24] concluded

that regional texture descriptors showed better prognostic capacity in esophageal cancer than

SUV parameters. Bundschuh et al. [26] reported that global texture features could assess

response for patients with LARC.

Biological interpretation of the quantitative texture descriptors

One of the major concerns in radiomics resides in the biological meaning of the parameters

used, as the physiological processes underlying texture analysis remain unclear [44]. In this

line, we decided to study the correlation between quantitative features significant for response

prediction and several key molecules in cancer.

It was shown how the texture features that are able to predict tumor response are signifi-

cantly correlated with VEGFR and E-Cadherin. VEGFR expression has always been related

with angiogenesis and vascular permeability, which are processes characteristic of more

aggressive tumors [45]. Thus, this correlation seems to be coherent as new forming blood ves-

sels create local spots and increase heterogeneity of PET images which can be captured by

computer-vision quantitative textural features. Moreover, E-cadherin is associated with inva-

sion and metastasis due to the detaching of cancerous cells from the epithelial lining [46]. The

association of texture parameters with e-cadherin reinforces the relationship of local heteroge-

neity in PET with processes in the tumor vessels that may negatively impact tumor prognosis.

Regarding the relationship between because of the glucose metabolic basis of PET imaging,

it is not surprising to find that metabolic features correlate with biomarkers related with tumor

proliferation (Ki-67) [47] and growth (COX-2) [48]. Nevertheless, it is remarkable that in our

series TLG, one of the widely clinically used metabolic parameters, is outperformed by Glycol-

ysis Q1 both in prediction and in the relation with proliferation biomarkers. Glycolysis Q1

refers to the glycolysis calculated on the lower quartile of intensity values. Therefore this might

suggest that regions with lower activity concentration–therefore higher Q1 –are related with

tumours with lower proliferation rates.

Visual scores: Easy approach to clinical applicability of the findings

To our knowledge, one of the obstacles to use radiomic features clinically is the complicated

relationship with visual appearance of tumors. Thus, we proposed and evaluated a visual classi-

fication of heterogeneity to bridge this gap.

PLOS ONE Tumor response prediction from PET image texture

PLOS ONE | https://doi.org/10.1371/journal.pone.0242597 November 30, 2020 13 / 18

https://doi.org/10.1371/journal.pone.0242597


Visual heterogeneity and pattern category showed significant association with response to

treatment. When both visual scores were introduced, heterogeneity remained significant

whereas pattern category did not. Visual scores were then combined with baseline metabolic

parameters (CLINICAL). In this case, only heterogeneity scale remained significant in the

multivariate model, further supporting the importance of heterogeneity for clinical stratifica-

tion [19,23,49].

The correlation between the visual scores and quantitative metrics suggests that they are

describing similar characteristics. This may aid in the usage of texture features in the clinical

procedures as the mathematical texture descriptors can be better understood through their

association with the visual score. Besides, this reinforces the necessity of introducing heteroge-

neity in the medical guidelines for cancer staging as it has clinical significance when evaluating

a treatment. Indeed, some PET-derived metrics are already used in the classification and early

response assessment of diseases such as lymphomas [50] and trends in PET-imaging feature

extraction suggest other types of cancer may also benefit from them [51,52].

We acknowledge several limitations of the study. First, this is a retrospective study with a

relatively small sample size without holdout test set available when training the prediction of

response. 5-fold cross validation was used to report the findings as a way to reduce biases so

our findings suggest significant association between PET parameters and treatment response

in LARC but they need to be validated in larger cohorts before claiming any robust prognostic

ability. Additionally, the reproducibility of the PET feature findings may depend on the scan-

ner and software. Future guidelines for standardizing procedures remain to be established in

the future [23]. Finally, the conclusions can only be applied to patients with LARC, so replica-

tion of the study in other pathologies is warranted.

Conclusion

In this paper, heterogeneity in PET images is shown to be of clinical relevance for the predic-

tion of response to NAT in LARC patients and to have a significant association with key

molecular biomarkers in cancer. The main results of this study show how a visual classification

of heterogeneity and a further automatic assessment of heterogeneity using texture analysis

could become an essential element in research or practical oncology procedures.

Prospective studies are needed to validate the inclusion of these heterogeneity-based met-

rics as a robust component of the multi-disciplinary approach for the prediction and model-

ling of response in rectal cancer. This could enable the development of tailored therapies that

improve patient´s outcome.

Supporting information

S1 Fig. Correlation matrix of the radiomic features used for training the response predic-

tion model.
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S2 Fig. Absolute value of the weights of the radiomic features describing their contribution

in the principal components.
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