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Abstract

Exposure to ambient air pollutants increases risk for adverse cardiovascular health out-
comes in adults. We aimed to evaluate the contribution of prenatal air pollutant exposure to
cardiovascular health, which has not been thoroughly evaluated. The Testing Responses
on Youth (TROY) study consists of 768 college students recruited from the University of
Southern California in 2007-2009. Participants attended one study visit during which blood
pressure, heart rate and carotid artery arterial stiffness (CAS) and carotid artery intima-
media thickness (CIMT) were assessed. Prenatal residential addresses were geocoded
and used to assign prenatal and postnatal air pollutant exposure estimates using the U.S.
Environmental Protection Agency’s Air Quality System (AQS) database. The associations
between CAS, CIMT and air pollutants were assessed using linear regression analysis. Pre-
natal PM,q and PM, 5 exposures were associated with increased CAS. For example, a 2
SD increase in prenatal PM, 5 was associated with CAS indices, including a 5% increase

(B =1.05,95% CI 1.00—-1.10) in carotid stiffness index beta, a 5% increase (B = 1.05, 95%
CI1.01-1.10) in Young’s elastic modulus and a 5% decrease (8 = 0.95, 95% Cl 0.91-0.99)
in distensibility. Mutually adjusted models of pre- and postnatal PM, 5 further suggested the
prenatal exposure was most relevant exposure period for CAS. No associations were
observed for CIMT. In conclusion, prenatal exposure to elevated air pollutants may increase
carotid arterial stiffness in a young adult population of college students. Efforts aimed at lim-
iting prenatal exposures are important public health goals.

Introduction

The negative health effects of air pollution exposure on cardiovascular risk are well docu-
mented in adults [1,2,3]. Long-term exposures have been associated with measures of athero-
sclerosis, including carotid intima-media thickness (CIMT) and arterial stiffness (CAS),
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[2,4,5,6,7,8] both of which predict future cardiovascular events in adults [9,10]. Changes in
CAS, in particular, may reflect both the structural and functional health of the arterial vascula-
ture [11]. Whether changes in CAS in children predict adult cardiovascular risk remains
unknown, although recent evidence suggests blood pressure and CAS are highly related[12]
and childhood blood pressure tracks closely with adult blood pressure, increasing later cardio-
vascular risk [13]. CAS, in fact, may be viewed as an early biomarker of endothelial function in
which observed abnormalities reflect changes in the integrity of the vascular structure prior to
manifestation of symptomatic cardiovascular events [14]. Plenty of evidence exists linking
endothelial dysfunction to the later development of clinical vascular disease [14]. Thus, use of
these surrogate vascular markers, which represent some of the best early biomarkers of adverse
outcomes available in youth, may help to develop a better understanding of early vascular
changes and their correlates and may also facilitate identification of children at risk for cardio-
vascular disease later in life [15]. Given that atherosclerosis has its origins in early life[16] an
that an adverse intrauterine environment contributes to the early development of atherosclero-
sis, with a long latency period between exposures and adult CVD,[17] we hypothesized that
exposure to air pollutants early in life may be associated with early biomarkers of cardiovascu-
lar phenotypes such as CIMT and CAS. Prenatal exposure to air pollutants may disrupt biolog-
ical mechanisms that regulate fetal growth and development, which in turn may make children
more susceptible to the development of cardiovascular pathologies and disease later in life. In
the few studies conducted in healthy populations of children or young adults, childhood or
recent exposures to air pollutants have been associated with CAS and CIMT but prenatal expo-
sures have not been evaluated [6,18,19]. Animal models of prenatal exposure to pollutants and
to tobacco smoke have demonstrated increased cardiac oxidative stress and atherogenesis in
adult mice [20,21]. Pollutants such as PM, 5 have also been associated with systemic inflamma-
tion, oxidative stress, and endothelial injury in children and young adults [22,23,24]. To
address this lack of knowledge, we investigated the association between prenatal trimester-spe-
cific and postnatal exposures to PM 4, PM, 5, NO, and O; with CAS and CIMT in a population
of University of Southern California (USC) college students.

Methods

The Testing Responses on Youth (TROY) study consists of 768 college students recruited from
USC in 2007-2009. The primary purpose of the TROY study is to assess lifetime histories of air
pollution exposure in relation to early determinants of atherosclerosis. Participants were eligi-
ble for study inclusion if they were non-tobacco smokers, were born in the United States or
moved to the United States within the first six months of life, and provided written informed
consent to participate.

Participants attended a study visit during which CAS, CIMT, systolic and diastolic blood
pressure, and heart rate were assessed by a single physician-imaging specialist from the USC
Atherosclerosis Research Unit Core Imaging and Reading Center. Self-administered question-
naires were completed to gather information about health and socio-demographic characteris-
tics as described previously [6,25]. Participants also provided a 12-hr fasting blood sample for
lipid and biomarker analyses (see online supplement for further details).

The study protocol was approved by the institutional review board for human studies at the
University of Southern California, and written consent was provided by the study subjects.

High-resolution B-mode ultrasound images of the right common carotid artery (CCA) were
obtained with a portable Biosound MyLab 25 ultrasound system attached to a 10-MHz linear
array transducer and read by a single physician-imaging specialist. Blood pressure and heart
rate were measured immediately after the ultrasound examination by standard techniques after
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the subject was recumbent for at least ten minutes. Blood pressure was measured three times in
one-minute intervals, using an OMRON blood pressure monitor with automatic cuff inflation
and deflation. As previously described (Patents 2005, 2006, 2011)[6,26,27], the jugular vein
and carotid artery were imaged transversely with the jugular vein stacked above the carotid
artery and CIMT was measured. Media-adventitia to media-adventitia arterial dimensions
were measured for calculation of the carotid arterial stiffness variables in the same arterial seg-
ment along the same 1 cm electronic ruler used to measure the CIMT using an in-house devel-
oped software package (Patents 2005, 2006, 2011) [26,27,28,29]. The lumen diameters
measured during peak systole and end diastole were used to calculate three measures of arterial
stiffness: distensibility, Young’s elastic modulus (YEM) and stiffness index beta (C-beta)
according to standard formula (see online supplement for details) [27,30]. Duplicate scans
were performed on 87 subjects and the correlation coefficients for minimum arterial diameter,
maximum arterial diameter, and CIMT were 0.95, 0.95, and 0.98, respectively.

Participants completed a detailed lifetime residential history. Participant residence
addresses within the U.S. were standardized and their locations were geocoded using the Tele
Atlas Geocoding Service (Tele Atlas Inc., Menlo Park, California, www.na.teleatlas.com). Of
the 2,598 residential locations reported, 98.3% (2,553) were U.S. residences that were success-
fully geocoded.

Prenatal ambient air pollution concentrations were estimated for each subject’s reported
birth residence based on average monthly air pollutant exposure data and trimesters defined as
follows: first trimester from 0 to 13 weeks post-conception, second trimester from 14 to 26
weeks, and third trimester from 27 to delivery. Because we previously reported an association
between early childhood, elementary school and lifetime air pollution exposures with CIMT in
this cohort [6], we also investigated these postnatal exposure windows with CAS. Postnatal
exposure corresponding to the early childhood (0-5), elementary school years (6-12) and post-
natal exposure (from birth to date of CIMT measurement) were calculated by averaging expo-
sures across the relevant residential histories for those time periods as described previously [6].
Briefly, ambient air pollution concentrations were estimated for each subject’s residence within
the U.S. from the time the subject occupied that residence to the participant’s CIMT measure-
ment. Move-in and move-out dates were provided for each residence, and ambient air quality
data was spatially interpolated to those locations for the relevant time periods using inverse dis-
tance-squared weighting (IDW2) [31,32]. The data from up to four air quality measurement
stations were included in each interpolation. Due to the regional nature of O3, NO,, PM,,, and
PM, 5 concentrations, a maximum interpolation radius of 50 km was used for all pollutants.
However, when a residence was located within 5 km of one or more stations with valid observa-
tions, the interpolation was based solely on the nearby values. A leave one out evaluation of the
spatial mapping method produced r* of 0.76, 0.73, 0.53, and 0.46 for monthly ozone, NO,,
PM, 5, and PM, concentrations using data from California (representing 85% of the
population).

Air pollutant estimates were derived from the U.S. Environmental Protection Agency’s Air
Quality System (AQS) database for the years 1980 through 2009. Hourly concentrations of O
and NO,, and daily concentrations of PM;, and PM, 5 measured in all 50 states for January
1980 through 2009 were downloaded from AQS. The PM data were primarily limited to those
collected with Federal Reference Method (FRM) monitors and Federal Equivalent Method
(FEM). Non-FEM PM, 5 data were used when no FEM measurements were available. Auto-
mated quality control checks on the concentration ranges and persistence were applied to the
AQS data. The AQS data were augmented in southern California with O3, NO,, PM,,, and
PM, 5 data from the Children’s Health Study (CHS) for 1994-2009 [33,34]. National-scale
PM;, data were filled in using adjusted total suspended particulates (TSP) data for 1981-1987.
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Pre-1999 PM, s data for southern California were filled in with 1994-1998 estimated PM, 5
concentrations developed for the CHS.

In order to assign a postnatal exposure estimate, data were required to be 75% complete for
O3 and NO, and 12% for PM to account for the one-in-six day sampling. As a result, of 768 ini-
tial study subjects, a range of 23 up to 113 subjects could be missing trimester-specific concen-
trations of specific pollutants (see online supplement for more details).

Means and standard deviations of subjects’ health and anthropometric characteristics at the
time of carotid ultrasound measurement as well as the distributions of prenatal and postnatal
air pollutants were calculated. Air pollutants were treated as continuous variables and were
scaled to a 2 standard deviation (SD) difference in level for testing associations with CAS and
CIMT. The associations between CAS and CIMT and prenatal and postnatal air pollutants
were assessed using linear regression analysis. Non-linear associations were evaluated using
penalized splines in the GAM function of the R statistical package[35] but all associations were
found to be linear. Arterial stiffness metrics were log-transformed to achieve normality. The
exponentiated regression model coefficient can be interpreted as a fold-change in CAS per 2SD
change in level of pollutant. Variables evaluated for confounding but not selected as confound-
ers based on whether they changed the effect estimate of interest by greater than 10% included
diastolic and systolic blood pressure, hsCRP, LDL-C, HDL-C, prenatal tobacco smoke expo-
sure, second hand tobacco smoke exposure during childhood and homeostatic model assess-
ment (HOMA) of insulin sensitivity and beta cell function. A final multivariate model adjusted
for age, sex, race/ethnicity, maternal education, BMI, height, insulin, triglycerides, birth season
and geographic region at birth for all CAS models. The final model for CIMT analysis was
adjusted for age, sex, race/ethnicity, maternal education, BMI, systolic blood pressure, second
hand smoke, hsCRP, LDL-C and HDL-C to be comparable to previously published results [6].
Regression procedures were conducted in SAS v9.3 (Cary, NC). [36] All statistical testing was
conducted with a two-sided alpha level of 0.05.

We conducted a series of sensitivity analyses to evaluate whether exclusion of subjects by
the following criteria affected our results: 1) preterm birth, 2) reported smoking of alternative
tobacco products, 3) high cholesterol or high blood pressure, 4) family history of hypertension
or high cholesterol, 5) family history of heart attack, heart failure or stroke, and 6) non-Califor-
nia born subjects; 7) poor air quality codes.

Results

Baseline characteristics of the 768 study participants are shown in Table 1 and S1 Table in the
online supplement. All participants were college students who were on average 20+1.5 years of
age; the sample included more females (59%) than males (41%). Only one participant had high
blood pressure (defined as > 120/80 mmHg) and family history of heart disease (5.5%) was
rare in this population. C-beta, YEM, and Distensibility were log-normally distributed with
geometric means (SD) of 6.2 (1.3), 2621.9 mmHg (1.4), and 30.2 x 107 x m?/N (1.3), respec-
tively. These three CAS measurements were also highly correlated with one another but not
with CIMT (S2 Table).

Prenatal air pollutants had a range of distribution across trimesters (S3 Table). In general,
NO,, PM;, and PM, 5 were highly correlated within trimester but less so across trimesters (54
Table). O3 was not highly correlated with the other pollutants. Prenatal exposures to PM;,, and
PM, 5 were associated with increased CAS (Fig 1, S5 Table). For example, a 2SD higher level of
PM, 5 during pregnancy was associated with a 5% higher C-Beta (B = 1.05, 95% CI 1.01-1.10),
a 5% higher YEM (B = 1.05,95% CI 1.01-1.10), and a 5% decrease in distensibility ( = 0.95,
95% CI 0.91-0.99). Prenatal O3 showed no association with CAS and prenatal NO, was
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marginally associated. A multi-pollutant model which included both O3 and PM;, as represen-
tative of the suite of correlated pollutants did not alter interpretation of the results (Table 2).
Prenatal air pollutants were not associated with CIMT (Fig 1, S5 Table).

Because we previously reported an association between early childhood, elementary school
and postnatal air pollution exposures (notably O3) with CIMT in this cohort,[6] we also evalu-
ated these time periods of exposure for CAS (Fig 2, S6 Table). We observed non-significant
associations that were similar in magnitude to the effects observed with prenatal exposures.

We also sought to evaluate the relative contributions of prenatal and postnatal exposures on
CAS and CIMT. Prenatal and postnatal NO, and PM, levels were highly correlated, whereas
05 and PM, 5 were moderately correlated (S7 Table). Results from models that mutually
adjusted for prenatal and postnatal PM, 5 suggested that the effects on CAS were due to the
prenatal rather than postnatal exposure (Table 3). In models that mutually adjusted for prena-
tal and postnatal O; on CIMT, our previously reported findings of an association with postna-
tal O; remained robust (S8 Table) whereas prenatal O; had no effect on CIMT [6]. Mutually
adjusted models of O; on CAS showed no associations (data not shown).

Table 1. Demographic characteristics of TROY participants (N = 768)*.

N %

Male sex 317 41.3
Race/ethnicity

Non Hispanic White 344 44.8

Black 38 5

Asian 161 21

Hispanic White 132 17.2

Other 93 121
BMIT

Underweight 31 4

Normal 574 74.7

Overweight 133 17.3

Obese 30 3.9
Current exposure to second-hand smoke* 296 38.5
Second-hand smoke exposure during childhood 61 7.9
Ever smoked something other than cigarettes

Yes 175 22.8

Don't know 1 0.1
Mother's Education

High school or less 83 10.8

Some college 177 23.1

College grad/some grad school 503 65.5

Unknown 5 0.7
Family history of heart disease§

Yes 42 5.5

Don't know 26 3.4

* TROY participants were non-smokers (of cigarettes).

T Underweight was defined as BMI < 18.5, normal weight as 18.5 < BMI <25, overweight as25< BMI <30,
and obese as BMI > 30.

*Current second hand smoke exposure locations: Home, dormitory room, workplace, school or places other
than home or school.

§History of heart attack, heart failure, or stroke.

doi:10.1371/journal.pone.0150825.t001
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Fig 1. The association between prenatal air pollutant exposures and A) C-beta, B) YEM, C) Distensibility, and D) CIMT, by trimester and whole pregnancy.

doi:10.1371/journal.pone.0150825.g001

Sensitivity analyses were conducted to evaluate several exclusion criteria. Removal of 68 par-
ticipants who reported a family history of heart disease did not affect our results, nor did
removal of 354 participants who reported a family history of hypertension or high cholesterol
or removal of 40 subjects with high cholesterol or high blood pressure. Excluding the 118 par-
ticipants who were born preterm or the 175 participants who reported smoking alternative
tobacco products did not alter our results. Restriction of the population to participants from
southern California (n = 549) on whom we had supplemental air monitoring data also did not
alter our results (S9 Table). Further restriction of the population to participants who lived
within 5 km from an air pollution monitor did not alter our results, though the sample size was
small (S10 Table).

Discussion

Prenatal exposure to PM, s and PM; o was associated with higher CAS but not CIMT in a popu-
lation of college students. These results lend further evidence in support of the developmental
origins of disease hypothesis for atherosclerosis [37,38,39].

Table 2. Results from a multi-pollutant model* of PM,, and O3 (N = 673).

Trimester 1 Trimester 2 Trimester 3 Whole pregnancy
Outcome Pollutant per  fold change 95% ClI fold change 95% CI fold change 95% CI fold change 95% CI
2SD change in outcome in outcome in outcome in outcome
C-beta O; (ppb) 0.97 0.92 1.02 0.95 0.9 1.01 0.96 0.9 1.01 0.96 0.91 1
PM;o (u/m3) 1.06 1.01 1.11 1.07 1.02 1.12 1.04 1 1.09 1.07 1.02 1.12
YEM O3 (ppb) 0.96 0.9 1.01 0.96 0.9 1.02 0.98 0.92 1.04 0.96 0.91 1.01
PM;o (u/m3) 1.06 1.01 1.11 1.05 099 1.1 1.04 0.99 1.09 1.06 1.01 1.1
Distensibility O3 (ppb) 1.04 098 1.1 1.04 098 1.1 1.02 0.96 1.08 1.03 0.99 1.08
PM;o (u/m3) 0.94 0.9 0.99 0.95 0.91 0.99 0.96 0.92 1.01 0.94 0.9 0.99
*adjusted for sex, age, ethnicity, maternal education, BMI, height, insulin, triglycerides, birth season and geographic region
doi:10.1371/journal.pone.0150825.t002
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Table 3. The association between prenatal and postnatal PM, 5 (u/m®) exposures and CAS*(N = 724).

Several studies in adults have demonstrated associations between long-term air pollutant
exposures, particularly PM, 5, with CAS and CIMT [2,3,4,5,7,8,40,41], While most of these are
cross-sectional in nature, longitudinal evidence is beginning to emerge [3]. PM, s is also associ-
ated with plaque burden and vascular dysfunction in murine models of atherosclerosis [3]. A
few studies have demonstrated associations between air pollutants and CAS or CIMT in chil-
dren or young adults [6,18,19]. Ianuzzi et al evaluated 52 Italian children and found that chil-
dren living closer to a main road had higher CAS than those living farther away [19]. Lenters
et al observed a 37.6% increase in augmentation index and a 4% increase in pulse wave velocity,
another indicator of arterial stiffness, in response to a 25 pg/m? increase in NO,, estimated
from subjects’ residential addresses [18]. Our observed effects of a 5% increase in CAS per 2 SD
(15.4 pg/m® for PM, 5) change in pollutant level are slightly smaller in magnitude to changes in

Trimester 1 Trimester 2 Trimester 3 Whole pregnancy
Outcome Pollutant per fold change 95% CI fold change 95% ClI fold change 95% CI fold change 95% CI
2SD unit in outcome in outcome in outcome in outcome
change
C-beta Prenatal PM, 5 1.05 099 1.11 1.06 1 1.13 0.99 0.94 1.05 1.07 0.99 1.15
Lifetime PMy 5 1 094 1.06 0.99 0.94 1.05 1.04 098 1.1 0.98 0.91 1.05
YEM Prenatal PM, 5 1.05 099 1.12 1.04 0.98 1.11 0.98 093 1.04 1.05 0.97 1.14
Lifetime PMy 5 1 094 1.06 1.01 0.94 1.07 1.04 0.98 1.11 0.99 0.91 1.07
Distensibility =~ Prenatal PM, 5 0.95 0.9 1 0.94 0.89 1 1.01 0.96 1.06 0.94 0.87 1
Lifetime PM, 5 1 0.95 1.06 1.01 0.95 1.06 0.96 0.91 1.02 1.02 0.95 1.10
*adjusted for sex, age, ethnicity, maternal education, BMI, height, insulin, triglycerides, birth season and geographic region
doi:10.1371/journal.pone.0150825.t003
PLOS ONE | DOI:10.1371/journal.pone.0150825 March 7,2016 7/12
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CAS observed for passive tobacco smoke exposure[30] and are comparable to an aging effect of
2.5 to 10 years during childhood [42].

In our previous report in this same study population, we observed that childhood exposure
to O; was associated with increased CIMT. Herein, we extend these findings to suggest that
prenatal exposures ambient pollutants (PM;, PM, 5) are also important, exhibiting increases
on CAS but not CIMT. One explanation for this observation may be that CAS, as a biomarker
of endothelial function, reflects functionality of the arterial vasculature that may be a more sen-
sitive marker for early subclinical cardiovascular changes in response to chronic environmental
exposures whereas CIMT, a structural change, may take longer to demonstrate measurable
differences.

While our observed associations were stronger and statistically significant for prenatal expo-
sures to PM,, and PMj, 5, these pollutants were correlated between prenatal and postnatal
exposure periods, limiting our ability to conclude with certainty which time period confers the
most risk. Nevertheless, we evaluated prenatal and postnatal PM, 5 and O3 in mutually adjusted
models (pollutants with the least amount of correlation). We found that the effects of PM, 5 on
CAS were likely due to the prenatal rather than postnatal exposure, whereas the opposite was
true for O3 and remained consistent with previously published results [6]. The observed effects
of prenatal PM, s may occur through altered fetal growth and development. High prenatal PM
exposure has been associated with lower birth weight [43] and patent ductus arteriosus [44].
PM constituents, particularly transition metals, could generate oxidative stress leading to DNA
damage in the placenta, affecting the growing embryo [45]. PM may also bind receptors for
placental growth factors resulting in decreased fetal-placental exchange of oxygen and nutri-
ents, upregulate systemic pro-inflammatory mediators or alter hemodynamic responses with
negative downstream consequences [45].

One of the strengths of this large study is the availability of prenatal and cumulative postna-
tal air pollutant exposure histories for participants. However, because we calculated air pollut-
ant exposure estimates using existing pollutant databases acquired over twenty years prior to
CAS assessment, measurement error may be of concern. To counter this, we only assigned
exposure when we had relevant measurement data. Moreover, sensitivity analyses restricting
the dataset to participants with only the highest quality data (i.e. in southern California for
which we had additional monitoring data), as well as restricting to subjects within 5km of a
monitor, yielded similar results, thereby strengthening our conclusions. A lack of monitoring
data for PM, 5 in early years resulted in a smaller sample size for those analyses. In addition,
imputation of PM, 5 values based on historical PM,o/PM, 5 ratios may have increased measure-
ment error. However, the pattern of results for both pollutants as well as for NO, were similar,
suggesting that errors specific to lack of PM, 5 data did not affect our results.

A general limitation to this study is the lack of information on the mothers at the time of
pregnancy, including general health, habits, and occupation which could lead to unmeasured
confounding. In cases where we knew maternal information, such as for preterm delivery and
maternal history of cardiovascular disease or hypertension, we conducted sensitivity analyses
to evaluate potential effects and found no changes to our conclusions. Traffic-related noise is
another environmental stressor relevant to pregnant women and a likely contributor to vascu-
lar pathologies for which we had no data available. However, as reviewed by Tetrault et al, cor-
relations between noise and traffic related pollution are rather modest [46]. Thus, our results
are unlikely to be confounded by unmeasured exposure to night time noise. We studied a pop-
ulation of non-smoking university students who may be on average healthier and socio-eco-
nomically advantaged relative to the general population. Therefore, the results of this study
may not be generalizable to all individuals.
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Recent guidelines for prevention of hypertension have suggested the use of vascular parame-
ters aimed at evaluating the mechanical and functional properties of peripheral arteries in
order to identify vulnerable individuals [9]. CAS is included in this list, and is considered a sub-
clinical target in evaluating hypertensive patients [9]. Given that children rarely present with
overt cardiovascular disease, use of these early vascular biomarkers in children and young
adults may help to develop a better understanding of pathological vascular changes associated
with air pollution exposures as well as facilitate identification of children at risk for cardiovas-
cular disease later in life [15].

In conclusion, the atherogenic process has important determinants early in life. We present
evidence that prenatal exposures to PM, 5 and PM|, are associated with CAS in a healthy popula-
tion of college students. The implications of such early vascular changes with respect to adult car-
diovascular disease remain unclear and require investigation. Nevertheless, regulation of air
pollutants and efforts that focus on limiting prenatal and childhood exposures continue to be
important public health goals to potentially reduce the atherosclerosis burden and its consequences.
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