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Fibrotic hypersensitivity pneumonitis (FHP) remains one of fatal interstitial pulmonary disease. Comprehensively dissecting the
cellular heterogeneity of FHP paves the way for developing general gene therapeutic solutions for FHP. Here, utilizing an integrated
strategy based on scRNA-seq, scTCR-seq, and bulk RNA-seq analysis of FHP profiles, we identified ten major cell types and 19
unique subtypes. FHP exhibited higher features of EMT and inflammation-promoting than normal control. In distinct subsets of
lung macrophages in FHP, FN1high, PLA2G7high, and MS4A6Ahigh macrophages with predominant M2 phenotype exhibited higher
activity of inflammatory responses and para-inflammation than other macrophages. KRT17high basal-like epithelial cells were
significantly increased in FHP, and showed higher ability to induce EMT. We identified roles for ACTA2high, COL1A1high, and
PLA2G2Ahigh

fibroblasts in FHP, which were significantly related to interstitial fibrosis. NK cells and KLRG1+ effector CD8+ T cells had
greater activity in inflammation-promoting. Our results provide a comprehensive portrait of cellular heterogeneity in FHP, and
highlight the indispensable role of cell subpopulations in shaping the complexity and heterogeneity of FHP. These subpopulations
are potentially key players for FHP pathogenesis.
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INTRODUCTION
Hypersensitivity pneumonitis (HP) is a complex syndrome with
pulmonary alveolar unit inflammation or interstitial fibrosis caused
by the inhalation of a variety of antigens in susceptible and
sensitized individuals [1]. HP was divided into two categories
including fibrotic and non-fibrotic HP in Official ATS/JRS/ALAT
Clinical Practice Guideline [2]. Compared with the incidence of
idiopathic pulmonary fibrosis (IPF) which is approximately 4.6–16.3
per 100,000 person-years, the incidence of HP remains under-
recognized [3]. Despite recent advances in diagnosis, classification,
and therapeutic management of HP, FHP remains difficult to
diagnose because of non-specific clinical syndrome and high-
resolution computed tomography (HRCT) features. The exposure
of antigens has not been clearly identified in many HP cases [3, 4].
Bronchoalveolar lavage fluid (BALF) lymphocytosis and low CD4/
CD8 ratio are also not consistently in fibrotic HP [3, 5, 6].
FHP is a lethal interstitial lung disease, and yet it remains

understudied and poorly understood compared with IPF. The
pathological features of chronic hypersensitivity pneumonitis
include alternating normal alveoli and fibroblastic foci, a
nonspecific interstitial pneumonia-like pattern, and centrilobular
fibrosis [7]. Specific and sensitive biochemical markers for
diagnosis, treatment guidance, and prognosis monitoring of FHP
are urgently needed [8]. Genome-guided therapies are still
unavailable for worsening Fibrotic HP patients, who suffer

extremely poor clinical prognosis. Undoubtedly, an urgent need
exists to characterize core molecular features of fibrotic HP for the
discovery of emerging biomarkers and therapeutic targets. The
latest advances in single-cell RNA sequencing technologies offer
an opportunity to comprehensively understand the regulatory
network and cellular heterogeneity of FHP at high resolution.
These technologies have already identified disease-associated cell
subsets in rheumatoid arthritis pathogenesis [9].
In this present study, through the integration of the expression

profiling of surgical lung biopsy specimens from a patient with FHP
and published study databases including both bulk RNA-seq and
scRNA-seq in Gene Expression Omnibus (GEO), we identified the
contributions of specific cell subsets relevant to FHP. We also
uncovered the dynamic changes of specific cell subsets and identified
a number of novel functional candidates in FHP by performing
integrated analysis of expression profiling of 82 chronic hypersensi-
tivity pneumonitis (CHP) lung samples from published studies.

RESULTS
Single-cell transcriptional profiling of lung cells
We collected fresh specimens from a patient with pathologically
confirmed FHP through surgical lung biopsy (Fig. 1A and
Supplementary Fig. 1). scRNA-seq and scTCR-seq was performed
using 10× Genomics platform. We integrated multiple data from
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GEO data repository including an FHP patient (GSM3489192) (P1)
and two transplant donors (GSM3489182, GSM3489185)
(C1, C2) with the sequencing data of the patient at our hospital
(P2) (Fig. 1B). A total of 17,755 lung cells were analyzed, with
8761 cells from donors and 8994 cells from patients with FHP.
Twenty-nine cell clusters were identified with graph-based

clustering analysis (Fig. 1C). Ten major cell types were manually
annotated based on canonical marker genes (Fig. 1D). We
identified epithelial cells (expressing SFTPA1), macrophages
(expressing C1QB, C1QA, and C1QC), endothelial cells (expressing
VWF and CLDN5), dendritic cells (DC) (expressing LILRA4 and
GZMB), fibroblasts (expressing COL1A1 and COL1A2), T cells

Fig. 1 Study design and single-cell transcriptional profiling of lung cells. A H&E stanning of biopsy specimens in the left upper lobe from
the patient with FHP showing massive fibroblast foci (black star) and mono-nuclear cell infiltration (black triangle). Scale bar= 20 μm.
B Schematic of the overall study design. The scRNA-seq and scTCR-seq were applied to surgical lung biopsy specimens of the FHP patient, and
the output data were integrated with single-cell transcriptome data from an FHP patient and two transplant donors in a publicly available
dataset for analysis. C t-SNE visualization of 29 cell clusters. D t-SNE visualization of epithelial cells, macrophages, endothelial cells, dendritic
cells, fibroblasts, T cells, B cells, NK cells, mast cells, and monocytes. DC dendritic cells. E The t-SNE map showing the distribution of cells
between control and FHP group. F Relative percentage of sample origins across cell types. G–I AUCell analyses of the relative gene set
enrichment scores in Pro-inflammation signature (G), Cytokines/Chemokines/Receptors signature (H), and EMT (I) signature. The t-SNE maps
showing AUC scores of selected gene signatures (left); the box plots showing AUC scores of selected gene signatures in each cell type
(middle) or sample group (right). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

J. Wang et al.

2

Cell Death Discovery            (2022) 8:38 



(expressing CD3E and IL7R), B cells (expressing IGHG3 and IGLC2),
natural killer (NK) cells (expressing GNLY and NKG7), mast cells
(expressing MS4A2), and monocytes (expressing S100A8 and
FCN1) (Supplementary Fig. 2A). Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses
revealed features of these cells (Supplementary Fig. 2B, C), which
were consistent with previous single-cell analysis of interstitial
lung diseases [10, 11].
Compared with donors, patients with FHP exhibited expanded

populations of fibroblasts, T cells and NK cells (Fig. 1E, F and
Supplementary Fig. 3A, B). Enrichment analyses of inflammatory
response and immune related signatures using AUCell (Fig. 1G–I
and Supplementary Fig. 4A–D) found the greater enrichment of
Inflammatory Response signature in macrophages and monocytes.
Fibroblasts displayed greater enrichment of epithelial mesenchy-
mal transition (EMT) signature. Macrophages and fibroblasts had
significantly higher enrichment of Cytokine signatures. NK cells and
T cells showed greater enrichment of Inflammation-promoting
signatures. Also, we found that FHP had higher enrichment in
Inflammation-promoting, EMT, and Cytokines/Chemokines/Recep-
tors signatures than normal control. Taken together, FHP exhibited
higher enrichment of inflammatory response, inflammation-
promoting, and EMT signatures than normal control.

Single-cell RNA-seq analysis reveals disease-specific
macrophage subpopulations in FHP lungs
Macrophages have a crucial role in the development of ILD and
pulmonary fibrosis [12]. To identify the macrophage subpopulations
overabundant in FHP, macrophages were divided into ten sub-
clusters (cluster 0-9) (Fig. 2A and Supplementary Fig. 5A). We further
analyzed the difference of these subclusters in FHP and normal lungs.
We found that cluster 4, 5, 6, 7, and 9 were prominent macrophage
subclusters in FHP subjects (Fig. 2B and Supplementary Fig. 5B). In
contrast, cluster 0, 1, 2, and 3 were predominant macrophage subsets
in the normal lungs. Next, we identified three predominant
macrophage subtypes in FHP: PLA2G7high (expressing PLA2G7),
FN1high (expressing FN1), and MS4A6Ahigh macrophages (expressing
MS4A6A) (Fig. 2C and Supplementary Fig. 5C, D). GO enrichment
analysis indicated that FN1high macrophages were enriched in
neutrophil activation. PLA2G7high and MS4A6Ahigh macrophages
were involved in neutrophil activation, myeloid leukocyte migration
and leukocyte chemo taxis (Supplementary Fig. 6A).
Using AUCell analysis, we found an increase of inflammatory

response, para-inflammation, and EMT signatures in FHP compared
to those in normal control (Supplementary Fig. 6B–D). Moreover, we
identified 140 upregulated and 73 downregulated genes through
differential gene-expression (DEG) analysis of macrophages between
FHP and normal control (Supplementary Fig. 7A). The expression
levels of CCL4, CCL2, CCL18, PLA2G7, SPP1 MS4A6A, FN1, and STAT1
in FHP macrophages were higher than those in macrophages from
normal control (Supplementary Fig. 7B). Cytokines and chemokines
expression analyses showed that macrophages from FHP displayed
higher expression levels of CCL4, CCL18, CXCL10, CCL5, CCL3, and
TNF than those from normal control (Supplementary Fig. 7C). GO
enrichment analysis indicated that upregulated DEGs of FHP-specific
macrophages were predominantly enriched in leukocyte chemo-
taxis, leukocyte migration, and myeloid leukocyte migration
(Supplementary Fig. 7D). To explore the potential biological function
of PLA2G7 in FHP, we defined the PLA2G7high macrophages based
on PLA2G7 expression levels greater than 1 (Supplementary Fig. 8A).
PLA2G7high macrophages exhibited higher expression levels of
chemokines (CCL18, CXCL10, and CCL2), IL1RN, cysteine cathepsins
(CTSB), lipid transport-related genes (APOE) and TYMP compared
with PLA2G7low macrophages (Supplementary Fig. 8B). PLA2G7high

macrophages also showed stronger activities of leukocyte migration
and cell chemotaxis (Supplementary Fig. 8C).
Next, we performed multiplex immunofluorescence stain on

tissue with CD68, PLA2G7, and MS4A6A antibodies. The results

revealed that the infiltrations of PLA2G7high and MS4A6Ahigh

macrophages existed in lungs with FHP (Fig. 2D). In addition, we
also found that FHP-specific macrophage subsets highly
expressed CCL4 (Supplementary Fig. 9A–C), implicating the
importance of chemotactic function in the development of
fibrotic hypersensitivity pneumonitis. We next found the greater
enrichment of Inflammatory Response signature in PLA2G7high

and MS4A6Ahigh macrophages (Fig. 2E).
Macrophages were defined as classically-activated M1 and

alternatively-activated M2 phenotypes depending on surface
protein markers [10]. We assessed the enrichment of M1 and
M2 signature gene sets using AUCell. FN1high, PLA2G7high, and
MS4A6Ahigh macrophages were found to show significantly higher
enrichment of M2 and M1 gene signatures than other macrophages
(Fig. 2G, H). FHP showed significantly higher enrichment of M2 and
M1 gene signatures than normal control. There was a positive
correlation between M1 and M2 markers (Fig. 2F). Those results
indicated that FHP-specific macrophages displayed as a mixed state
of M1 and M2 phenotypes. We next sought to investigate the
developmental trajectories of macrophage subpopulations using
Monocle 2 during FHP [13]. PLA2G7high and MS4A6Ahigh macro-
phages were found at later developmental time points in FHP
(Fig. 2I and Supplementary Fig. 10A–C). FN1high macrophages were
connected to early time points by a “bridge” of macrophages
defined as other cells. In addition, PPARG_extended motifs
displayed higher gene regulatory activity for other and FN1high

macrophages by using Single-Cell Regulatory Network Inference
and Clustering (SCENIC) [14] (Supplementary Fig. 11A). STAT1 motif
was highly activated in PLA2G7high, MS4A6Ahigh, and FN1high

macrophages (Fig. 2J, K and Supplementary Fig. 11B, C). Taken
together, our findings revealed that FHP samples were character-
ized by high abundance of FN1high, PLA2G7high, and MS4A6Ahigh

macrophage subpopulations. Specifically, these types of cells
mainly drove inflammatory responses and EMT in FHP (Fig. 2L).

Single-cell transcriptional analysis reveals heterogeneity of
alveolar epithelial cells in FHP patients
Alveolar regeneration plays an important role in human lung fibrosis
[15, 16]. We identified 13 subclusters (cluster 11 likely represented
cell doublets), which were manually annotated based on canonical
marker genes, typically assessing the top five differentially expressed
genes across clusters (Fig. 3A, B and Supplementary Fig. 12A, B). We
identified alveolar type 1 (AT1) cells (expressing AGER and KRT7),
alveolar type 2 (AT2) cells (expressing SFTPA1 and SFTPA2), club cells
(expressing SCGB3A2 and SCGB1A1), and ciliated cells (expressing
TPPP3 and CAPS). We also defined a KRT17high basal-like cell
subpopulation with high expression of KRT17 (Fig. 3A, B). FHP
patients exhibited increased proportions of KRT17high basal-like cells
(Fig. 3C and Supplementary Fig. 12C). Besides, we found that
KRT17high basal-like cells exhibited higher expression levels of
COL1A1, FN1, COL6A2, and MMP7 (Supplementary Fig. 12D).
Patients with FHP showed higher expression levels of VEGFA,
KRT8, KRT18, KRT7, and MMP7 than normal control.
We next assessed the enrichment of gene sets with cell type

signatures and hallmark gene signatures (http://www.gsea-
msigdb.org/) using AUCell. We found the greater activity of lung
basal cell and EMT gene sets in KRT17high basal-like cells (Fig. 3D, E
and Supplementary Fig. 13A, B). To explore the potential biological
function of KRT17 in FHP, we here defined KRT17high cell
subpopulation based on KRT17 expression greater than 1
(Supplementary Fig. 14A). KRT17high cells showed stronger
activities of ECM organization, extracellular structure organization,
cell-substrate adhesion, and regulation of actin filament-based
process than KRT17low cells (Supplementary Fig. 14B, C). Enrich-
ment in processes regarding epithelial layer development was also
observed in KRT17high cells. The presence of KRT17high basal-like
epithelial cells were further validated in fibrotic areas of FHP lung
by multiplex immunofluorescence staining (Fig. 3F).
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We next sought to investigate the developmental trajectories of
KRT17high basal-like cells using Monocle 2 and Velocyto R package.
KRT17high basal-like cells and AT1 cells were found at later
developmental time points in FHP. AT2 cells and club cells were
connected to early time points. RNA velocity analysis demon-
strated that KRT17high basal-like cells and AT1 cells have higher
transcriptional activity than other cells (Fig. 3G and Supplementary
Fig. 15). Using SCENIC and GSVA analysis, we also found that
SOX4_extended motif had a key role in transcriptional regulation

of KRT17high basal-like cells (Fig. 3H–J and Supplementary Fig. 16A,
B). Together, our results indicated that KRT17high basal-like
epithelial cells were a crucial factor in determining the prognosis
of EMT in FHP (Fig. 3K).

Single-cell transcriptional analysis unravels heterogeneity of
fibroblasts during FHP
Pulmonary fibrosis is characterized by lung fibroblasts differ-
entiation to myofibroblasts and excessive extracellular matrix

Fig. 2 Single-cell RNA-seq analysis reveals disease-specific macrophage subpopulations in FHP lungs. A t-SNE visualization of ten
macrophage subclusters. B Relative percentage of sample origins across macrophage subclusters. C t-SNE visualization of FN1high macrophages,
PLA2G7high macrophages, MS4A6Ahigh macrophages, and other macrophages. D Multiplex immunofluorescence images of CD68, PLA2G7, and
MS4A6A in lung tissues from the patient with FHP. Scale bar= 10 μm. White arrow, CD68+ MS4A6A+ cells(upper)/CD68+ PLA2G7+ cells(lower).
E AUCell analysis of the relative gene set enrichment scores in Inflammatory response signature. F Scatter plot showing the correlation between
M1 and M2 marker gene expression. G, H AUCell analyses of the relative gene set enrichment scores in M1 (G) and M2 (H) macrophage
signatures. The t-SNE maps showing AUC scores of selected gene signatures (left); the box plots showing AUC scores of selected gene signatures
in each cell type (middle) or sample group (right). I Trajectory analysis of FN1high macrophages, PLA2G7high macrophages, MS4A6Ahigh

macrophages and other macrophages using Monocle 2. J STAT1 motif showed greater enrichment of regulon activity for PLA2G7high and
MS4A6Ahigh macrophages using SCENIC analysis. K t-SNE visualization of AUC values of STAT1 motif in macrophages. L Schematic
developmental trajectories of macrophage subpopulations in FHP lungs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 3 Single-cell transcriptional analysis reveals heterogeneity of alveolar epithelial cells in FHP patients. A t-SNE visualization of
AT1 cells, AT2 cells, club cells, ciliated cells, and KRT17high basal-like cells. AT1: alveolar type I cells. AT2: alveolar type II cells. B The expression
levels of top five marker genes in cell subtypes. C Relative percentage of sample origins across cell subtypes. D, E AUCell analyses of the
relative gene set enrichment scores in Lung Basal Cell signature (D) and EMT signature (E). F Multiplex immunofluorescence images of AGER,
SFTPC, and KRT17 in lung samples from the patient with FHP. Scale bar= 10 μm. G Trajectory analysis of AT1 cells, AT2 cells, club cells, and
KRT17high basal-like cells using Monocle 2 (upper) and Velocyto R package (lower). H SOX4_extended motif showed greater enrichment of
regulon activity for KRT17high basal-like cells using SCENIC analysis. I t-SNE visualization of AUC values of SOX4_extended motif in alveolar
epithelial cells. J t-SNE visualization of expression levels of SOX4 in alveolar epithelial cells. K Schematic developmental trajectories of
KRT17high basal-like cell in FHP lungs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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accumulation [17]. Here, we identified four subclusters, which
were manually annotated based on typically assessing the top
five differentially expressed genes across clusters (Fig. 4A–D and
Supplementary Fig. 17A, B). Cluster 0 was identified as
PLA2G2Ahigh

fibroblasts (expressing PLA2G2A, APOD, and C3).
Cluster 1 was identified as COL1A1high fibroblast based on high
expression of COL1A1 genes. Cluster 2 was identified as
interstitial fibroblasts (TCF21high fibroblasts) based on high
expression of TCF21. Cluster 3 was identified as myofibroblasts
(ACTA2high fibroblasts) with higher levels of ACTA2 and MYH11.
We next identified the active gene sets in cell subtypes using

AUCell. We found the greater activity of myogenesis in hallmark
gene sets in ACTA2high fibroblasts. COL1A1high fibroblast
showed greater activity of EMT. TCF21high fibroblasts had
significantly higher activity of adipogenesis and glycolysis than
other cell types. PLA2G2Ahigh

fibroblasts exhibited greater
activity of angiogenesis and Inflammatory Response signatures
(Fig. 4E and Supplementary Fig. 17C). The presence of
ACTA2high and TCF21high fibroblasts were further validated in
fibrotic areas of FHP lung by multiplex immunofluorescence
staining (Fig. 4F).
We next sought to investigate the developmental trajectories of

fibroblast subtypes using Monocle 2 and Velocyto R package.
ACTA2high fibroblasts and PLA2G2Ahigh

fibroblasts were found at
later developmental time points in FHP. COL1A1high fibroblasts
were connected to early time points. TCF21high fibroblasts were
showed at middle developmental time points in FHP (Fig. 4G and
Supplementary Fig. 18A, B). Using SCENIC and GSVA analysis, we
also found that NR2F2_extended, MEF2C and MEF2C_extended
were specific motifs that had key roles in transcriptional regulation
of ACTA2high fibroblasts (Fig. 4H and Supplementary Fig. 19).
CEBPD and CEBPD-extended motifs were highly activated in
PLA2G2Ahigh

fibroblasts. Together, our results indicated that FHP
patients showed high cell abundances of ACTA2high fibroblasts,
COL1A1high fibroblasts, TCF21high fibroblasts, and PLA2G2Ahigh

fibroblasts (Fig. 4I).

Single-Cell transcriptional analysis unveils functional
heterogeneity of T cells and NK cells in patients with FHP
Patients with HP have significantly higher numbers of NK cells and
CD8+ cells in BALF [18]. T cells and NK cells were integrated and
reclustered to allow clearer identification of subpopulations for
further analysis. We identified six major cell subtypes based on
SingleR in combination with manual adjustment with canonical
markers and top three differentially expressed genes across
clusters (Fig. 5A and Supplementary Fig. 20A–C). Effector memory
CD8+ T cells (CD8+ Tem) (expressing CD8B and GZMK), NK cells
with (expressing FCGR3A), T regulatory cells (Tregs) (expressing
RGS1 and TNFRSF4), KLRG1+ terminal effector CD8+ T cells
(KLRG1+ effector CD8+ T cells) (expressing CD8A and KLRG1), Th1/
Th17 cells (expressing IL7R), and Vd2 gamma delta T cells (γδ T
cell) (expressing IGKC and GNB2L1) were identified.
AUCell analysis with inflammation-promoting genes showed

greater enrichment of Pro-inflammatory signatures in NK cells and
KLRG1+ effector CD8+ T cells compared to all other T cells
(Fig. 5B). Tregs, Th1/Th17 cells and γδ T cells displayed lower Pro-
inflammatory signatures. Next, we assessed immune related gene
signatures using AUCell (Fig. 5C–F and Supplementary
Fig. 20D–H). We found NK cells with higher activity of Cytotoxicity
signature, γδ T cells with greater activity of Chemokine Receptor
signature, Tregs with greater enrichment of TNF Family Member
Receptors signature, CD8+ Tem and KLRG1+ CD8+ effector T cells
with greater enrichment of TCR Signaling Pathway signatures. We
also observed that KLRG1+ effector CD8+ T cells showed high
proportions of clonal cells and high degrees of clonal expansion
by using scTCR-seq (Fig. 5G). Using SCENIC and GSVA analysis, we
also found that TBX21 motif had a key role in transcriptional
regulation of NK cells and KLRG1+ effector CD8+ T cells (Fig. 5H, I

and Supplementary Fig. 20I). STAT1 motif was highly activated in
γδ T cells. Overall, these results demonstrated that different
subsets of T cells and NK cells played varying roles in inflammatory
responses during FHP.

Integrated analysis in scRNA-seq and bulk RNA-seq data
To better assess these subpopulations identified in our studies, we
used ssGSEA to quantify the level of subpopulations in CHP
samples from GSE150910. The gene signatures were based on top
20 marker genes for each cell subpopulation in scRNA-seq
analysis. After normalizing for the total number of cell subpopula-
tion per sample, CHP showed higher enrichment of PLA2G7high

macrophage, γδ T cell, CD8+ T cell, PLA2G2Ahigh
fibroblast,

COL1A1high fibroblast, ACTA2high fibroblast, and KRT17high basal-
like cell signatures compared with health control (Fig. 6A–C).
Next, we examined the expression levels of common shared

DEGs on both bulk RNA-seq data and scRNA-seq data. We found
that the highly expressed genes, PLA2G7 and SPP1, in FHP-specific
macrophage subpopulations were significantly increased in bulk
RNA-seq of CHP lungs (Fig. 6D, E). Moreover, after intersecting
with the 130 DEGs in KRT17high basal-like epithelial cells, 36 genes
were found in both bulk RNA-seq data and scRNA-seq data
(Fig. 6F). Among them, expression levels of ECM-producing genes
(COL1A1), secretory cell markers (SCGB1A1), senescence-
associated genes (CDKN2A), as well as KRT17 were higher in
CHP lungs compared to those of healthy lungs (Fig. 6G and
Supplementary Fig. 21A). Afterward, we combined ACTA2high and
TCF21high fibroblasts to obtain a total of 317 DEGs. The same
method was used to obtain 37 overlapping genes, such as
COL1A1, COL3A1, MMP11, and so on (Fig. 6H, I and Supplemen-
tary Fig. 21B). These results indicated that FHP was in an active
EMT and inflammatory response with greater abundance of
PLA2G7high macrophages, γδ T cell, CD8+ T cell, PLA2G2Ahigh

fibroblast, COL1A1high fibroblast, ACTA2high fibroblast, and
KRT17high basal-like epithelial cells in both bulk RNA-seq and
scRNA-seq data.

Single-cell transcriptional analysis reveals the cell-cell
crosstalk network in FHP
We predicted ligand-target links between interacting cells by
combining their expression data using NicheNet R package
(https://github.com/saeyslab/nichenetr). Epithelial cells and fibro-
blasts are the primary effector cells during pulmonary fibrosis
including IPF and FHP [11, 19–21]. We designated epithelial cells
or fibroblasts as ‘receiver’ to elucidate cell–cell regulatory
networks [22]. Figure 7A showed top 20 ligands probable
regulating epithelial cells. The heatmap showed the regulatory
potential between ligands and target genes expressed in
epithelial cells (Fig. 7C). Interesting, we found the increased
expression levels of COL1A1, NID1, CYR61, ANGPTL1, and CFH in
fibroblasts had the regulatory potential for KRT8 which highly
expressed in basal-like cells (Fig. 7B, C). We also found higher
expression levels of CAMP, PLAU, PSAP, ALOX5AP, and SPP1 in
macrophages showed the regulatory potential for fibroblasts
(Fig. 7D–F). Increased SPP1 and PLAU in macrophages showed
higher regulatory potential for COL1A2 and COL3A1. Increased
MMP9 in monocyte, increased PLAU deriving from macrophages,
and increased PLAT deriving from endothelia showed the
regulatory potential for MMP2 and MMP3. Overall, these data
inferred a sophisticated and extensive cell–cell interaction net-
work during FHP (Fig. 7G).

DISCUSSION
Integrating bulk RNA-seq and scRNA-seq data to study the
characteristics of diseases has gradually become more popular
and common. Through this method, researchers can obtain more
reliable and meaningful results in cellular heterogeneity. In this
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Fig. 4 Single-Cell transcriptional analysis unravels heterogeneity of fibroblasts during FHP. A t-SNE visualization of PLA2G2Ahigh

fibroblasts, COL1A1high fibroblasts, TCF21high fibroblasts, and ACTA2high fibroblasts. B The heatmap showing the expression levels of top five
marker genes in fibroblast subpopulations. C Relative percentage of fibroblast subpopulations in lung from the patient with FHP. D Violin plots
displaying the expression levels of the representative genes in each fibroblast subpopulation. E Relative gene set enrichment scores of
subpopulations calculated by AUCell analysis. FMultiplex immunofluorescence images of TCF21, ACTA2, and COL1A1 in lung tissues from FHP.
Scale bar= 10 μm. G Trajectory analysis of PLA2G2Ahigh

fibroblasts, COL1A1high fibroblasts, TCF21high fibroblasts, and ACTA2high fibroblasts
using Monocle 2 (upper) and Velocyto R package (lower). H CEBPD_extended motif showed greater enrichment of regulon activity for
PLA2G2Ahigh

fibroblasts using SCENIC analysis (left panel). MEF2C_extended motif showed greater enrichment of regulon activity for
ACTA2high fibroblasts (left panel). t-SNE visualization of AUC values of CEBPD_extended and MEF2C_extended motifs in fibroblasts (right
panel). I Schematic developmental trajectories of fibroblast subpopulations in FHP lungs. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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study, we identified ten major cell types and 19 subtypes at the
single cell level. We found that EMT and inflammatory responses
were important characteristic in progressive fibrosis in FHP. In
distinct subsets of lung in FHP, macrophages and monocytes
showed the greater activity of inflammatory responses. Fibroblasts
exhibited greater activity of EMT. Macrophages and fibroblasts
had significantly higher activity of cytokine signatures. We
observed that fibroblasts had the greater regulatory potential
for KRT17high basal-like epithelial cells with increased expression
levels of COL1A1, NID1, CYR61, ANGPTL1, and CFH. We also
observed that macrophages, monocytes and endothelia cells had
the great regulatory potential for fibroblasts through SPP1, PLAU,
MMP9, PLAU, and PLAT.

Lung macrophages have distinct M1 and M2 cell subtypes in
pulmonary fibrosis diseases. Enhanced macrophage M2 program
is associated with fibrotic remodeling of lungs [23]. MS4A6A and
FN1 have been linked to the M2 macrophage phenotype [24, 25].
Pro-inflammatory macrophages in lungs emerging with progres-
sion of COVID-19 show predominantly increased PLA2G7 expres-
sion [26]. Alveolar macrophages from ILD patients express higher
levels of CHI3L1, MARCKS, IL1RN, PLA2G7, MMP9, and SPP1 [10].
SPP1high macrophages exist in normal lungs while tend to increase
dramatically in fibrotic lungs [27]. We here evaluated the role of
lung macrophages in FHP through AUCell. Patients with FHP had a
prominent high score of inflammatory responses and EMT.
Meanwhile, we found that PLA2G7high, FN1high, and MS4A6Ahigh

Fig. 5 Single-cell transcriptional analysis unveils functional heterogeneity of T cells and NK cells in patients with FHP. A t-SNE
visualization of effector memory CD8+ T cells, NK cells, T regulatory cells, KLRG1+ CD8+ terminal effector T cells, Th1/Th17 cells, and Vd2
gamma delta T cells. B AUCell analysis of the relative gene set enrichment scores in Pro-inflammation signature. The t-SNE map showing AUC
scores of selected gene signature (left); the box plot showing AUC scores of selected gene signature in each cell type (right). C–F AUCell
analyses of the relative gene set enrichment scores in TCR Signaling signature (C), Cytotoxicity signature (D), Chemokine signature (E), and
TNF Family Receptors signature (F). G t-SNE visualization of TCR clone type. Cells are colored based on clone size (left), TCR chains (middle), or
clone frequency (right). H TBX21 motif showed greater enrichment of regulon activity for NK cells and terminal effector CD8+ T cells using
SCENIC analysis (left); STAT1 motif showed greater enrichment of regulon activity for Vd2 gamma delta T cells using SCENIC analysis (right).
I t-SNE visualization of AUC values of TBX21 (left) or STAT1 (right) in T cells and NK cells. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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macrophages were closely related to inflammatory responses and
para-inflammation. Moreover, we also elucidated the develop-
mental trajectories of PLA2G7high and MS4A6Ahigh macrophages
in FHP. STAT1 had higher transcription factor activity in
PLA2G7high and MS4A6Ahigh macrophages. The results demon-
strated that the inflammatory responses and EMT in FHP may
relate to PLA2G7high and MS4A6Ahigh macrophages, and STAT1 is
able to regulate polarizations of these cell type.
Terminal differentiation from KRT8+ transitional cells to

alveolar type-1 cells can cause aberrant persistence of
regenerative intermediate stem cell states in human lung
fibrosis [16]. The loss of Cdc42 function in alqaveolar stem cells
(AT2 cells) leads to progressive lung fibrosis [28]. We here
identified the cell subtypes of alveolar epithelial cells including
AT1, AT2, club cells, ciliated cells, and KRT17high basal-like cells.
We found KRT17high basal-like cells showed greater AUC value
of EMT with high expression levels of KRT17, COL1A1, FN1,
COL6A2, VEGFA, KRT8, KRT18, KRT7, and MMP7. These genes
were highly expressed in FHP lungs. Previous study has
revealed the differentiation trajectories from AT2 to KRT5-/
KRT17+ cell state in human IPF [29]. We found that basal-like
cells retain a higher transcriptional activity of KRT17 gene
including splicing and un-splicing RNA. Moreover, we illu-
strated the differentiation trajectories of AT2 and club cells into
KRT17high basal-like cells. In addition, we also found that SOX4
regulates KRT17high basal-like cells in FHP.
Studies of IPF have suggested pathological functions of

abnormal fibroblasts. Fibrotic lungs contain a myofibroblast
phenotype enriched with collagens and ACTA2. Some fibroblast
phenotypes that exhibit increased expression of chemokines [30].

However, little is known about the mechanisms of fibroblast
subpopulations underlying the progressive fibrosis of HP. Here, we
identified ACTA2 high

fibroblasts, COL1A1high fibroblasts, TCF21high

fibroblasts and PLA2G2Ahigh
fibroblasts. Moreover, we demon-

strated the differentiation trajectories of COL1A1high fibroblasts to
ACTA2high fibroblasts or PLA2G2Ahigh

fibroblasts. COL1A1high

fibroblasts and PLA2G2Ahigh
fibroblasts were related to EMT,

angiogenesis, and inflammatory responses. ACTA2high fibroblasts
were enriched with myogenesis. TCF21high fibroblasts showed
greater activity of adipogenesis and glycolysis. Thus, our findings
showed ACTA2high fibroblasts, COL1A1high fibroblasts, and PLA2-
G2Ahigh

fibroblasts drives progressive fibrosis in HP.
Immune-checkpoint inhibitor associated HP has been iden-

tified as potentially severe events through inhibiting the
cytotoxic T-lymphocyte antigen (CTLA)−4 pathways and
programmed cell death protein 1 (PD1) in patients with cancer
[31–34]. CD28/B7 antagonist decreases the extent of lung
damage and inflammatory cell infiltrations, and affects the HP
progression and the lung T cell subset kinetics in mice [35]. The
results indicate that T cells and immune-checkpoint pathway
may be related to HP pathogenesis. Previous work on Tregs
and γδ T cells exhibited different transcriptional changes in
response to regenerative or fibrogenic environmental causes
[36]. We found that CHP had higher abundance of regulatory
T cells, γδ T cells, GZMK+ CD8+ effector memory T cells,
KLRG1+ effector CD8+ T cells through ssGSEA in GSE150910
databases. KLRG1+ effector CD8+ T cells showed develop-
mental plasticity through regulating KLRG1 [37]. Here, AUCell
analysis suggested that NK cells and KLRG1+ CD8+ effector
cells showed greater enrichment of Inflammation-promoting

Fig. 6 Integrated analysis in scRNA-seq and bulk RNA-seq data. A 2-dimensional plot of PCA analysis. B Volcano plot showing DEGs
between CHP lungs and control lungs. C Heatmap for ssGSEA score across two sample groups according to top 20 marker genes of cell
subtypes based on scRNA-seq analysis. D, F, H Venn diagrams showing overlapping genes between DEGs in CHP lungs and DEGs in specific
cell subtypes. E, G, I The box plots displaying expression levels of selected genes between CHP and control lungs.
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signature. Tregs were related to inflammatory responses with
low inflammation-promoting activity. γδ T cells were related to
chemokine-production with higher expression levels of LTB,
IL32, TYMP, SA100A6, CCL14, and CXCL13. Subsequently,
integrating analysis further confirmed the higher abundance
of Tregs and γδ T cells in CHP and its clinical implications.
In conclusion, our study depicted the cell landscapes of fibrotic

hypersensitivity pneumonitis (Fig. 8), highlighting the indispen-
sable role of cell subpopulations in shaping the complexity and
heterogeneity of FHP, and identified potential subtype-specific
functions and hopefully achieve therapeutic for FHP patients.

MATERIALS AND METHODS
Specimens and ethical considerations
Written informed consent form was signed by the subject. The study
protocols were approved by the Ethics approval Chengdu Third People’s
Hospital Institutional Review Board, and all procedures complied with all
relevant ethical regulations. Fresh tissue samples from the lung lesion of
the above-described patient were obtained directly from the
operating room.

Sample processing
Single cells were collected from lung tissues as described previously [10].
Briefly, fresh lung tissues were minced to smaller pieces of less than 1mm

Fig. 7 Single-cell transcriptional analysis reveals the cell-cell crosstalk network in FHP. A Ligand activity prediction by NicheNet showing
the top 20 ligands best predicting the entire DEGs in epithelial cells between FHP and control lungs. B The bubble plot showing expression
patterns of the predicted ligands on macrophages, endothelial cells, fibroblasts, T cells, NK cells and monocytes. C Ligand–target matrix
displaying the regulatory potential of predicted ligands on target genes from the epithelial cells in FHP lungs. D The top 20 ligands best
predicting the entire DEGs in fibroblasts between FHP and normal lungs. E The bubble plot showing expression patterns of the predicted
ligands on epithelial cells, macrophages, endothelial cells, T cells, NK cells, and monocytes. C Ligand–target matrix displaying the regulatory
potential of predicted ligands on target genes from the fibroblasts in FHP lungs. G Schematic showing the inferred cell-cell interaction
network during FHP.
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in the RPMI 1640 cell culture medium (Gibco) with 10% heat inactivated
fetal bovine serum (FBS, Gibco), and enzymatically digested with mix of
Dispase II, Pronase, Collagenase A, Collagenase IV, Elastase, and DNase I for
1 h on shaker at 37 °C. The dissociated cells were passed through a 70 μm
Cell-Strainer (BD). After removal of the supernatant by centrifugation
(350×g, 10min) and depletion of erythrocytes in the pellet with RBC lysis
buffer (Thermo Fisher Scientific), cells were counted and critically assessed
for cell viability and separation.

10× Genomics single-cell RNA/TCR library preparation and
sequencing
scRNA-seq library was generated using the Chromium Single Cell 5′
Reagent Kits v2 (10× Genomics) according to the manufacturer’s
instructions and targeting 8000–15,000 cells, and coupled scTCR-seq
library was generated using Chromium Single Cell V(D)J Enrichment Kit,
Human T Cell (10× Genomics). All the following steps were performed
using the standard manufacturer’s protocols. cDNA library was sequenced
on an NextSeq 2000 platform (Illumina).

Single-cell RNA-Seq data processing
Low-quality reads were filtered out, and CellRanger v5.0.0 (10× Genomics)
was applied to align reads and generate the gene-cell unique molecular
identifier (UMI) matrix, using the human reference genome GRCh38. Seurat
(version 4.0.3) in R (4.1.0) was used to screen out high-quality cells
(500–5000 genes, 1600–25,000 UMIs, and mitochondria content less than
15%) for further analyses, which excluded most of empty wells or doublet
cells [38].

Single-cell RNA-Seq data collection
Single-cell RNA-Seq raw matrices of a total of 11,445 cells from a recent
published study on human pulmonary fibrosis [10], GSE122960, covering
lung tissues from two lung transplant donors (8761 cells) and a patient
with FHP (2684 cells) were accessed from the GEO public database. Low-
quality data were excluded using Seurat as described above.

Integrated single-cell transcriptomic analyses
After normalization with NormalizeData(), FindVariableFeatures() was
applied to identify highly variable genes in each sample. Integration was
performed by FindIntegrationAnchors() and IntegrateData() function in

Seurat with default options. Integrated data was scaled by the ScaleData()
function. Principal components analysis and clustering were conducted
with 30 PCs and a resolution of 0.8 in FindClusters(). For visualization, the
dimensionality was reduced using the t-Distributed Stochastic Neighbor
Embedding (t-SNE) with RunTSNE().

Single-cell differential gene expression analyses and
functional enrichment analyses
Single-cell differential gene expression analyses were conducted in MAST R
package [39]. Likelihood ratio tests between the full and reduced model
formulas were conducted to find DEGs. Multiple testing corrections were
performed using Benjamini & Hochberg method. Genes with FDR < 0.05
were identified as DEGs. FindMarkers() and FindAllMarkers()function in
Seurat were used to calculate cluster-specific marker genes (min.pct = 0.3,
logfc.threshold = 0.25). The clusterProfiler package in R was used to
conduct GO or KEGG enrichment analyses.

Collection of gene signatures and AUC analyses
Cell type gene signatures and hallmark gene signatures were collected
from Molecular Signatures Database (http://www.gsea-msigdb.org/), and
Immune-related gene signatures were collected from ImmPort Portal
(https://www.immport.org/). M1 and M2 macrophage signatures, Cyto-
kines/Chemokines/Receptors signature, HLA signature, Inflammation-
promoting signature, MHC signature, and Parainflammation signature are
available in supplementary files. GSVA were performed with the GSVA R
package v 1.40.1. Calculation and visualization of AUC values were
performed via AUCell package v1.14.0 in R.

Pseudotime trajectory analyses
Monocle R package v 2.20.0 was used for inferring the pseudotime
trajectories [13]. We used high variable gene sets between cell clusters
detected by Seurat to build pseudotime trajectories. Single cells were
projected onto trajectory trees after reducing dimension via method of
DDRTree and denoting pseudotime states with orderCells() function.
Branch-dependent gene expression patterns were analyzed by BEAM()
function.

RNA velocity analyses
Velocyto R package was used to calculate RNA velocity values for each
gene by recounting the spliced and unspliced reads with aligned bam files.

Cell interaction analyses
NicheNet method was applied for inferring cell communication networks
based on official workflow of nichenetr R package [22]. DEGs in receivers
between FHP and control lungs were used to predict the top 20 potential
regulatory ligands, their target genes on receivers, as well as the possible
cell types as sources of ligand expression.

Transcription factor module analyses
We used SCENIC method to predict active transcription factor modules
[14]. After downloading transcription factor motif RcisTarget database for
the hg38 human reference genome and excluding genes not in the
database, gene coexpression modules were inferred by the R package
GENIE, and transcription factor network analysis was implemented in
SCENIC R package. Then, regulon activity scoring for TF modules and
visualization were performed via AUCell package in R.

Single-cell TCR-seq analyses
Raw sequencing files were aligned and annotated by using CellRanger
v5.0.0 (10× Genomics). After removal of cells lacking a TCR alpha or TCR
beta chain, or expressing two or more TCR alpha/TCR beta chains. TCR
clonotypes were assigned based on the CDR3α and CDR3β nucleotide
sequences.

Bulk RNA-seq data collection and analyses
Bulk RNA-seq data from GSE150910 with lung samples from chronic
hypersensitivity pneumonitis (n= 82) and healthy controls (n= 103) were
accessed from the GEO data repository [40]. Differential expression analysis
was implemented in the R package DESeq2 [41]. ssGSEA were performed
with the GSVA R package v 1.40.1.

Fig. 8 Dynamic cellular changes during FHP.We identified unique
cell subpopulations including KRT17high basal-like epithelial cells,
FN1high macrophages, PLA2G7high macrophages, MS4A6Ahigh

macrophages, ACTA2high fibroblasts, COL1A1high fibroblasts,
TCF21high fibroblasts, and PLA2G2Ahigh

fibroblasts in FHP lungs.
We also observed an expansion of NK cells and CD8+ T cells
during FHP. These subpopulations are potentially key players for
FHP pathogenesis.
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Immunofluorescence staining
Immunofluorescence staining was done as described previously [42].
Paraffin-embedded lung tissues were sliced into 5 µm slides using
standard histological methods. After dewaxing and antigen retrieval,
sections were blocked with 10% goat serum (Thermo Fisher Scientific) for
45min at 37 °C. Specimens were then incubated with primary antibodies
including CD68(Affinity, DF7518, 1:200), PLA2G7(Proteintech, 15526-1-AP,
1:200), MS4A6A(Bioss, bs-13692R, 1:200), ACTA2(Affinity, AF1032, 1:200),
AGER(Affinity, AF5309, 1:200), TCF21(Affinity, DF13477, 1:200), SFTPC
(Affinity, DF6647, 1:200), KRT17(Abbkin, ABM0032, 1:200), and COL1A1
(Affinity, AF7001, 1:200) for 1 h at 37 °C. Then the corresponding secondary
antibodies including Alexa Fluor ® 488 goat anti-mouse IgG (H&L, 1:1000),
Alexa Fluor ® 555 goat anti-Rabbit IgG (H&L, 1:1000) or Alexa Fluor ® 649
goat anti-Rabbit IgG (H&L, 1:1000) were incubated for 1 h at 37 °C, and cell
nucleus were stained with 4′-6-diamidino-2-phenylindole dihydrochloride
(DAPI) (Biosharp). After using Vector® True VIEW™ Autofluorescence
Quenching Kit (Vectorlabs) to diminish autofluorescence, the stained
slides were photographed using laser scanning confocal microscope
(Olympus), and analyzed with CellSens Dimension Software (Olympus).

Statistical analysis
The Wilcoxon test was used to compare between two groups. One-way
ANOVA was used for comparison of more than two groups. P values < 0.05
were considered statistically significant.

DATA AVAILABILITY
Some or all data, models, or code generated or used during the study are available
from the corresponding author by request.
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