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Introduction
Barrett’s esophagus (BE) is the only known pre-
malignant precursor for esophageal adenocarci-
noma (EAC) and is thought to follow a linear 
progression from nondysplastic BE to low-grade 
dysplasia to high-grade dysplasia (HGD) and 
finally to cancer.1 Early detection of dysplastic 
lesions and cancer confined to the mucosa allows 
for minimally invasive curative endoscopic treat-
ment, which provides a less invasive method of 
treatment than surgical resection and/or neo 
adjuvant therapy for advanced lesions.2

However, neoplasia within BE may be subtle and 
difficult to recognize, with a recent meta-analysis 
showing high miss rates of around 25% for HGD 
and cancer within 1 year of a negative index exami-
nation.3 The reasons for this are likely multifacto-
rial, including the lack of recognition of subtle 
lesions, lack of detailed inspection of the esopha-
geal mucosa, nonoptimum cleaning techniques, 
and less experienced endoscopists.4 In addition, the 
currently recommended Seattle biopsy protocol for 
tissue sampling has been shown to sample 5% or 
less of the entire BE mucosa thereby potentially 
missing focal areas of neoplasia.5 Faced with these 
challenges, the need for better detection of 

neoplastic areas is, thus, paramount. One possible 
way to improve detection of these lesions is through 
enhanced imaging technologies such as volumetric 
laser endomicroscopy (VLE), confocal laser 
endomicroscopy (CLE), virtual chromoendoscopy, 
and dye-based chromoendoscopy. The American 
Society of Gastroenterology (ASGE) has released 
criteria for the preservation and incorporation of 
valuable endoscopic innovations (PIVI) to evaluate 
the use of advanced imaging techniques. It requires 
that an imaging modality have a per patient sensi-
tivity of ⩾90%, specificity of ⩾80%, and NPV of 
⩾98% in detecting HGD and EAC in order to 
replace four quadrant biopsies.6 Of the currently 
available technologies, dye-based and virtual chro-
moendoscopy are the only two technologies that 
meet these criteria.6 However, the use of these 
image enhancing technologies is operator depend-
ent and subjective, especially by nonexperts.7,8

Artificial intelligence (AI) has emerged in recent 
years as a promising tool in improving clinical 
performance in gastrointestinal (GI) endoscopy. 
The hope is that computer-aided diagnosis will 
play an adjunct role to endoscopists in the early 
detection and characterization of neoplastic 
lesions in BE patients.
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Abstract: Despite advances in endoscopic imaging modalities, there are still significant miss 
rates of dysplasia and cancer in Barrett’s esophagus. Artificial intelligence (AI) is a promising 
tool that may potentially be a useful adjunct to the endoscopist in detecting subtle dysplasia 
and cancer. Studies have shown AI systems have a sensitivity of more than 90% and specificity 
of more than 80% in detecting Barrett’s related dysplasia and cancer. Beyond visual detection 
and diagnosis, AI may also prove to be useful in quality control, streamlining clinical work, 
documentation, and lessening the administrative load on physicians. Research in this area is 
advancing at a rapid rate, and as the field expands, regulations and guidelines will need to be 
put into place to better regulate the growth and use of AI. This review provides an overview of 
the present and future role of AI in Barrett’s esophagus.
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Definitions and terminologies
Machine learning relies on the use of mathemati-
cal model to capture structure and patterns in 
data. The algorithms can automatically “learn” 
experientially and do not need explicit program-
ming.9 A subtype of machine learning is deep 
learning, in which a neural network model has the 
ability to automatically learn features and can be 
useful in endoscopy with learning images and vid-
eos.10 A further subtype of deep learning is convo-
lutional neural network (CNN) which receives 
input (e.g. endoscopic images), learns specific 
features (e.g. pit pattern), and processes this 
information through multilayered neural net-
works to produce an output (e.g. presence or 
absence of neoplasia).10

Developing a machine learning model typically 
requires three sets of data: a training set, valida-
tion set, and testing set. The training set is used to 
build the model using labels. The validation set is 
used to provide a nonbiased evaluation of the 
model and to ensure there is no overfitting to the 
training set data. The test set evaluates the final 
predictive model.9

Overview of current literature

Use of AI with white light and virtual 
chromoendoscopy
Lesion Detection—One of the first studies that 
used a detection algorithm for BE lesions and 

compared it to expert annotations was done 
using a computer algorithm of machine learning 
trained with 100 images from 44 BE patients (see 
Table 1).11 Using color and texture filters, the 
algorithm was able to diagnose neoplastic lesions 
with a sensitivity of 86% and specificity of 87% at 
a per patient level.11 Ebigbo et al.12 were also able 
to validate a CNN system to detect EAC in real 
time with the endoscopic examination of 14 
patients using 62 images, and showed a sensitiv-
ity of 83.7% and specificity of 100%. Hashimoto 
et al.13 developed a CNN trained by 916 images 
of BE and validated with 458 images with a 
reported accuracy of 95.4% for detection of early 
neoplasia.

Going beyond still images, de Groof et al.19 per-
formed one of the initial studies of CAD on live 
endoscopic procedures on 20 patients; 10 with 
BE dysplasia and 10 without dysplasia. The sen-
sitivity of the system per level analysis was 91% 
and specificity was 89% for detection of BE 
neoplasia.

Lesion Characterization—A more recent study 
used a computer aided diagnostic (CAD) system 
(Hybrid ResNet-UNet) that classified images as 
nondysplastic or dysplastic with sensitivity of 
90% and specificity of 88% and achieved higher 
accuracy that nonexpert endoscopists.11

Determining depth of invasion—In a study by 
Ebigbo et al., a deep learning system was trained 

Table 1. Bridging the gaps in Barrett’s esophagus care with artificial intelligence.

Domains in Barrett’s 
esophagus care

Current gaps Artificial intelligence (AI) application

Neoplasia detection High rates of missed neoplasia3 Sensitivity of more than 90% and specificity of 
more than 80% in detecting Barrett’s related 
neoplasia14,15

Neoplasia 
characterization

Not reliably done by nonexperts AI systems show sensitivity of 90% and 
specificity of 88% in characterization of 
dysplasia11

Histopathology 
diagnosis

Low interobserver agreement 
among histopathologists 
especially with low-grade 
dysplasia16

AI algorithm can classify histology images into 
nondysplastic, dysplastic, and cancer with an 
accuracy of 0.85, 0.89, and 0.88, respectively17

Quality control No current reliable way of 
measuring quality of an upper 
endoscopic examination

AI system prompts identification of blind 
spots during upper endoscopy, provides a 
grading score of percentage of mucosa that is 
adequately visualized, and measures inspection 
time18
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and tested to differentiate between T1a and T1b 
Barrett’s cancer using 230 white light endoscopic 
images (108 T1a and 122 T1b) from three ter-
tiary care centers and compared to experts’ clas-
sification. The sensitivity, specificity, and 
accuracy of the AI system 0.77, 0.64, and 0.71, 
respectively, in differentiating T1a from T1b, 
with no significant difference to that of experts, 
indicating that accurate prediction of submucosal 
invasion remains challenging for both experts and 
AI.20 Use of AI in VLE:

Interpretation of VLE images from BE patients 
can be quite difficult and requires a steep learn-
ing curve. An AI software called intelligent 
real-time image segmentation has been devel-
oped to identify VLE features by different color 
schemes. A pink color scheme indicates a 
hyper-reflective surface which implies increased 
cellular crowding, increased maturation, and a 
greater nuclear to cytoplasmic ratio. A blue 
color scheme indicates a hypo-reflective sur-
face which implies abnormal BE epithelial 
gland morphology. An orange color scheme 
indicates lack of layered architecture which dif-
ferentiates squamous epithelium from BE.21 
Another study created an algorithm to identify 
early BE neoplasia on ex vivo VLE images 
showing a sensitivity of 90% and specificity of 
93% in detection with better performance than 
the clinical VLE prediction score.22 A CAD 
system reported by Struveynberg et  al. ana-
lyzed multiple neighboring VLE frames and 
showed improved neoplasia detection in BE 
with an area under the curve of 0.91.23

Published systematic reviews and meta-
analyses
The main drawback of majority of the published 
studies is the lack of external validity, generaliz-
ability, as well as the limited sample sizes to ade-
quately power for diagnostic accuracy as there is 
a need to annotate large test datasets. A recent 
systematic review and meta-analysis by Bang 
et al.14 included 19 studies (10 image-based and 
9 patient-based) on the use of AI in detecting 
esophageal cancer. The majority of the included 
studies used white light examination (except 7 
with narrow-band imaging) and a convolutional 
neural network CAD algorithm (except 5 studies 
that used support vector machine). For the 
image-based studies, the sensitivity was 94% 
(95% CI, 89–96%) and specificity was 88% 
(95% CI, 76–94%) for detection of neoplasia. 

For the patient-based studies, the sensitivity was 
93% (95% CI, 86–96%) and the specificity was 
85% (95% CI, 78–89%)14 for detection of 
neoplasia.

Another systematic review and meta-analysis by 
Lui et  al. included 561 endoscopic images of 
patients with Barrett’s esophagus (6 studies) 
showing the pooled sensitivity of detection of 
neoplastic lesions to be 88% (95% CI, 82–
92.1%), specificity to be 90.4% (95% CI, 85.6–
94.5%), and area under the curve of 0.96 (95% 
CI, 0.93–0.99). From the included studies, 3 
used CNN and 3 studies non-CNN models with 
no significant difference in the performance 
between the two models.15

Histopathology interpretation and AI
Histological diagnosis of BE associated neoplasia 
is challenging and is another area where AI may 
prove to be useful.16 This may be especially true 
with low-grade dysplasia which has been shown 
to have a very low interobserver agreement even 
among expert histopathologists.16 A study by 
Tomita et al.17 using a CNN-based algorithm to 
classify histology images into nondysplastic BE, 
dysplastic BE, and EAC showed a classification 
accuracy of 0.85, 0.89, and 0.88, respectively.

Quality control and AI
An AI system named ENDOANGEL has been 
studied by Chen et al.18 to prompt identification 
of blind spots during upper endoscopy, provide a 
grading score of percentage of mucosa that is 
adequately visualized, and measure inspection 
time to precisely determine the quality of the 
examination. Such use of AI will be beneficial 
moving forward to monitor and record the qual-
ity of exams as physician reimbursement rates 
likely will be increasingly based on outcome 
measures performance with the goal of providing 
value-based care.24 In addition, as these AI qual-
ity systems become more sophisticated, it is pos-
sible that their use will expand to other 
applications, such as providing real-time feed-
back and objective metrics that can be used to 
train young endoscopists.

Regulatory, ethical, medico-legal, and 
financial considerations
In September 2019, the first multidisciplinary 
global gastroenterology AI meeting was held in 
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Washington, D.C., to discuss practice, policy, 
ethics, data security, and patient care issues 
related to identification and implementation of 
appropriate use of AI in gastroenterology.25 The 
American Society of Gastrointestinal Endoscopy 
has also recently formed a task force on AI with 
the primary goal of setting clinical and research 
priorities for AI applications.26 The involvement 
of regulatory agencies such as the Food and Drug 
administration will also be paramount to the 
introduction of AI into clinical practice in order 
to provide regulatory pathways and ensure safety 
of use.27 It will be important to clarify medical 
legal issues surrounding use of AI especially in 
cases where misdiagnosis may occur.

Ethical considerations will also be important in 
the development and application of machine 
learning in advancing health. Care should be 
taken not to de-skill future physicians who are 
training with AI technology. The goal should be 
to enhance physicians’ abilities through human–
computer collaboration rather than replacing 
human cognition. This will be important in cases 
where AI may make diagnostic errors. Given the 
black box nature of these systems, these errors 
will be unpredictable and unexplainable. 
Ultimately, the responsibility of interpreting the 
data will fall on the shoulders of the physician, 
and clinical advice provided by AI software will 
likely be required to be reviewed and verified by 
an expert healthcare professional.28,29

As these systems become commercial, it will also 
be important to track costs and efficiency. It is 
likely these systems will have high costs upfront 
but will ultimately may be cost-efficient if they help 

maintain high-quality examination performance.25 
For instance, AI systems may help identification of 
focal neoplastic areas that can be sampled with tar-
geted biopsies and as such render random biopsies 
unnecessary. This can decrease the number of 
pathology samples and ultimately cost.

Proposed clinical use of AI in upper 
endoscopy
Once AI becomes a clinical reality available to 
physicians, the proposed use during upper endos-
copy will be with live video images that will be sent 
to the AI application and analyzed in real time.26 
The application will be able to detect areas suspi-
cious for neoplasia and measure the size and mor-
phology of lesions (see Images 1–3). It will alert 
the endoscopist to suspicious areas either with a 
screen alert or location box. The endoscopist can 
then decide if the area needs to be sampled based 

Image 1. High definition white-light image of cancer 
in a Barrett’s esophagus segment.

Image 2. Heat map identifying cancer in a Barrett’s 
esophagus segment.

Image 3. Heat map superimposed on endoscopic 
image of Barrett’s esophagus.
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on the characterization provided by the machine 
or managed endoscopically (example: use of endo-
scopic mucosal resection). It is possible that the 
AI system will also generate the endoscopy report 
at the end, including automated Prague C&M 
measurements, measurements of hiatal hernia, 
and so on to be reviewed by the endoscopist for 
verification26 (see Flowchart 1).

Future directions and applications
As AI systems develop, it will be important that 
they are tested and validated in real-world  
settings, in diverse patient populations, with  
physicians of varying expertise, with different 
endoscope types and in different practice settings. 
There has been a proposal to develop a large open-
source image library as a resource to validate AI 
systems while limiting data variability and the 
ASGE AI task force is actively pursuing this vision.

In addition, although the major focus of AI tech-
nologies thus far has been in the field of visual detec-
tion and diagnosis, the future will likely include 
additional applications such as streamlining endo-
scopic and clinical workflows by automatically doc-
umenting and interpreting clinical encounters to 
decrease the administrative workload on physicians. 
AI may also help with practice management by 
facilitating scheduling, surveillance procedures, bill-
ing, and payment.

Conclusion
Barrett’s esophagus related dysplasia and early 
adenocarcinoma can present as very subtle lesions 
that are difficult to detect and characterize endo-
scopically. AI systems show promising results to 
detect these lesions; however, they still need fur-
ther study and validation, especially in the real-
world setting. Commercially developed AI will 
need to demonstrate cost-effective care that will 
provide meaningful value and impact on patient 
care and outcomes. The future appears extremely 
bright as the field continues to expand with accel-
erating momentum. Once clinically available, AI 
promises to significantly impact the field of BE 
detection, diagnosis, and endoscopic treatment.
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Live video images sent to the AI applica�on 

AI system detects areas suspicious for neoplasia 
and measures the size and morphology of 

lesions

AI alerts the endoscopist to suspicious areas 
either with a screen alert or loca�on box

Endoscopist decides next 
step in management

AI system 
generates the 

report at the end 
of the procedure

Flowchart 1. Proposed use of AI during endoscopy.

http://journals.sagepub.com/home/cmg


Therapeutic Advances in Gastrointestinal Endoscopy 14

6 journals.sagepub.com/home/cmg

Conflict of interest statement
The authors declared the following potential con-
flicts of interest with respect to the research, 
authorship, and/or publication of this article: 
N.H. has no conflict of interest. P.S. is a consult-
ant for Medtronic, Olympus, Boston Scientific, 
Fujifilm, and Lumendi. He receives grant support 
from Ironwood, Erbe, Docbot, Cosmo pharma-
ceuticals, and CDx labs.

ORCID iD
Nour Hamade  https://orcid.org/0000-0003- 
0214-158X

References
 1. Bhat S, Coleman HG, Yousef F, et al. Risk of 

malignant progression in Barrett’s esophagus 
patients: results from a large population-based 
study. J Natl Cancer Inst 2011; 103: 1049–
1057.

 2. Wu J, Pan YM, Wang TT, et al. Endotherapy 
versus surgery for early neoplasia in Barrett’s 
esophagus: a meta-analysis. Gastrointest Endosc 
2014; 79: 233–241.e2.

 3. Visrodia K, Singh S, Krishnamoorthi R, et al. 
Magnitude of missed esophageal adenocarcinoma 
after Barrett’s esophagus diagnosis: a systematic 
review and meta-analysis. Gastroenterology 2016; 
150: 599–607.e7; quiz e14–e15.

 4. Rodríguez de Santiago E, Hernanz N, Marcos-
Prieto HM, et al. Rate of missed oesophageal 
cancer at routine endoscopy and survival 
outcomes: a multicentric cohort study. United 
European Gastroenterol J 2019; 7: 189–198.

 5. Jankowski M and Wani S. Diagnostic and 
management implications of basic science 
advances in Barrett’s esophagus. Curr Treat 
Options Gastroenterol 2015; 13: 16–29.

 6. Sharma P, Savides TJ, Canto MI, et al. The 
American Society for Gastrointestinal Endoscopy 
PIVI (Preservation and Incorporation of Valuable 
Endoscopic Innovations) on imaging in Barrett’s 
esophagus. Gastrointest Endosc 2012; 76: 252–
254.

 7. Everson MA, Lovat LB, Graham DG, et al. 
Virtual chromoendoscopy by using optical 
enhancement improves the detection of Barrett’s 
esophagus-associated neoplasia. Gastrointest 
Endosc 2019; 89: 247–256.e4.

 8. Subramaniam S, Kandiah K, Schoon E, et al. 
Development and validation of the international 
Blue Light Imaging for Barrett’s Neoplasia 

Classification. Gastrointest Endosc 2020; 91: 
310–320.

 9. Sharma P, Pante A and Gross SA. Artificial 
intelligence in endoscopy. Gastrointest Endosc 
2020; 91: 925–931.

 10. van der Sommen F, de Groof J, Struyvenberg M, 
et al. Machine learning in GI endoscopy: practical 
guidance in how to interpret a novel field. Gut 
2020; 69: 2035–2045.

 11. de Groof AJ, Struyvenberg MR, van der 
Putten J, et al. Deep-learning system detects 
neoplasia in patients with Barrett’s esophagus 
with higher accuracy than endoscopists in a 
multistep training and validation study with 
benchmarking. Gastroenterology 2020; 158: 
915–929.e4.

 12. Ebigbo A, Mendel R, Probst A, et al. Real-time 
use of artificial intelligence in the evaluation of 
cancer in Barrett’s oesophagus. Gut 2019; 69: 
615–616.

 13. Hashimoto R, Requa J, Dao T, et al. Artificial 
intelligence using convolutional neural networks 
for real-time detection of early esophageal 
neoplasia in Barrett’s esophagus (with video). 
Gastrointest Endosc 2020; 91: 1264–1271.e1.

 14. Bang CS, Lee JJ and Baik GH. Computer-aided 
diagnosis of esophageal cancer and neoplasms in 
endoscopic images: a systematic review and meta-
analysis of diagnostic test accuracy. Gastrointest 
Endosc 2021; 93: 1006–1015.e13.

 15. Lui TKL, Tsui VWM and Leung WK. Accuracy 
of artificial intelligence-assisted detection of 
upper GI lesions: a systematic review and meta-
analysis. Gastrointest Endosc 2020; 92: 821–830.
e9.

 16. Vennalaganti P, Kanakadandi V, Goldblum 
JR, et al. Discordance among pathologists in 
the United States and Europe in diagnosis of 
low-grade dysplasia for patients with Barrett’s 
esophagus. Gastroenterology 2017; 152: 564–570.
e4.

 17. Tomita N, Abdollahi B, Wei J, et al. Attention-
based deep neural networks for detection of 
cancerous and precancerous esophagus tissue on 
histopathological slides. JAMA Netw Open 2019; 
2: e1914645.

 18. Chen D, Wu L, Li Y, et al. Comparing blind 
spots of unsedated ultrafine, sedated, and 
unsedated conventional gastroscopy with and 
without artificial intelligence: a prospective, 
single-blind, 3-parallel-group, randomized, 
single-center trial. Gastrointest Endosc 2020; 91: 
332–339.e3.

http://journals.sagepub.com/home/cmg
https://orcid.org/0000-0003-0214-158X
https://orcid.org/0000-0003-0214-158X


N Hamade and P Sharma 

journals.sagepub.com/home/cmg 7

 19. de Groof AJ, Struyvenberg MR, Fockens KN, 
et al. Deep learning algorithm detection of 
Barrett’s neoplasia with high accuracy during live 
endoscopic procedures: a pilot study (with video). 
Gastrointest Endosc 2020; 91: 1242–1250.

 20. Ebigbo A, Mendel R, Rückert T, et al. Endoscopic 
prediction of submucosal invasion in Barrett’s 
cancer with the use of artificial intelligence: a pilot 
study. Endoscopy 2021; 53: 878–883.

 21. Trindade AJ, McKinley MJ, Fan C, et al. 
Endoscopic surveillance of Barrett’s esophagus 
using volumetric laser endomicroscopy with 
artificial intelligence image enhancement. 
Gastroenterology 2019; 157: 303–305.

 22. Swager AF, van der Sommen F, Klomp SR, 
et al. Computer-aided detection of early Barrett’s 
neoplasia using volumetric laser endomicroscopy. 
Gastrointest Endosc 2017; 86: 839–846.

 23. Struyvenberg MR, van der Sommen F, Swager 
AF, et al. Improved Barrett’s neoplasia detection 
using computer-assisted multiframe analysis of 
volumetric laser endomicroscopy. Dis Esophagus 
2020; 33: doz065.

 24. Sinonquel P, Eelbode T, Bossuyt P, et al. 
Artificial Intelligence and its impact on quality 
improvement in upper and lower gastrointestinal 
endoscopy. Dig Endosc 2021; 33: 242–253.

 25. Parasa S, Wallace M, Bagci U, et al. Proceedings 
from the first global artificial intelligence in 
gastroenterology and endoscopy summit. 
Gastrointest Endosc 2020; 92: 938–945.e1.

 26. Berzin TM, Parasa S, Wallace MB, et al. 
Position statement on priorities for artificial 
intelligence in GI endoscopy: a report by the 
ASGE Task Force. Gastrointest Endosc 2020; 92: 
951–959.

 27. Walradt T, Glissen Brown JR, Alagappan M, 
et al. Regulatory considerations for artificial 
intelligence technologies in GI endoscopy. 
Gastrointest Endosc 2020; 92: 801–806.

 28. Stamm JA, Korzick KA, Beech K, et al. Medical 
malpractice: reform for today’s patients and 
clinicians. Am J Med 2016; 129: 20–25.

 29. Altman R. Artificial intelligence (AI) systems 
for interpreting complex medical datasets. Clin 
Pharmacol Ther 2017; 101: 585–586.

Visit SAGE journals online 
journals.sagepub.com/
home/cmg

SAGE journals

http://journals.sagepub.com/home/cmg
http://journals.sagepub.com/home/cmg
http://journals.sagepub.com/home/cmg

