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Abstract

The central importance of BMP signaling in the development and homeostasis of synovial joint of appendicular skeleton has
been well documented, but its role in the development of temporomandibular joint (TMJ), also classified as a synovial joint,
remains completely unknown. In this study, we investigated the function of BMPRIA mediated signaling in TMJ
development in mice by transgenic loss-of- and gain-of-function approaches. We found that BMPRIA is expressed in the
cranial neural crest (CNC)-derived developing condyle and glenoid fossa, major components of TMJ, as well as the interzone
mesenchymal cells. Wnt1-Cre mediated tissue specific inactivation of BmprIa in CNC lineage led to defective TMJ
development, including failure of articular disc separation from a hypoplastic condyle, persistence of interzone cells, and
failed formation of a functional fibrocartilage layer on the articular surface of the glenoid fossa and condyle, which could be
at least partially attributed to the down-regulation of Ihh in the developing condyle and inhibition of apoptosis in the
interzone. On the other hand, augmented BMPRIA signaling by Wnt1-Cre driven expression of a constitutively active form of
BmprIa (caBmprIa) inhibited osteogenesis of the glenoid fossa and converted the condylar primordium from secondary
cartilage to primary cartilage associated with ectopic activation of Smad-dependent pathway but inhibition of JNK pathway,
leading to TMJ agenesis. Our results present unambiguous evidence for an essential role of finely tuned BMPRIA mediated
signaling in TMJ development.
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Introduction

As an evolutionary creature, the temporomandibular joint

(TMJ) is a unique synovial joint generated only in mammals and is

involved in food capture and intake, speech, as well as maturation

of the facial contour [1]. It is made of specific components

originated from the skull base and the low jaw including the

glenoid fossa, condyle, articular disc, ligaments, and joint capsule.

Although defined as a synovial joint, the developmental process of

TMJ differs significantly from the joints of appendicular skeletons

that are generated by cleavage or segmentation within a single

skeletal condensation [2]. The TMJ develops from two distinct

mesenchymal condensations, the glenoid fossa blastema that

ossifies primarily through intramembranous bone formation, and

the condylar blastema that undergoes endochondral ossification.

These two primordia are initially separated widely by intervening

mesenchyme that was thought to later contribute to the articular

disc and capsule, as well as the synovial lining of joint cavity [3,4]

Subsequently, the condylar primordium, arising from the perios-

teum of the mandibular bone and therefore classified as secondary

cartilage [5,6], grows rapidly towards the glenoid fossa, and

meanwhile, the articular disc forming from a condensed stripe

flanking the apex of the condyle and subsequently separating from

the latter, divides the interzone into the upper and lower joint

cavities [7]. In mice, the mesenchymal condensation of condyle

appears at embryonic day 13.5 (E13.5) and the glenoid fossa at

E14.5 [8]. At E15.5, the shape of glenoid fossa and condyle has

been established, and at E16.5, the upper synovial cavity becomes

discernible with a disc beginning to form. Subsequently at E17.5,

the lower joint cavity appears as a definite articular disc separates

from the apex of the condyle. This intricate multi-step develop-

mental process is regulated by intrinsic and extrinsic factors.
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As for intrinsic constituents, the significance of genetic factors

has attracted the attention of the field. Gene targeting studies have

revealed essential roles for a number of transcription factors and

growth factors in TMJ development, as evidenced by the absence

of condylar cartilage in mice carrying mutations in Sox9, Runx2,

or Tgfbr2, and by the abnormal development of mice carrying

mutations in Shox2 or Spry1 and Spry2 [8–14]. Ihh, which plays a

pivotal role in long bone development and digit joint formation

[15], has been implicated in TMJ development by initiating the

formation of articular disc and instructing the disc to undergo

proper morphogenesis and to separate from the condyle, as well as

in maintaining proper structure and function of the TMJ after it

forms [16–18]. Lack of Ihh or its downstream effector Gli2 results

in missing of a distinct disc in the TMJ [16,17]. In addition,

extrinsic factors such as biomechanical force also contribute to

TMJ development [2].

Bone morphogenetic proteins (BMPs) exert diverse biological

functions during development and postnatal homeostasis. BMP

signals are transduced into cells through the type I and type II

transmembrane serine/threonine kinase complexes by activating

Smad-dependent (canonical) pathway, as well as Smad-indepen-

dent (non-canonical) pathway via activation of the mitogen-

activated protein kinase (MAPK) signaling [19]. Extensive studies

have established critical roles for BMP signaling in skeletal

development and joint morphogenesis, particularly in joint

formation of long bones. Joint formation in the appendage

skeletons begins with the formation of a condensed cell stripe

known as interzone in the developing cartilage template [20]. Cells

in the edges of the interzone give rise to the articular cartilage that

covers the ends of the adjacent skeletal elements, while cells in the

middle of the interzone undergo programmed cell death, leading

to physical separation of the contiguous cartilage element and

formation of joint cavity [21]. Several members of BMP family,

including Bmp2, Bmp4, Gdf5, Gdf6, Gdf7, are expressed in the

interzone along with BMP antagonists Chondin and Noggin [22–

26]. Mice carrying mutations in Gdf5 or Gdf6 exhibit lack of joint

formation at specific locations [25,27], demonstrating a direct

action of BMP signaling in joint morphogenesis. On the other

hand, elevated BMP signaling also blocks joint formation, as

manifested by failure in joint formation in the limbs of Noggin
mutant mice [28]. These loss-of- and gain-of-function studies

indicate an essential role for tightly regulated BMP activity in

synovial joint formation. Furthermore, BMP signaling is also

involved in postnatal joint homeostasis and tissue remodeling

[26,29].

Being one of the two primary BMP type I receptors (BMPRIA

and BMPRIB), BMPRIA plays crucial roles in skeleton patterning

and development. In developing limb skeletons, BmprIa is

expressed in the joint interzone, perichondrium, periarticular

cartilage, and hypertrophic chondrocytes [26,30–32]. Tissue

specific deletion of BmprIa in cartilage lineage leads to chondro-

dysplasia attributed at least partially to the defective cell

proliferation as well as the premature hypertrophy of chondrocytes

associated with down-regulation of Ihh [33,34]. While joint defect

was not identified in mice carrying cartilage specific inactivation of

BmprIa, mice carrying tissue specific inactivation of BmprIa in the

interzone indeed exhibited missed joints in the ankles [26],

indicating a requirement of BMPRIA mediated signaling in joint

formation.

Despite a wealth of documents on BMP signaling in bone and

joint formation of appendicular skeletons, little is known about its

role in TMJ development. Thus far, the only line of evidence

implicating a possible involvement of BMP signaling in TMJ

formation is that Bmp2 and Bmp7 were found to be expressed in

the developing condyle [17,35]. To gain an insight into BMP

signaling in TMJ development, in this study, we used transgenic

loss-of- and gain-of-function approaches to investigate the function

of BMPRIA mediated signaling in TMJ development.

Materials and Methods

Ethics statement
Experiments that involved use of animals in this study was

approved by the Institutional Animal Care and Use Committee

(IACUC) of Tulane University (protocol number: 0367R) and was

in strict accordance with the recommendations in the Guide for

Care and Use of Laboratory Animals of the National Institutes of

Health.

Animal and sample collection
The generation and identification of transgenic and gene-

targeted animals, including Wnt1-Cre, BmprIaf/f, and pMes-
caBmprIa that carries a conditional constitutively active form (with

Gln203 to Asp change) of BmprIa transgenic allele, have been

described previously [15,31,36,37]. Wnt1-Cre;BmprI f/f embryos

were obtained by crossing Wnt1-Cre;BmprIaf/+ mice with

BmprIaf/f line. Wnt1-Cre;pMes-caBmprIa embryos were generat-

ed by mating Wnt1-Cre mice with pMes-caBmprIa transgenic line.

Ihh null mutants were harvested from intercross of Ihh heterozy-

gous mice. Embryos with BmprIa deficiency in their neural crest

cells (Wnt1-Cre;BmprIaf/f) die around E12.5 due to norepineph-

rine depletion [38,39]. To prevent early embryonic lethality,

pregnant females were administrated with the b-adrenergic

receptor agonist from 7.5 postcoitum (dpc) on by supplementing

drinking water of dams with 200 mg/ml isoproterenol, which

would allow Wnt1-Cre;BmprIaf/f embryos to survive to term

[40,41]. Embryos were collected from the timed pregnant females,

and head samples were dissected in ice cold PBS, fixed individually

in 4% paraformaldehyde (PFA) or z-fix (ANATECH Ltd; #170)

overnight at 4uC, and tail clip from each embryo was used for

PCR-based genotyping, respectively. Mutant and control heads

were positioned for serial coronal sections through the TMJ.

Comparable sections through the apex of the condyle were picked

up for histological, in situ hybridization, immunostaining, and cell

apoptosis analyses.

Histology, in situ hybridization, and
immunohistochemistry, and Tunel assay

For histological study, paraffin sections were made at 6 mm and

subjected for standard Hematoxylin/Eosin staining or Azoncar-

mine G/Aniline blue staining, as described [42]. Five mutant

samples at each stage examined were used to ensure consistency of

the phenotype. For in situ hybridization analyses, sections were cut

at 10 mm and pretreated with proteinase K and hybridized with

appropriate probes. Transcripts were detected by color reaction

using BM purple (Roche) as described previously [43]. For

immunohistochemical staining, frozen sections, made at 8 mm,

were blocked with 4% goat serum and then incubated with

primary antibodies against BMPRIA (Abcam; ab38560), Lubricin

(Santa Cruz; sc-9854), pSmad1/5, pJNK, pERK, and p-p38 (from

Cell Signaling; #9516, #9255, #4370, and #9211), respectively,

at 4uC overnight. After washing, samples were incubated with

secondary antibodies (Alexa Fluor488 goat anti-rabbit IgG from

Invitrogen; #A-11034), counterstained with DAPI, and visualized

under fluorescent microscope. Negative controls without primary

antibodies were included in parallel. At least three samples of each

genotype were used for histology, in situ hybridization, and

immunohistochemistry analyses. Terminal deoxynucleotidyl trans-
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ferase dUTP nick end labeling (Tunel) assay was applied to detect

apoptotic cells using In Situ Cell Death Detection Kit (Roche), as

described previously [44,45]. Three samples of each genotype

were subjected to Tunel assays. Tunel-positive cells within the

interzone were counted and presented as percentage of total cells

within arbitrarily defined areas. Student’s t-test was used to

determine the significance of difference between wild type controls

and mutants, and the results were presented as P value.

Results

Inactivation of BmprIa in CNC lineage leads to defective
TMJ formation

To investigate the role of BmprIa in TMJ development, we

began with examination of BMPRIA expression by immunohis-

tochemistry. At E14.5 when both the primordial condyle and

glenoid fossa become discernible, BMPRIA was found present in

the developing condyle and glenoid fossa as well as the interzone,

with a relatively low level in the condylar cartilage (Fig. 1A). At

E15.5, BMPRIA expression retained in the condyle, glenoid fossa,

and interzone, with an increased level in chondrocytes undergoing

hypertrophy (Fig. 1C). This expression pattern is similar to that in

the developing limb skeleton including the joints [26,30–32],

suggesting a role for BMPRIA in TMJ morphogenesis. Since the

condyle, glenoid fossa, and interzone cells are all derived from

CNCs [8], we inactivated BmprIa in CNC lineage using the

Wnt1-Cre transgenic allele. Immunohistochemistry confirmed the

absence of BMPRIA in the developing TMJ of Wnt1-Cre;Bm-
prIaf/f mice (Fig. 1B).

Histological analyses showed that the initial condensation of the

condylar anlage in mutant mice appeared comparable to

littermate controls at E13.5 (Fig. 2A, 2B). At E15.5, the

morphology of the glenoid fossa did not exhibit an obvious

difference between mutants and controls, but the size of the

mutant condyle was reduced as compared to controls (Fig. 2C,

2D). At E18.5, the control TMJ displayed distinct structures,

including a definite articular disc, the upper and lower synovial

cavities, and the fibrocartilage/synovial membrane on the

articular surface of the glenoid fossa and condyle (Fig. 2E, 2G).

However, at this stage, the mutant TMJ exhibited a number of

severe defects, including a hypoplastic condyle, lack of a definite

disc, failed formation of an upper joint cavity evidenced by the

existence of loose connective tissue in the interzone, as well as the

absence of the fibrocartilage/synovial membrane of the glenoid

fossa (Fig. 2F). Close examination of the mutant condyle at E18.5

revealed the formation of a disc-like structure that failed to

separate from the apex of the condyle, leading to an absence of the

lower joint cavity (Fig. 2F, 2H). The lack of a synovial joint cavity

in the Wnt1-Cre;BmprIaf/f TMJ was further confirmed by the

absent expression of Lubricin, a key component of joint fluids

[46,47], as compared to its abundant expression in controls

(Fig. 2I, 2J).

Delayed chondrocyte maturation in the Wnt1-
Cre;BmprIaf/f condyle

Despite being a secondary cartilage, the growth of condylar

cartilage takes the similar chondrogenesis and endochondral

ossification process as that in long bone formation. Since BMPRIA

mediated signaling is known to regulate primary cartilage

differentiation [33,34], we set to examine chondrogenic differen-

tiation process in the Wnt1-Cre;BmprIaf/f condyle. In the

developing condyle, mesenchymal condensation appears at

E13.5, and chondrogenic differentiation occurs at E14.5, and

hypertrophy initiates at E15.5 [8]. We found that the timing of

initial condensation of the condylar anlagen, as indicated by the

expression of Sox9, and chondrogenic differentiation, determined

by Col II expression, was comparable between wild type controls

and Wnt1-Cre;BmprIaf/f mice (Fig. 3A–D). However, the mutant

condyle exhibited a delayed terminal hypertrophy of chondro-

cytes, as assessed by the delayed Col X expression (Fig. 3E–H), and

the longer distance between the apex and the beginning of

hypertrophic zone in the mutant condyle at E18.5 (Fig. 3G, 3H).

This phenotype differs from that in long bones where inactivation

of BmprIa in condrocytes causes premature chondrocyte differ-

entiation [34], likely due to different properties of primary v.s

secondary cartilage.

Down-regulation of Ihh and inhibition of apoptosis in the
Wnt1-Cre;BmprIaf/f TMJ

The similar TMJ phenotype between Wnt1-Cre;BmprIaf/f mice

and the mice carrying mutations in Ihh or its downstream effectors

[16,17], particularly the failure of disc separation, persistent

interzone cells, and lack of fibrocartilaginous articular surface layer

of the glenoid fossa in both mutants (Fig. 2F, 2H; Fig. 4B, 4D),

and the overlapped expression pattern of BmprIa with Ihh in the

developing condyle (Fig. 1) [8,17], prompted us to examine Ihh
expression in the developing condyle of Wnt1-Cre;BmprIaf/f mice.

In situ hybridization assay revealed a dramatic down-regulation of

Ihh expression in the developing condyle of the mutants at E14.5

and E15.5, as compared to controls (Fig. 4G–J), consistent with

the role of BMPRIA as a positive regulator of Ihh expression

[34,48]. BmprIa thus likely acts through Ihh to regulate TMJ

formation.

Because BmprIa is also expressed in the interzone mesenchymal

cells that contribute to the articular disc and synovial membrane of

the TMJ, the lack of fibrocartilage layer of the glenoid fossa and

the persistence of interzone cells in the Wnt1-Cre;BmprIaf/f TMJ

could be attributed either directly to the lack of BmprIa in these

Figure 1. Expression of BMPRIA in the developing TMJ. (A–D)
Immunohistochemistry shows expression of BMPRIA in the condylar
cartilage, interzone, and glenoid fossa of E14.5 (A) and E15.5 (C) wild
type animals, but a lack of staining on the Wnt1-Cre;BmprIaf/f TMJ (B)
and on the negative control (D). Red arrows point to positive staining in
the interzone, and white arrow points to the hypertrophic region where
strong expression is detected. Abbreviation: C, condyle; G, glenoid
fossa; IZ, interzone. Scale bar = 100 mm.
doi:10.1371/journal.pone.0101000.g001
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cells or indirectly to the significantly reduced level of Ihh in the

condyle. To distinguish these alternatives, we conducted immu-

nohistochemistry to examine BMPRIA expression in the Ihh-/-

TMJ at E14.5. We found that although BMPRIA expression

appeared comparable in the glenoid fossa of controls and mutants,

its expression level was significantly reduced in the interzone and

the condyle of the Ihh mutant TMJ (Fig. 4E–4F9).

While the mechanism of cavitation in TMJ development

remains to be addressed, programmed cell death in the interzone

is regarded as a critical cellular mechanism for joint cavity

formation in long bones [21]. Since BMPRIA mediated signaling

is required for programmed cell death in the limb, particularly in

the interdigital region [26,49], we wondered if the persistence of

the loose connective tissue in the interzone of the Wnt1-
Cre;BmprIaf/f TMJ is a consequence of reduced level of apoptosis.

Tunel assay indeed revealed abundant apoptotic cells specifically

in the interzone of the control TMJ at E15.5 (Fig. 4K, 4K9). In

contrast, Tunel assay detected a significantly reduced level of

Figure 2. Wnt1-Cre;BmprIaf/f mice display TMJ defects. (A–H) H&E
staining shows histology of the developing TMJ of wild type controls (A,
C, E, G) and mutants (B, D, F, H). Note that the initial condensation of
the condylar anlagen at E13.5 (A, B) and the morphology of the glenoid
fossa at E15.5 (C, D) appear comparable between the controls and
mutants. However, the size of the mutant condyle is reduced at E15.5
(D). At E18.5, distinct structures including a definite disc, the upper and
lower joint cavities, and the articular surface of the glenod fossa are well
present in the control TMJ (E, G). However, in mutants, while a disc-like
compact layer could be identified closely associated with the apex of
the condyle, it fails to separate to form a distinct disc. In addition, the
interzone cells persist, and a fibrocartilage layer fails to form on the
articular surface of the glenoid fossa (F, H). (I, J) Immunnohistochemistry
reveals expression of Lubricin in the synovial membrane of the control
TMJ (I), and the complete absence of Lubricin in the mutant TMJ (J).
Arrows in (A, B) point to the condylar condensation, and in (G, H) point
to the disc. Arrowheads in (E, F) point to the disc. Red arrowhead points
to the articular surface in (G) and the synovial membrane in (I).
Abbreviation: C, condyle; G, glenoid fossa; M, Meckel’s cartilage; IZ,
interzone; LC, lower cavity; UC, upper cavity; LPM, lateral pterygoid
muscle. Scale bar = 50 mm.
doi:10.1371/journal.pone.0101000.g002

Figure 3. Delayed hypertrophic differentiation in the Wnt1-
Cre;BmprIaf/f condylar cartilage. (A, B) In situ hybridization shows
Sox9 expression in the condylar condensation (arrow) of wild type (A)
and mutant (B) at E13.5. (C, D) Col II expression exhibits comparable
pattern in the condyle of wild type (C) and mutant (D) at E14.5. (E–H) In
situ hybridization reveals Col X expression in the wild type condyle at
E15.5 (E) and E18.5 (G). However, Col X expression is not detected in the
mutant condyle at E15.5 (F), but is seen at E18.5 (H). The distance
between the apex of the condyle and the beginning of hypertrophic
zone is longer than that in the control condyle (G, H). Abbreviation: M,
Meckel’s cartilage. Scale bar = 100 mm.
doi:10.1371/journal.pone.0101000.g003
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apoptotic cells in the interzone as well as some apoptotic cells in

the condyle of the mutant TMJ (Fig. 4L, 4L9, 4M). These

observations suggest that similar to joint cavity formation in long

bones, programmed cell death in the interzone also represents a

critical cellular mechanism for joint cavitation during TMJ

formation.

Augmented BMPRIA signaling in CNC lineage leads to
TMJ agenesis

To further investigate the role of BMPRIA signaling in TMJ

morphogenesis, we took a gain-of-function approach by transgenic

expression of a constitutively active form of BmprIa (pMes-
caBmprIa) [37] in CNC cells using the Wnt1-Cre allele. In situ

hybridization revealed expression of BmprIa in the condensing

condylar blastema, the forming site of glenoid fossa, and cells

between them, but not in Meckel’s cartilage of wild type embryo at

E13.5 (Fig. 5A). In Wnt1-Cre;pMes-caBmprIa mice at the same

stage, strong and wide spread expression of BmprIa was found in

the TMJ forming region and its surrounding tissues including

Meckel’s cartilage, indicating successful transgenic expression of

BmprIa in CNC lineage (Fig. 5B). We and others have shown

previously that elevated BMPRIA mediated signaling in CNC cells

leads to a spectrum of craniofacial bone defects, including cleft

secondary palate, ectopic cartilage formation, and craniosynostosis

[50,51]. Histological analysis of the developing TMJ of Wnt1-
Cre;pMes-caBmprIa mice identified unique TMJ developmental

defects. Although the condensation of the condylar blastema

occurred similarly to controls at E13.5 (Fig. 5C, 5D), the size of

Figure 4. TMJ defects in Ihh mutants and reduced Ihh expression in the Wnt1-Cre;BmprIaf/f condyle. (A–D) H&E staining reveals TMJ
defects in the Ihh mutant TMJ (B, D), as compared to control (A, C) at P0. In mutant, a disc-like structure (arrowhead) forms but fails to separate from
the apex of the condyle, the fibrocartilage layer fails to form on the articular surface of the glenoid fossa, and the interzone cells persist (B, D), as
compared to the formation of distinct TMJ structures, including the disc (arrowhead), the fibrocartilginous articular surface, and the clear upper joint
cavity, in controls (A, C). (E, E9, F, F9) Immunohistochemistry reveals significantly down-regulated BMPRIA expression in the condylar cartilage and
interzone of Ihh mutant at E14.5 (F, F9), as compared to littermate control (E, E9). (G–J) In situ hybridization shows a dramatic down-regulation of Ihh in
the condylar cartilage of Wnt1-Cre;BmprIaf/f mice at both E14.5 (H) and E15.5 (J), as compared to controls (G, I). Tunel assay reveals numerous apoptotic
cells (arrowheads) in the interzone of wild type control at E15.5 (K, K9), but very few apoptotic cells in the interzone of the Wnt1-Cre;BmprIaf/f

TMJ at the same age (L, L9). In contrast, some apoptotic cells (arrowheads) were observed in the mutant condyle (L). (M) Comparison of the percentage of
apoptotic cells in the interzone of controls and mutants. Standard deviation values were indicated as the error bars, and the Student’s t-test was used to
determine the significance of difference between control and mutant, as presented as P value. Abbreviation: C, condyle; G, glenoid fossa; M, Meckel’s
cartilage; IZ, interzone; UC, upper cavity. Scale bar = 100 mm.
doi:10.1371/journal.pone.0101000.g004
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the condylar cartilage in transgenic animals became noticeably

enlarged and the entire condylar cartilage appeared to become

hypertrophic at E15.5, as compared to controls (Fig. 5E, 5F).

Furthermore, unlike in controls that osteogenesis has begun in the

glenoid fossa at this stage, the transgenic glenoid fossa failed to

take osteogenic differentiation. At E17.5, the glenoid fossa became

degenerated in transgenic animal (Fig. 5H). The failure of

osteogenic differentiation in the glenoid fossa was further

confirmed by the lack of bone formation in the glenoid fossa,

assessed by Azocarmine G/Aniline blue staining, and by the

absent expression of Runx2, a molecular marker for osteoblasts

(Fig. 5I–L). Additionally, despite its expression in the mandibular

bone, Runx2 expression is also down-regulated in the condylar

cartilage of Wnt1-Cre;pMes-caBmprIa mice (Fig. 5L). By E18.5,

both the condyle and glenoid fossa degenerated and became

unrecognizable (data not shown).

Enhanced BMPRIA signaling converts the condylar
primordium from secondary cartilage to primary
cartilage by ectopic activation of canonical signaling and
inhibition of JNK signaling

As a secondary cartilage, the condylar cartilage expresses type I

collagen (Col I), making it distinct from the primary cartilage [52].

Because of its aberrant differentiation, we wondered if the

condylar cartilaginous element of Wnt1-Cre;pMes-caBmprIa mice

retained its secondary cartilage characteristics. In situ hybridiza-

tion assay revealed Col I expression in the control condylar

cartilage and mandibular bone, but the absence of Col I in the

transgenic condylar cartilaginous element despite its expression in

the mandibular bone at E14.5 (Fig. 6A, 6B). However, the

expression of Col II and Col X in the transgenic condylar cartilage

confirmed its cartilage fate (Fig. 6C–F). We thus conclude that the

Wnt1-Cre;pMes-caBmprIa condylar primordium adopts a fate of

primary cartilage in response to an augmented BMPRIA-

mediated signaling. Moreover, Tunel assay revealed an extensive

apoptotic event in the transgenic condylar cartilage, beginning at

E15.5, as compared to the lack of apoptosis in the control condyle

at the same stage (Fig. 6G, 6H), which apparently contributes to

the degeneration and disappearance of the condylar cartilage in

transgenic animals.

We have shown previously that the expression of caBmprIa in

CNC lineage induces ectopic activation of Smad1/5/8 signaling

as well as p38 signaling in the developing palatal shelves [51]. We

therefore set to examine alterations in BMP canonical and non-

canonical signaling pathways in the condylar cartilage of Wnt1-
Cre;pMes-caBmprIa mice by immunohistochemistry. Interesting-

ly, we detected no activation of Smad-dependent as well as p38

and Erk1/2 pathways in the control condyle, as assessed by the

lack of pSmad1/5, p-p38, and p-Erk1/2, but observed activity of

p-JNK signaling (Fig. 7A, 7C,7E, 7G). In contrast, the condylar

cartilage of Wnt1-Cre;pMes-caBmprIa mice exhibited an ectopic

activation of pSmad1/5, but an absence of pJNK signaling, along

with unaltered p38 and pEek1/2 pathways (Fig. 7B, 7D; 7F, 7H).

These observations indicate that the switch between BMP

Figure 5. Augmented BMPRIA signaling in CNC cells leads to
TMJ agenesis. (A, B) In situ hybridization shows expression of BmprIa
in the condylar condensation, the future glenoid fossa forming site, and
the interzone region, but not in Meckel’s cartilage of an E13.5 wild type
embryo (A), and an enhanced BmprIa expression in the TMJ forming site
as well as the surrounding tissues including Meckel’s cartilage in an
E13.5 Wnt1-Cre;pMes-cBmprIa embryo (B). (C–H) H&E staining reveals
initial condensation of condylar anlagen in control and transgenic
animals at E13.5 (C, D), growth and differentiation into primary cartilage
of the condylar cartilage and lack of osteogenesis in the glenoid fossa in
the transgenic TMJ at E15.5 (F) and E17.5 (H). (I, J) Azocarmine G/Aniline
blue staining reveals glenoid fossa degeneration, evidenced by lack of
bone formation, in transgenic mouse (J), as compared to control (I). (K,
L) In situ hybridization assay shows expression of Runx2 in the forming
gelnoid fossa, perichondral region of the condyle, and mandibular bone
of an E15.5 wild type control (K), but an absent expression of Runx2 in

the glenoid fossa and a reduced expression in the condylar cartilage of
an E15.5 transgenic animal (L). Note retention of Runx2 expression in
the mandibular bone of transgenic mouse (L). Asterisk in (H, J) indicates
the site of glenoid fossa degeneration. Open arrowheads in (K, L) point
to Runx2 expression sites in the glenoid fossa. Abbreviation: C, condylar
cartilage; G, glenoid fossa; M, Meckel’s cartilage; EC, ectopic cartilage;
LMP, lateral pterygoid muscle; Man, mandibular bone. Scale
bar = 100 mm.
doi:10.1371/journal.pone.0101000.g005

BMPR-IA Signaling in TMJ Development

PLOS ONE | www.plosone.org 6 August 2014 | Volume 9 | Issue 8 | e101000



canonical and non-canonical signaling pathways likely underlies

the fate conversion from the secondary to primary cartilage, with

the Smad-dependent signaling favoring the primary cartilage fate.

Discussion

Compared to synovial joint formation in the appendicular

skeletons, TMJ development and the underlying molecular

mechanisms are relatively under-studied. While the critical roles

of BMP signaling in long bone joint development and homeostasis

have been well documented [21,26,29], its role in TMJ formation

remained completely unknown. In this study, we present evidence

that BMPRIA mediated signaling is essential for TMJ morpho-

genesis, and overly activated BMPRIA signaling is detrimental to

TMJ formation. Our results also reveal apoptosis in the interzone

as a potential cellular mechanism for cavitation of the TMJ,

similar to that in long bone joint formation.

A BMPRIA-Ihh positive regulatory pathway regulates TMJ
development

It has been well established that BMP and Ihh signaling interact

to regulate chondrocyte proliferation and hypertrophic differen-

tiation [34,53–55]. In the developing limb, BMP signaling,

particularly the BMPRIA mediated pathway, positively regulates

Ihh expression that could also activate in the perichondrium the

expression of several BMP ligands, forming a BMP-Ihh positive

feedback loop [34,53,54]. Although there is no evidence for an

interaction of BMP and Ihh signaling in joint development, the

fact that several BMP ligands and receptor are expressed in the

interzone and that mutations in either Noggin or Ihh lead to joint

defects including joint ablation in limbs implies the existence of

such interaction [15,21,28]. Indeed, in the current study, we found

that the ablation of BmprIa in CNC lineage produces TMJ defects

resembling that in Ihh mutant. In both mutants, a functional TMJ

failed to form, evidenced by the absent Lubricin expression (Fig. 2)

[16]. In addition, both mutants displayed a lack of a distinct

articular disc due to failed disc separation from the condyle,

persistence of the interzone cells, as well as absent synovial

membrane on the articular surface of the glenoid fossa. Consistent

with Ihh function in disc formation and separation during TMJ

morphogenesis [16,17], we found a dramatic down-regulation of

Ihh expression in the developing condyle of Wnt1-Cre;BmprIaf/f

mice. This result also indicates that similar to its role in developing

appendicular skeletons, BMPRIA mediated signaling also acts as a

positive regulator of Ihh expression in the condylar cartilage. On

the other hand, BmprIa expression was significantly reduced in the

condyle and interzone of the Ihh-/- TMJ, suggesting the existence

of a BMPRIA-Ihh positive feedback loop in the developing TMJ.

However, the delayed hypertrophic differentiation observed in the

condylar cartilage of Wnt1-Cre;BmprIaf/f mice appears to be

opposite to the premature hypertrophic differentiation defect seen

in the Ihh-/- condyle as well as in the long bones of mice carrying

BmprIa deletion in chondrocyte lineage [16,34]. Although the

underlying mechanism is currently unknown, the discrepancy

would likely be attributed to the residual Ihh expression in the

Wnt1-Cre;BmprIaf/f condyle as well as the condyle’s property as

secondary cartilage.

Nevertheless, based on above mentioned observations and the

established roles for BMP and Ihh signaling in limb development,

we propose a model to summarize the function of the BMPRIA-

Ihh regulatory pathway in regulating distinct steps during TMJ

morphogenesis (Fig. 8). In this model, BMPRIA and Ihh regulate

the expression of each other to coordinate chondrocyte prolifer-

ation and differentiation in the developing condyle. Meanwhile,

Ihh, produced in the condyle, diffuses into the interzone to

regulate disc separation and to maintain the expression of

BMPRIA that in turn acts in a cell autonomous manner to

regulate synovial membrane formation and to trigger apoptosis.

Augmented BMPRIA signaling in CNCs converts the
secondary cartilage of the condylar primordium to
primary cartilage

Despite being a secondary cartilage, the condyle shares many

similarities with primary cartilage in development, including the

expression of genes known to be important for cartilage growth

and differentiation such as Bmp2, Bmp7, Sox9, Runx2, Osterix,

Ihh, Pthrp, Vegf, Col II and Col X [8,16,17,35,56,57]. However,

the condyle also differs from primary cartilage by its expression of

Col I and Col II simultaneously and its capability of differentiating

Figure 6. Elevated BMPRIA signaling converts secondary
cartilage of the condylar primordium to primary cartilage
and induces extensive cell death. (A–F) In situ hybridization detects
Col I expression in the condylar cartilage and mandibular bone of an
E14.5 control embryo (A), and in the mandibular bone of an E14.5 Wnt1-
Cre,pMes-caBmprIa mice (B). However, Col I expression is not detected in
the condylar cartilage of transgenic animal (B). Col II (C, D) and Col X (E,
F) expression is observed in the condylar cartilage of control (C, E) and
transgenic embryo (D, F) at E15.5. (G, H) Tunel assay reveals numerous
apoptotic cells in the interzone but not in the condyle of the E15.5 wild
type TMJ, but extensive cell death in the condylar cartilage of E15.5
transgenic embryo (H). Arrow in (F) points to Col X expression domain,
and arrowheads in (G) point to apoptotic cells. Abbreviation: C,
condylar cartilage; M, Meckel’s cartilage; IZ, interzone. Scale
bar = 100 mm.
doi:10.1371/journal.pone.0101000.g006
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into either chondrocytes or osteoblasts [52]. Although the

underlying mechanism for fate determination of primary v.s.

secondary cartilage remains elusive, our results that augmented

BMPRIA signaling is able to convert the condylar cartilage to a

primary cartilage, evidenced by the lack of Col I expression,

implicate BMP signaling in such fate decision. BmprIa is expressed

in the cartilage condensations of both long bone and condyle (this

study) [33], suggesting its role in the fate decision of both primary

and secondary cartilages. It appears that a tightly tuned BMPRIA

signaling is essential for fate determination of secondary cartilage.

Accompanied with this fate conversion is the switch of the

downstream BMP signaling pathway from the non-canonical JNK

signaling to the Smad-dependent pathway in the condylar

cartilage, suggesting that higher activity of BMPRIA signaling

preferentially activates the Smad-dependent pathway, which

favors primary cartilage formation. Indeed, the lack of Smad-

dependent signaling in the condyle (this study) and the strong

expression of pSmad1/5/8 in the limb cartilage condensation [33]

further support this notion. Furthermore, consistent with the role

of BMPRIA signaling in apoptosis in the developing limb [26,32],

overly activated BMPRIA signaling causes extensive apoptosis in

the condylar cartilage and leads to condylar cartilage degenera-

tion, indicating a detrimental effect on chondrocyte survival.

Despite an essential role for BmprIa in chondrogenesis and

endochondral bone formation, in our current study, we found that

inactivation of BmprIa did not affect glenoid fossa osteogenesis,

suggesting that BmprIa may not be essential for intramembranous

bone formation. However, elevated BMPRIA signaling instead

inhibits osteogenesis in the glenoid fossa. Thus, although BMP

signaling is generally accepted as a positive regulator of

osteogenesis, elevated BMP signaling could have an opposite

effect, depending on the tissue and cell types. Since a normal

developing condyle is required to sustain the development of the

glenoid fossa [9], the degeneration of the glenoid fossa in

Wnt1Cre;pMes-caBmprIa mice could be the consequence of failed

osteogenesis, or result from an abnormal condylar cartilage with

altered property, or both.

Apoptosis as a cellular mechanism of TMJ cavitation
Cell death in the middle of the interzone is considered the

cellular mechanism for physical separation of the contiguous

cartilage elements during joint formation in long bones [21,58–

61]. In the developing TMJ, although the primordial condyle and

glenoid fossa form independently and become approximately

through condylar growth, disappearance of the interzone cells is

necessary for the formation of a joint cavity. The interzone

mesenchymal cells are believed to contribute to the articular disc,

capsule, and the synovial membrane of the joint cavity [3,4].

However, if apoptosis occurs in the interzone of the TMJ remains

arguably. It was reported previously that in the rat TMJ at late

developmental stage, apoptotic cells were found only at the

subsurface of the condyle and in the region at which the lateral

pterygoid muscle attached to the condyle, suggesting that

apoptosis may be associated with the lower joint cavity formation

of the TMJ [62]. However, in our studies, we found extensive cell

death in the interzone of the control TMJ at E15.5, right before

Figure 7. Enhanced BMPRIA signaling activates Smad-depen-
dent pathway but inhibits JNK signaling pathway in the
condylar cartilage. Immunohistochemistry shows absent pSmad1/5,
p-p38, and pERK, but the presence of pJNK in the E14.5 control condyle
(A, C, E, G), and the presence of pSmad1/5, but absent pJNK as well as
p-p38 and pERK in the transgenic condylar cartilage (B, D, F, H).
Abbreviation: C, condylar cartilage; G, glenoid fossa; M, Meckel’s
cartilage. Scale bar = 100 mm.
doi:10.1371/journal.pone.0101000.g007

Figure 8. A model illustrating the interaction between BMPRIA
and Ihh and their functions in regulating distinct steps during
TMJ morphogenesis. Abbreviation: C, condyle; D, disc; G, glenoid
fossa; IZ, interzone.
doi:10.1371/journal.pone.0101000.g008
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the upper cavity becomes discernibly at E16.5. However, in the

Wnt1-Cre;BmprIaf/f TMJ, such extensive apoptosis was not

observed, consistent with the pro-apoptotic role of BMPRIA

mediated signaling. The discrepancy between our results and that

by Matsuda and colleagues [62] could be attributed to the stage

difference. Nevertheless, the lack of apoptosis appears to

contribute to the persistence of interzone cells in the mutant

TMJ. In addition, BMPRIA signaling is also required for

organization of some interzone cells to become synovial lining

layer, which could also contribute to the cavitation of the TMJ.

We thus propose that the upper joint cavity of the TMJ is formed

by organization of the interzone cells into synovial lining layer and

capsule, and by removal of excessive cells via apoptosis.

In conclusion, our studies using transgenic loss-of- and gain-of-

function approaches reveal the importance of BMPRIA mediated

signaling in TMJ morphogenesis and establish a BMPRIA-Ihh

positive regulatory pathway in controlling disc separation, synovial

membrane formation, as well as joint cavity formation.
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