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Human exposure to mercury is a serious problem of public health in Amazon. As in
other vulnerable populations throughout the world, Amazonian riverine populations are
chronically exposed to this metal and some symptoms of mercury intoxication were
already detected in these populations. However, studies on the genetic susceptibility
to mercury toxicity in the Amazon are scarce, and they tested a limited number of
individuals. In this context, apolipoprotein E gene (APOE) is a key element with a well-
established association among their alleles and the neurodegenerative consequences
of mercury intoxication. However, no studies have addressed APOE genotyping in
Amazonian exposed populations. Additionally, epidemiological studies with APOE
genotyping in Amazon have been restricted to indigenous populations. Therefore, this
work analyzed for the first time the genotypic and allelic profiles of APOE in Amazonian
riverine populations chronically exposed to mercury. Eight hundred and twenty three
individuals were enrolled in our study donating blood (794) and/or hair (757). APOE
genotyping was analyzed by real-time PCR. Total mercury and mercury species were
quantified by ICP-MS and GC-pyro-AFS, respectively. Genomic ancestry markers were
evaluated by multiplex-PCR reaction, separated by capillary electrophoresis on the
ABI 3130 Genetic Analyzer instrument and analyzed on GeneMapper ID v3.2. The
ε3 and ε3/ε3 were the most frequent allele and genotype, respectively, followed by
ε4 allele and ε3/ε4 genotype. Only ε2/ε2 genotype was not found, suggesting that
the absence of this genotype is a generalized phenomenon in Amazon. Also, our
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data supported an association between the presence of APOE4 and the Amerindian
origin in these populations. Fifty-nine individuals were identified at maximum risk with
levels of mercury above 10 µg/g and the presence of APOE4. Interestingly, among
individuals with high mercury content, APOE4-carriers had high mercury levels than
APOE2-carriers, pointing to a different heavy metal accumulation according to the APOE
allele. These data suggest that APOE4, in addition to a possible pharmacodynamic
effect, may influence pharmacokinetically the mercury exposure causing its higher
accumulation and leading to worse deleterious consequences. Our results may aid in
the development of prevention strategies and health policy decision-making regarding
these at-risk vulnerable populations.

Keywords: ApoE, Tapajós, Tucuruí, human, methylmercury, ancestry, allele, genotype

INTRODUCTION

Human exposure to mercury is presently a major public health
concern worldwide (Sheehan et al., 2014; Andreoli and Sprovieri,
2017). Since 2013, a growing number of countries are agreeing to
join efforts aiming to protect human health and the environment
against the deleterious effects of this heavy metal. The result
of the conceptualization of this collaborative platform was the
Minamata Convention on Mercury1, endorsed by the World
Health Organization2 (WHO) and ratified by Brazil on August,
2017.

Brazil is a continent-sized country that faces huge challenges
in the consolidation of an universal healthcare system (Coutinho
and Silva Junior, 2015; Muzaka, 2017). The northern region of
Brazil is almost entirely occupied by the Amazon rainforest,
where human populations have been suffering from mercury
exposure since the 1980s, when the “the gold rush” occurred
(Berzas Nevado et al., 2010). According to the WHO, tropical
populations near gold mining locations show the highest
weekly mercury intake among all vulnerable populations
in the world, reaching almost four times the FAO/WHO
reference level of 2.2 µg/g (Sheehan et al., 2014). In addition
to gold mining activities, other anthropogenic alterations
of the Amazonian environment such as hydroelectric
power dams may be contributing to release the mercury
containing in soils, facilitating the methylation of the metal,
and making it available for human exposure (Marques et al.,
2011; Hacon et al., 2014; Fearnside, 2015; Arrifano et al.,
2018b).

The main human populations affected by mercury exposure
in Amazon are remote communities with two different profiles,
also known as indigenous and riverine people. The indigenous
populations are native organized into tribes who are direct
descendants of the original populations that lived in Amazon
before the European colonization. Brazilian laws recognize and
protect these populations, presently living at protected lands
(reservoirs). The riverine populations are rural communities
located at riverbanks, with high genetic introgression due to
colonization and immigration and with no special protection by

1www.mercuryconvention.org
2http://apps.who.int/gb/ebwha/pdf_files/EB134/B134_R5-en.pdf

Brazilian laws. Both populations share some characteristics, such
as economy of subsistence, fish as the main protein of the diet and
no sanitary conditions or piped water (Piperata, 2007). Also, both
of them live in remote areas with difficult access to health centers
(da Silva Souza et al., 2018).

Worryingly, several studies have demonstrated high mercury
content in hair of some riverine populations in Amazon (Berzas
Nevado et al., 2010; Marques et al., 2013; Hacon et al.,
2014; Hoshino et al., 2015; Arrifano et al., 2018b). These
communities are exposed mainly to methylmercury (MeHg)
through consumption of contaminated fish (Berzas Nevado et al.,
2010; Rodriguez Martin-Doimeadios et al., 2014; Arrifano et al.,
2018b), as other vulnerable populations throughout the world
(Drescher et al., 2014; Strain et al., 2015; Langeland et al.,
2017; Salazar-Camacho et al., 2017). MeHg is the most toxic
specie of mercury with diverse effects, such as neurotoxicity
and genotoxicity among others (Crespo-Lopez et al., 2011, 2016;
Farina et al., 2011). Still, the neurotoxic effects of MeHg are
recognized as the most deleterious consequences in humans
(Farina et al., 2011; Arrifano et al., 2018a). MeHg intoxication
can produce several neurological effects, such as motor and visual
impairment, mood change and memory loss (Grandjean et al.,
1999; Dolbec et al., 2000; Rodrigues et al., 2007; Fillion et al.,
2011a,b; Khoury et al., 2015; Costa et al., 2017; Da Silva-Junior
et al., 2017). The neurodegeneration caused by this metal was
already associated with the development of neurodegenerative
diseases such as Alzheimer’s and Parkinson’s (Farina et al., 2013;
Chin-Chan et al., 2015). Despite this scenario and the importance
of developing adequate prevention strategies, studies on the
genetic susceptibility to mercury toxicity in the Amazon are
scarce, and they tested a limited number of individuals (Klautau-
Guimarães et al., 2005; Jacob-Ferreira et al., 2010, 2011; Barcelos
et al., 2013, 2015; de Oliveira et al., 2014; Rocha et al., 2016),
probably because the difficulties to reach these communities and
the demanding conditions to carry out these studies.

Although some markers of genetic susceptibility to mercury
toxicity have been proposed in recent years (reviewed by Andreoli
and Sprovieri, 2017), apolipoprotein E gene (APOE for the
gene; and ApoE for the protein) is a key element in this
scenario, with a well-established association among their alleles
and the neurodegenerative consequences (Godfrey et al., 2003;
Wojcik et al., 2006; Ng et al., 2013, 2015; Woods et al., 2014;

Frontiers in Genetics | www.frontiersin.org 2 July 2018 | Volume 9 | Article 285

www.mercuryconvention.org
http://apps.who.int/gb/ebwha/pdf_files/EB134/B134_R5-en.pdf
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00285 July 26, 2018 Time: 16:38 # 3

Arrifano et al. Apolipoprotein E Genotyping in Amazon

FIGURE 1 | Map of Brazil (obtained from the Instituto Brasileiro de Geografia e Estatística, Brazil) showing the States and their capitals (black stars). Yellow circles
indicate the locations (–4.287121, –55.984106, and –3.800897, –49.811848) of riverine populations participating of this study. Photographs illustrates some
conditions of the riverine populations: difficult access (above), river as a key element (below left) and precarious facilities (below right).

Snoj Tratnik et al., 2017). ApoE is a glycoprotein involved in
several brain functions, including lipid metabolism, axonal
growth, synaptic formation and neuronal repair (Xu et al.,
2014; Arrifano et al., 2018a). APOE is a polymorphic gene
with three common alleles, ε2, ε3 and ε4, which differ in the
arginine and cysteine contents at positions 112 and 158 of

the protein (Mahley et al., 2009; Arrifano et al., 2018a). ApoE3
shows a cysteine and an arginine at positions 112 and 158,
respectively, whereas ApoE2 has two cysteines and ApoE4 has
two arginines at both positions (Mahley et al., 2009). The
presence of APOE4 is the only genetic risk factor confirmed in
the development of late-onset Alzheimer Disease (Bertram, 2009;
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TABLE 1 | Anthropometric profile of the participants of the study.

Total n = 823 (100%) Tapajós n = 466 (56.62%) Tucuruí n = 357 (43.38%) p-Value Tapajós vs. Tucuruí

Gender (% female) 63.3 66.3 59.4 <0.05

Age (y) 47 (33–57) 47 (32–59) 47 (35–56) 0.324

Height (m) 155 (151–163) 155 (151–162) 155 (151–163) 0.523

Weight (kg) 64.5 (56.2–74.8) 64.2 (56.0–74.2) 65.0 (57.0–75.6) 0.242

BMI (kg/m2) 26.2 (23.4–29.7) 26.2 (23.3–29.6) 26.2 (23.4–29.8) 0.680

Data are presented as median and interquartile ranges. All parameters were analyzed with Mann–Whitney test except the distributions of gender that were evaluated with
Fisher’s exact test. BMI, body mass index (calculated as weight in kilograms divided by the square of height in meters).

Xu et al., 2014) and it is presently the gene with more studies
demonstrating an association with the susceptibility to mercury-
induced neurotoxicity in adults (Andreoli and Sprovieri, 2017;
Arrifano et al., 2018a).

Therefore, this work analyzed, for the first time in Amazon,
the apolipoprotein E genotyping in riverine populations
chronically exposed to mercury. The possible associations with
ancestry and exposure were also studied.

MATERIALS AND METHODS

Participants
Amazonian riverine populations chronically exposed to mercury
via consumption of contaminated fish were included in the
present work (Figure 1). Participants were from two locations
(Tapajós River basin and Tucuruí Lake) that were demonstrably
exposed to mercury in the past and in the present (Berzas
Nevado et al., 2010; Rodriguez Martin-Doimeadios et al., 2014;
Khoury et al., 2015; Arrifano et al., 2018b) and included adults
(≥18 years) living in the area for at least 2 years.

The present study followed the guidelines established by
both the Declaration of Helsinki and the Conselho Nacional
de Ética em Pesquisa com Seres Humanos (CONEP, Brazil)
and it was approved with the CAAE no. 43927115.4.0000.0018.
All participants gave written consent to participate after
understanding the purpose of this work.

Anthropometric Data and Self-Reported
Conditions
Gender, age, fish-intake and the existence of drug dependency
(including tobacco and alcohol), pre-existent chronic diseases
and chronic pharmaceutical treatments were registered for each
participant. Also, weight and height were measured.

Sample Collection
Approximately, 0.1 g of hair from the occipital region (1–2 cm
from the scalp) with clean stainless scissors and 2 mL of blood
were drawn and stored (in paper envelopes at room temperature
and frozen in EDTA vacutainer tubes, respectively).

DNA Extraction
Genomic DNA was isolated from whole blood with the Purelink
Genomic DNA Mini Kit (ThermoFisher, Brazil), according to
manufactures’ instructions. Quantitation of DNA was performed

using the Qubit dsDNA BR Assay Kit on a Qubit 3.0 fluorimeter
(ThermoFisher, Brazil).

Apolipoprotein E Genotyping
APOE genotype of each participant was detected by real
time-PCR with TaqMan R© assays using the StepOnePlus R©

equipment (ThermoFisher, Brazil). Two APOE single-nucleotide
polymorphisms (SNPs), rs429358 and rs7412, corresponding to
the positions 112 and 158 of the protein, respectively, were
analyzed. For each SNP the reactions were performed in duplicate
on 96-well microtiter plates with final volume of 10 µl, containing
5 µl of 2× TaqMan Universal PCR Master Mix (ThermoFisher,
Brazil), 25 nmol/l of each probe (FAM or VIC-labeled), and
0.5 µl of DNA (30–100 ng). The run conditions were 40 cycles of
denaturation at 92◦C for 15 s and hybridization and extension at
60◦C for 1 m. Each SNP’s probes had two sequences labeled with
a different dye VIC/FAM to the polymorphisms C/T, respectively.
This technique permits the identification of the six possible
genotypes: ε2/ε2; ε2/ε3; ε2/ε4; ε3/ε3; ε3/ε4; and ε4/ε4, according
the combination of fluorescence detected for each position. So,
ε2 had only the detection of FAM fluorescence; ε3 had FAM for
rs429358 and VIC for rs7412 fluorescence detection and; ε4 had
only VIC detection for both SNPs.

Ancestry
Genomic ancestry analysis was performed based on the method
described elsewhere (Ramos et al., 2016), using 61 autosomal
ancestry informative markers (AIMs). Two multiplex PCR
reactions of 20 and 22 markers were performed and amplicons
were analyzed by electrophoresis using the ABI Prism 3130
sequencer and GeneMapper ID v.3.2 software. The individual
proportions of European, African, and Amerindian genetic
ancestries were estimated using STRUCTURE v.2.3.3 software,
assuming three parental populations (European, African, and
Amerindian).

Quantification of Total Mercury and
Methylmercury in Human Hair
Extraction of Hg species was performed in a closed-vessel
microwave oven using 100 mg of hair sample and 10 mL of
6 N nitric acid as extractant. Microwave vessels were sealed and
irradiated for 5 min at 80◦C after a 5 min ramping time. A clear
solution was obtained after microwave irradiation. Extraction
blanks were also prepared in the same manner in each batch.
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FIGURE 2 | Allelic distributions of apolipoprotein E gene in global (mainly
developed countries), South American, Amazonian indigenous, and
Amazonian riverine populations. Data are from Singh et al. (2006) and this
work.

Total mercury content in hair samples were determined by
inductively coupled plasma mass spectrometry (ICP-MS, Thermo
Fisher Corporation) and mercury species were determined by
GC-pyro-AFS system according to Arrifano et al. (2018b). For
total mercury analysis, extracts were directly analyzed after the
adequate dilution. For mercury species determination, 2 mL of
the acidic extracts were subjected to derivatization with sodium
tetraethylborate and mercury species were extracted in hexane.
For derivatization, the pH of the extracts was adjusted to 3.9
using ammonia (30%) and 5 mL of 0.1 M acetic acid-sodium
acetate buffer. Then, 2 mL of hexane and 500 µL of (3%, w/v)
were added and the mixture was manually shaken for 5 min. The
sample was centrifugated for 5 min at 600 g. The organic layer was
transferred to a chromatographic glass vial and stored at −18◦C
until analysis. The certified reference material human hair ERM-
DB001 (Sigma-Aldrich, Brazil) was used for quality control of
mercury analysis.

Statistical Analysis
Gaussian distribution of data was verified with D’Agostino-
Pearson normality test. Accordingly, data were then analyzed
with Mann–Whitney test to compare groups. Correlations
between variables were tested by Spearman test. Distributions
and frequencies were evaluated with Chi-square or Fisher’s exact
tests. Hardy–Weinberg equilibrium (HWE) was tested to verify
whether APOE genetic variation remained at equilibrium. For all
analysis, p < 0.05 was considered statistically significant.

RESULTS

Anthropometric data of the participants of the present study
are showed in Table 1. Except for the distribution of gender,
no significant difference was detected for all anthropometric
parameters between participants from the two regions.

Figure 2, Table 2, and Supplementary Table S1 includes
the genotypic and allelic frequencies of apolipoprotein E
found in the participants. Only the ε2/ε2 genotype of APOE
gene was not found. No difference was detected between
participants from Tapajós and Tucuruí. For the following
analyses with APOE4-carriers or non-carriers, the individuals
with the ε2/ε4 genotype (14 participants) were not included since
both alleles may show opposite effects on mercury intoxication.

Ancestry markers revealed a significant high contribution of
European origin, followed by Amerindian and by African origins
(Table 3) (Kruskal–Wallis test, p < 0.0001). No difference in
ancestry distribution was detected between participants from
Tapajós and Tucuruí.

Considering that no difference was found between Tapajós and
Tucuruí in both distributions of ancestry and apolipoprotein E
genotypes and alleles, we studied the possible association of the
presence of ApoE4 and ancestry for the total population. APOE4-
carriers (ε4/ε4 and ε3/ε4) showed a significant higher proportion
of Amerindian origin when compared to that of non-carriers
(Table 4).

To confirm the present exposure of the populations, we
quantified the mercury content in hair of participants. Seven
hundred and fifty-seven participants agreed to donate a hair
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TABLE 2 | Genotypic and allelic distributions and frequencies (f ) of apolipoprotein E in riverine populations of the Amazon.

Total Tapajós Tucuruí

Genotypes n (%) n (%) n (%)

ε2/ε2 0 (0.0) 0 (0.0) 0 (0.0)

ε2/ε3 65 (8.2) 38 (8.5) 27 (7.8)

ε2/ε4 14 (1.8) 9 (2.0) 5 (1.4)

ε3/ε3 468 (58.9) 272 (61.0) 196 (56.3)

ε3/ε4 215 (27.1) 116 (26.0) 99 (28.5)

ε4/ε4 32 (4.0) 11 (2.5) 21 (6.0)

Total 794 (100.0) 446 (100.0) 348 (100.0)

HWE, p-value 0.602 0.902 0.463

Allele frequency f f (%) f f (%) f f (%)

ε2 0.050 5.0 0.053 5.3 0.046 4.6

ε3 0.766 76.6 0.783 78.3 0.744 74.4

ε4 0.185 18.5 0.165 16.5 0.210 21.0

No difference was found between participants from Tapajós River basin and Lake of Tucuruí (Chi-square test, p > 0.05). HWE, Hardy–Weinberg equilibrium.

TABLE 3 | Ancestry profile of the riverine populations of Amazon.

Ancestry Total n = 794 Tapajós n = 446 Tucuruí n = 348 p-Value Tapajós vs. Tucuruí

European (%) 42.4 (32.7–51.1) 42.9 (31.7–53.1) 41.7 (33.5–49.2) 0.255

Amerindian (%) 31.9 (22.6–41.7) 30.5 (21.3–42.5) 32.4 (25.1–41.1) 0.174

African (%) 22.9 (16.4–30.7) 22.9 (17.2–30.4) 22.6 (15.8–31.6) 0.800

Data are presented as median and interquartile ranges. No difference was found between participants from Tapajós River basin and Lake of Tucuruí (Mann–Whitney test).

sample for mercury quantification. Total mercury level in hair
was 4.84 µg/g (2.30–9.66) as median and interquartile ranges,
being 87.8% (83.7–90.3) MeHg. Mercury levels were correlated
with the frequency of fish intake (number of meals per week)
(Spearman test, p < 0.05). There was no correlation of age
with total mercury concentrations (Spearman test, p > 0.05).
However, men showed significantly higher mercury levels than
women, consuming also higher amounts of fish (Mann–Whitney
test, p < 0.001). Moreover, the median level of mercury was
significantly higher in Tucuruí (8.12, 3.65–14.99 µg/g) than in
Tapajós (3.62, 1.77–6.47 µg/g) (Mann–Whitney test, p < 0.001),
therefore, the following analyses with mercury levels were carried
out for three universes of sampling (the total of participants, those
from Tapajós and those from Tucuruí) to reveal any difference
between locations.

TABLE 4 | Ancestry profile of the Amazonian riverine individuals according to be
apolipoprotein ε4 allele (APOE4) carrier or not.

Ancestry APOE4-carrier
n = 247

APOE4 non-carrier
n = 533

p-Value

European (%) 42.4 (32.1–50.4) 42.3 (33.2–51.4) 0.494

Amerindian (%) 33.4 (25.6–43.5) 31.3 (22.0–40.8) <0.01

African (%) 22.2 (15.8–29.9) 23.2 (16.5–31.7) 0.066

Data are presented as median and interquartile ranges and they were analyzed with
the Mann–Whitney test.

No significant difference was found in allelic frequencies of
APOE between individuals with high and low mercury levels
(Table 5A). These results were observed even when rigorous
exclusion criteria were additionally applied (which are not
always present in studies of human exposure), guaranteeing the
elimination of most confounding factors and the potential for
mercury levels to be significantly influenced by altered hepatic
and/or renal function (Table 5B).

Interestingly, when APOE2-carriers (ε2/ε3) were compared
to APOE4-carriers, mercury levels of the latter ones were
significantly higher in individuals with high mercury content
(Figure 3). It is important to note that both groups included
similar proportions of men and women and consumed similar
amounts and frequencies of fish meals (Table 6). These results
already point to a different mercury bioaccumulation affected by
APOE alleles in high mercury participants. This difference was
not detected in individuals with mercury levels below the limit
(Figure 3).

DISCUSSION

This work showed for the first time the genotypic and
allelic distribution of apolipoprotein E in Amazonian riverine
populations and its association with ancestry. Additionally, our
data revealed that individuals exposed to high mercury levels
showed a more Amerindian ancestral background. Interestingly,
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a higher accumulation of mercury was detected in APOE4-
carriers when compared to APOE2-carriers.

Amazon is the largest tropical forest in the world, most of
the area belonging to Brazil. Currently, Brazilian Amazon is
occupied by more than 17 million people (IBGE, 2016), being
one of the huge challenges in healthcare that faces this developing
country with an emerging economy (Muzaka, 2017). Amazonian
populations show the lowest human development index (Atlas of
Human Development in Brazil, 2013) with a significant part of
the population living far away from the main cities and organized
in small riverine communities or widespread family based houses.
Presently, Amazonian riverine populations has a particular life
style with the river as a central element (Figure 1): water for
cooking is obtained from the river or hand-dug wells, fish is the
main protein of the diet (usually included in many meals per
week) and trash is sometimes dumped into the river (Piperata,
2007). A different number of women and men participated in our
study (Table 1), which is usually found in epidemiological studies
with Amazonian population (Krewer et al., 2011; Valentini et al.,
2016). The hypothesis raised to explain this difference is that,
in these communities, women may be more careful with health
than men may (Gomes et al., 2007). Interestingly, in Tucuruí
participation of men was as high as that of women (Table 1),
probably because men commanded the boats with all the family
to the collection point (personal observation). Notably, of the
initial 823 participants that attended to the collection point, only
29 individuals abstained to donate blood (or the collection was
not possible), contributing for the representability of the sample.

To our knowledge, this is the larger epidemiological study
of mercury-related genetic factors carried out in Amazonian
riverine population (Klautau-Guimarães et al., 2005; Jacob-
Ferreira et al., 2010, 2011; Barcelos et al., 2013, 2015; de Oliveira
et al., 2014; Rocha et al., 2016). Additionally, studies genotyping
APOE gene are really scarce in Amazonian populations and they
are limited to small indigenous tribes, such as Yanomami or
Tsiname (Crews et al., 1993; Marin et al., 1997; Jaramillo-Correa
et al., 2001; Trumble et al., 2017).

Our results demonstrated that ε3 and ε3/ε3 were the most
frequent allele and genotype, respectively (Table 2), followed by
ε4 allele and ε3/ε4 genotype. Other interesting result is despite
of the large number of participants, the ε2/ε2 genotype was
not detected (Table 2). Previous studies with smaller samples
of participants from Amazonian indigenous tribes (Crews et al.,
1993; Marin et al., 1997; Jaramillo-Correa et al., 2001; Trumble
et al., 2017) did not find this genotype either (Figure 2). Based on
our data with a large number of participants, the absence of the
ε2/ε2 genotype would not be restricted to the indigenous profile
in Amazon, suggesting that it could be a general phenomenon in
Amazonian populations.

When compared to other populations around the world
(Figure 2), we observed a profile of allelic and genotypic
frequencies in Amazonian riverine populations, similar to that
found in other populations of South-America, characterized by
a higher frequency of ε4 allele and a lower frequency of ε2 allele
(Singh et al., 2006). In fact, approximately 33% of the participants
of the present study carried at least one copy of the ε4 allele
(Table 2).

The ε4 allele is considered the ancestral one in the genus
Homo, which would have been progressively lost due to the
high risk involving the development of neurodegeneration and
cardiovascular diseases (Singh et al., 2006; Eisenberg et al.,
2010; Trumble et al., 2017). Hypothesis were already raised
to explain its higher prevalence in developing countries or
traditional societies, such as an apparent increased resistance to
pathogens and/or a rebalancing in cholesterol levels in conditions
of increased metabolic rate (which would partially compensate
the increased risk of neurodegeneration) (Corbo and Scacchi,
1999; Mahley and Rall, 1999; Singh et al., 2006; Mahley et al.,
2009; Eisenberg et al., 2010; Trumble et al., 2017). The possible
association with Amerindian origin make us to analyze the
ancestral background of the participants of the study.

Historically, the colonization by the Europeans lead to a
high genetic exchange of the Amazonian population (Cavalcante
et al., 2015). Brazilian population shows a trihybrid ancestry with

TABLE 5 | Allelic frequencies of apolipoprotein E gene in participants with total mercury levels above (High Hg) and below (Low Hg) the limit of 10 µg/g.

Allelic distribution Total Tapajós Tucuruí

(A) No exclusion criterion

Low Hg n = 550 High Hg n = 193 p-Value Low Hg n = 367 High Hg n = 54 p-Value Low Hg n = 183 High Hg n = 139 p-Value

ε2 0.05 0.04 0.430 0.05 0.06 0.305 0.06 0.03 0.673

ε3 0.76 0.77 0.77 0.81 0.75 0.76

ε4 0.18 0.19 0.18 0.12 0.20 0.22

(B) With rigorous exclusion criteria

Low Hg n = 345 High Hg n = 120 p-Value Low Hg n = 230 High Hg n = 33 p-Value Low Hg n = 115 High Hg n = 87 p-Value

ε2 0.04 0.04 0.973 0.04 0.09 0.126 0.04 0.02 0.478

ε3 0.77 0.77 0.76 0.76 0.78 0.78

ε4 0.19 0.19 0.20 0.15 0.18 0.20

To consider the participants for the analyses, no exclusion criterion (A) or rigorous exclusion criteria (older age >70 years), drug dependency (including tobacco and
alcohol), the presence of pre-existent (chronic diseases and chronic pharmaceutical treatments) (B), were applied. Data were analyzed with Chi-square test.
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FIGURE 3 | Total mercury levels in hair of APOE2-carriers and APOE4-carriers in Amazonian riverine population. Individuals with ε2/ε4 genotypes were not included
in the present analysis. (A) Participants with mercury levels below 10 µg/g (n = 47 and 172 for APOE2- and APOE4-carriers, respectively); (B) Participants with
mercury levels ≥10 µg/g (n = 12 and 59 for APOE2- and APOE4-carriers, respectively). Data are presented as median and interquartile ranges. ∗p < 0.05.
Mann–Whitney test.

three major contributors (Amerindian, European, and African)
(Parra et al., 2003; Lins et al., 2010). In most of the Brazilian
regions, the European origin provides the highest contribution
(Lins et al., 2010). Amazonian riverine population also shows
this profile with 42.4% of European ancestry (Table 3). In this
population, Amerindian contribution was significantly higher
than African. Interestingly, APOE4-carriers showed a significant
higher Amerindian contribution than that of APOE4 non-
carriers (Table 4), suggesting a possible association between the
two factors. Considering that in the Amazon, the Amerindian
profile may be associate to primitive societies, our results would
be in agreement with the idea that the ε4 allele remains
significantly prevalent in economies of foraging and/or with food
restrictions (Corbo and Scacchi, 1999) and/or when metabolic
rate is elevated due to the high energetic expenditure on
cooling/thermogenesis (for example Eisenberg et al., 2010). In
this case, APOE4-carriers would show an adaptive advantage
because the higher cholesterol absorption and body burden when
compared to those of ε3/ε3 individuals (Corbo and Scacchi,
1999).

Both populations included in the present work preserve
some of the traditional characteristics linked to indigenous
ancestry and local sources, such as subsistence economy (they
grow vegetables and fruits to eat in the yards of their homes),
fishing (fish is the main source of these proteins), and hunting

(Piperata, 2007). Nowadays, fish is still the central element of
the diet, usually with seven or more meals a week (Passos et al.,
2008; Piperata et al., 2011; Dufour et al., 2016). Unfortunately,
these food habits in Amazon can contribute to human exposure
to mercury when the fish is contaminated (Passos et al.,
2008; Berzas Nevado et al., 2010; Arrifano et al., 2018b). Our
data revealed a significant correlation between fish intake and
mercury levels, pointing to fish consumption as the origin
of mercury exposure. Mercury is present in Amazon from
both natural (soil) and anthropogenic sources (artisanal gold
mining and dams, among others) (Wasserman et al., 2003;
Berzas Nevado et al., 2010; Arrifano et al., 2018b). Once
in the river, mercury undergoes biotransformation to MeHg,
being incorporated in the food chain, and contaminating the
fish. Therefore, it is relatively usual find mercury-intoxicated
populations in Amazon (Grandjean et al., 1999; Dolbec et al.,
2000; Rodrigues et al., 2007; Fillion et al., 2011b; Khoury et al.,
2015).

In our study, we performed the mercury determination in hair
of 757 participants (only 66 individuals abstained to donate or
the collection of the sample was not possible). No correlation
between mercury levels and age was found supporting the fact
that age may not be an influencing factor for mercury exposure
in adults. Accordingly, previous works already demonstrated no
association between both factors in adults (Hoshino et al., 2015;

TABLE 6 | Anthropometric profile and fish consumption (frequency and amount) in APOE2- and APOE4-carriers with high levels of mercury (≥10 µg/g).

APOE2-carriers n = 12 APOE4-carriers n = 54 p-Value

Gender (% females) 41.7% 49.2% 0.756a

Age (y) 42 ± 4.2 45 ± 1.8 0.347b

BMI (kg/m2) 25.74 ± 1.033 26.04 ± 0.5964 0.831b

Fish consumption

Weekly frequency, number of meals 6 (3–14) 5 (3–7) 0.751c

Amount of fish per meal, grams 300 (160–400) 300 (170–390) 0.913c

Individuals with ε2/ε4 genotypes were not included in the present analysis. Data are presented as mean ± SD or median and interquartile ranges according to Gaussian
distribution. aFisher’s exact test. bStudent’s t-test. cMann–Whitney test.
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Arrifano et al., 2018b), although it can be observed in children
(Barbosa et al., 1998; Pinheiro et al., 2007; Marques et al., 2016).
Moreover, it is also relatively frequent to find higher mercury
levels in men than those in women, usually attributed to a
higher consumption of fish (Dolbec et al., 2000; Fillion et al.,
2006; Passos et al., 2007; Ashe, 2012), as we detected in our
study.

Mercury levels usually found in hair varies between 0
and 2 µg/g (WHO, 2008) in non-exposed populations. In
our study, median value of exposure was more than twice
those levels, confirming the exposure of the population.
Moreover, a substantial part of the participants (26%) showed a
mercury content in hair above the limit of 10 µg/g previously
recommended (Grandjean et al., 1997; Harada et al., 1999; NRC,
2000). Mercury found in hair was mainly in organic form, as
MeHg. This high proportion of the organic species and the
significant correlation with fish intake are in agreement with the
oral exposure via contaminated fish that is found in these regions
(Berzas Nevado et al., 2010; Rodriguez Martin-Doimeadios et al.,
2014; Arrifano et al., 2018b). Exposure detected in Tucuruí
was higher than that presently observed in Tapajós region,
confirming our preliminary data with this population (Arrifano
et al., 2018b).

Therefore, in this scenario of mercury exposure, the
possible advantage of carrying APOE4 would turn it on
a disadvantage, with the presence of this allele implying
an increased susceptibility to neurotoxicity (Godfrey et al.,
2003; Wojcik et al., 2006; Ng et al., 2013, 2015; Woods
et al., 2014; Snoj Tratnik et al., 2017). In our study, we
found 247 individuals considered susceptible to mercury
neurotoxicity, 215 with the ε3/ε4 genotype and 32 with the
ε4/ε4 genotype. Association between the presence of APOE4
and the worsening of mercury intoxication (including symptoms
such as poorer motor performance, memory, and learning)
have been well-established in human studies (see Arrifano
et al., 2018a for a review). However, the events underlying
this strong correlation are not totally understood. Taking into
account that both factors, APOE4 and exposure to mercury,
share some similar molecular mechanisms, it was already
proposed that ApoE4 would cause mainly toxicodynamic
changes that could act in a synergistic way with the effects of
mercury, increasing the injury and cell death (Arrifano et al.,
2018a).

For the first time in Amazon, 59 individuals were identified
with maximum risk showing mercury content in hair above
10 µg/g and the presence of ApoE4. Worryingly, the highest
mercury content in hair found in the present work, 75.80 µg/g,
was from an ε4/ε4 individual. No difference was detected
in allelic distribution of APOE between all participants with
low and high levels of mercury (Table 5). Nevertheless,
when the APOE4-carriers were compared to the APOE2-
carriers we observed an interesting fact (Figure 3). When
mercury exposure is below 10 µg/g, no difference in mercury
levels is detected between APOE4 and APOE2-carriers;
however, for individuals with high levels, mercury burden
was significantly higher in APOE4 (Figure 3). Moreover,
no association with an increased consumption in frequency

or amount of fish meals in APOE4-carriers was detected
(Table 6), eliminating the possibility that this bioaccumulation
may be due to a higher intake of contaminated fish. Two
conclusions can be reached based on our data: first, APOE4
and APOE2 are associated with different effects in mercury
accumulation and second, the apparent pharmacokinetic
influence would be of major importance with exposure above
10 µg/g.

To our knowledge, this is the first study with human
populations demonstrating an association between the presence
of APOE4 and an increased accumulation of mercury. These
data seems to be in agreement with the hypothesis proposed
by Pendergrass and Haley (1995) suggesting that ApoE4 would
show a decreased ability to bind the metal when compared to
ApoE2 isoform. The organs with constitutively high content
in ApoE, such as CNS, would be especially affected by
this reduced ability of ApoE4 of chelating mercury. This
phenomenon may facilitate the presence of the free form of
the metal, allowing it to remain available and to accumulate
in CNS. This would explain the increased susceptibility of
APOE4-carriers to neurotoxicity. Although additional studies
in animal models are needed to definitively establish the
causal relationship, our data have already demonstrated the
prerequisite for the existence of this cause-effect in humans:
the presence of an association between both factors. Therefore,
in addition to the possible pharmacodynamic effect, the
pharmacokinetic influence of ApoE would become a key
element for the worse deleterious consequences of mercury
exposure.

CONCLUSION

This work shows for the first time the genotypic and allelic
profiles of APOE in Amazonian riverine populations, suggesting
that the absence of ε2/ε2 is a generalized phenomenon in
Amazonian riverine populations and perhaps in the overall
Amazon region. Our data support an association between APOE4
and the Amerindian genetic background in these populations.
Fifty-nine individuals were identified at maximum risk with
levels of mercury above 10 µg/g and the presence of APOE4.
This study also supports that ApoE4, in addition to a possible
pharmacodynamic effect, may influence pharmacokinetically the
mercury exposure causing a higher mercury bioaccumulation,
which may lead to later neurodegenerative diseases with aging.
All this knowledge is essential to improve prevention strategies
and health policy decision-making regarding these at-risk
vulnerable populations.
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