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Myeloid-derived suppressor cells (MDSCs) play a critical role in tumor growth and
metastasis. Since they constantly infiltrate into the tumor tissue, these cells are
considered as an ideal carrier for tumor-targeted drug delivery. We recently identified a
DNA-based thioaptamer (T1) with tumor accumulating activity, demonstrated its potential
on tumor targeting and drug delivery. In the current study, we have carried out structure-
activity relationship analysis to further optimize the aptamer. In the process, we have
identified a sequence-modified aptamer (M1) that shows an enhanced binding affinity to
MDSCs over the parental T1 aptamer. In addition, M1 can penetrate into the tumor tissue
more effectively by hitchhiking on MDSCs. Taken together, we have identified a new
reagent for enhanced tumor-targeted drug delivery.

Keywords: tumor-targeted delivery, myeloid-derived suppressor cell, aptamer, structure-activity relationship,
G-quadruplex

INTRODUCTION

Multiple physical and biological barriers block drug molecule penetration in the tumor tissue,
rendering most therapeutic agents ineffective (Blanco et al., 2015; Rosenblum et al., 2018). Thus,
there is a high demand for developing new drug formulations and identifying new delivery routes
that facilitate tumor enrichment and intratumor penetration of anti-cancer therapies (Chen et al.,
2017; Li et al., 2020). Cell-mediated drug delivery is one of such options (Xue et al., 2017; Kutova
et al., 2019). With this promising approach, adequate cells can serve as a carrier to drive therapeutic
agents deep into the tumor (Combes et al., 2020). Cell-based drug delivery is believed to possess a
number of advantages over the conventional drug delivery approaches, such as active delivery with
high selectivity, prolonged retention, and sustained drug molecule release (Su et al., 2015; Huang
et al., 2018; Zhang et al., 2021). Various tumor-associated cell types can serve as the vehicle for cell-
based drug delivery making the best use of their natural tendency on tumor homing in response to
tumor-secreted chemoattractants (Tang et al., 2021). Indeed, many immune cells including T cells,
monocytes and neutrophils, macrophages have all been tested as the vehicle for tumor-targeted drug
delivery (Nakamizo et al., 2005; Huang et al., 2015; Xia et al., 2020; Ye et al., 2020; Qu et al., 2021).

Most studies on cell-mediated drug delivery have mainly focused on packaging carrier cells with a
therapeutic cargo ex vivo (Timin et al., 2018; Tang et al., 2021). However, viability and migration
property of the cells can be altered during the drug-loading process; in addition, cell manipulation is
a costly and sophisticated process (Dekaban et al., 2013). In this regard, a direct in situ loading
strategy provides a better alternative (Feng et al., 2020). However, in order to achieve a high targeting
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efficiency, it is essential to have a reagent with high binding
affinity and specificity to the carrier cell that allows for effective
drug internalization in circulation.

Myeloid-derived suppressor cells (MDSCs) are a
heterogeneous population of immature myeloid cells that
constitutes an important part of the immunosuppressive
tumor microenvironment (Veglia et al., 2018). They play a
critical role in tumor progression and metastasis (Tian et al.,
2019; Swierczak and Pollard, 2020), and are correlated with poor
prognosis (Zhang et al., 2017). It has been reported that a large
number of MDSCs are recruited to the tumor tissue and pre-
metastatic niches during tumor expansion (Bosiljcic et al., 2019;
Hoffmann et al., 2019; Cassetta et al., 2020). Compared with other
immune cells, most of which preferentially migrate to lymphoid
organs or livers, MDSCs show more specific tumor tropism
(Eisenstein et al., 2013). Both the abundance and high
mobility make circulating MDSCs an ideal vehicle for
transporting drug molecules or particles from bloodstream
into the neoplastic lesion (Chandra and Gravekamp, 2013).

Aptamers are single-stranded oligonucleotides folded into
unique three-dimensional structures. They can bind to both
small and macro-molecules with high affinity and specificity
(Zhang et al., 2013). In addition, aptamers offer a number of
advantages over antibodies such as lower immunogenicity, less
complexity, and easy to produce (Zhou and Rossi, 2017;
Kratschmer and Levy, 2018). However, they also suffer from
certain disadvantages such as low bioavailability and stability, and
rapid clearance from the body (Sun and Zu, 2015; Odeh et al.,

2019). Thus, there is a need to identify aptamers with desirable
physical and chemical properties for drug delivery. In our
previous work, we applied in vivo systematic evolution by
exponential enrichment (SELEX) screening and identified a
novel DNA thioaptamer (T1) that showed tumor tropism
(Liu et al., 2018; Mai et al., 2018). Interestingly, the T1
aptamer could bind to both MDSCs and cancer cells, thus
serving as an affinity moiety for tumor-targeted drug
delivery. In addition, unlike other aptamers designed to
interact with tumor-associated MDSCs (De La Fuente et al.,
2020), the T1 aptamer obtained from our in vivo selection binds
to both tumor-infiltrated MDSCs and tumor-homing MDSCs
in circulation, which may contribute to blood retention and
ultimately enhanced tumor accumulation. In the current study,
we have taken an additional effort to perform structure-activity
relationship analysis on T1 aptamer. During the process, we
have unmasked key sequence and structural features that
determine MDSC-binding activity from the aptamer. By
incorporating these features, we have identified a new
aptamer (M1) with enhanced MDSC-binding ability.

MATERIALS AND METHODS

Oligonucleotides
All oligonucleotides used in this study were synthesized by
Integrated DNA Technologies (IDT, United States). Sequences
information for individual aptamers are provided in Table 1. The

TABLE 1 | Aptamer sequences with G4 Hunter scores and predicted quadruplexes.

Sequence Quadruplexes Found G4 Hunter Score

CGCTCGA*TA*GA*TCGA*GCTTCGCTCGA*TGTGGTGTTGTGGGGGCTTGTA*TTGGTCGA*TCA*CGCTCT
A*GA*GCA*CTG

1 1.2

A*T CCA GAG TGA CGC AGC A*CT A*CT GGA* CTT CA*T CGG A*GC TAG GTC A*TC GCT TGC A*TG CA*T GGA* CA*C
GGT GGC TTA

0 n/a

CGCTCGA*TA*GA*TCGA*GCTTCGCTCGA*TGTGGTGTTGTGGGGGCTTGTA*TTGGTCGA*TCA*CGCTCT
A*GA*GCA*CTG

1 1.2

CGCTCGA*TA*GA*TCGA*GCTTCGCTCGA*TCA*CGCTCTA*GA*GCA*CTG 0 n/a
CGCTCGA*TA*GA*TCGA*GCTTCGCTCGA*TGTGGTGTTGTGGGGGCTTGTA*TTGGTCGA*TCA*C 1 1.2
CGCTCGA*TA*GA*TCGA*GCTTCGCTCGA*TGTGGTGTTGTGGGGGCTTGTA*TTG 0 n/a
CGCTCGA*TA*GA*TCGA*GCTTCGA*TCGA*TGTGGTGTTGTGGGGGCTTGTA*TTGGTCGA*TCA*C 1 1.2
CGCTCGA*TA*GA*TCGA*GCTTCGCTCGA*TGTGGTGTTGTCTTGTA*TTGGTCGA*TCA*C 0 n/a
CGCTCGA*TA*GA*TCGA*GA*TTCGCTCGA*TGTGGTGTTGTGGGGGCTTGTA*TTGGTCGA*TCA*C 1 1.2
CGCTCGA*TA*GTTCTCGA*GCTTCGCTCGA*TGTGGTGTTGTGGGGGCTTGTA*TTGGTCGA*TCA*C 1 1.2
CGCTCGA*TA*GA*TCGA*GCTTCGA*TCGA*TGTGGTGTTGTCTTGTA*TTGGTCGA*TCA*C 0 n/a
CGCTCGA*TA*GA*TCGA*GCTTCGCTCGA*TGTGGTGTTGTGGGGGCTTGGTCGA*TCA*C 1 1
CGCTCGA*TA*GA*TCGA*GCTTCGA*TCGA*TGTGGGGTTGTGGGGGCTTGTA*TTGGTCGA*TCA*C 1 1
CGCTCGA*TA*GA*TCGA*GCTTCGA*TCGA*TGTGGGGTTGTGGGGGCGGGTA*TGGGTCGA*TCA*C 1 1.2
CGCTCGA*TA*GA*TCGA*GCTTCGA*TCGA*TGTGGTGTTGGGGGGGCTTGTA*TTGGTCGA*TCA*C 1 0.8
CGCTCGA*TA*GA*TCGA*GCTTCGA*TCGA*TGTGGTGTTGTGGGA*GCTTGTA*TTGGTCGA*TCA*C 0 0
CGCTCGA*TA*GA*TCGA*GCTTCGA*TCGA*TGTGGTGTGGGGGTGTCTTGTA*TTGGTCGA*TCA*C 1 1.2
CGCTCGA*TA*GA*TCGA*GCTTCGA*TCGA*TGTGGTGTTGTCTTGTA*TGGGGGTGGTCGA*TCA*C 1 1.2
CGCTCGA*TA*GA*TCGA*GCTTCGCGCGA*TGTGGTGTTGTGGGGGCTTGTA*TTGGTCGCTCA*C 1 1.2
CGCTCGA*TA*GA*TCGA*GCTTCGCTGCGA*TGTGGTGTTGTGGGGGCTTGTA*TTGGTCGCA*TCA*C 1 1.2
CGCTCGA*TA*GA*TCGA*GCTTCGCGCGA*TGTGGTGTTGTGGGGGCTTGTA*TTGGTCGCGGA*C 1 1.2
CGCTCGA*TA*GA*TCGA*GCTTCGCTCGCGA*TGTGGTGTTGTGGGGGCTTGTA*TTGGTCGCGA*TCA*C 1 1.2
CGCTCGA*TA*GA*TCGA*GCTTCGCTGA*TCGA*TGTGGTGTTGTGGGGGCTTGTA*TTGGTCGA*TCA*TCA*C 1 1.2
CGCTCGA*TA*GA*TCGA*GCTTCGA*TCGA*TGTGGTGTTGTGGGGGCTTGTA*TTGGTCGA*TCGC 1 1.2
CGCTCGA*TA*GA*TCGA*GCTTCCGA*TCGA*TGTGGTGTTGTGGGGGCTTGTA*TTGGTCGA*TCGA*C 1 1.2
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oligonucleotides were resuspended in water to a final
concentration of 100 µM as the stock solution. Purity of each
sample was examined with HPLC.

Cell Culture
The human chronic myelogenous leukemia (CML) cell line K562
and human acute myeloid leukemia (AML) cell line Molm14
were cultured in RPMI 1640 (Corning, United States)
supplemented with 10% fetal bovine serum (FBS, GIBCO,
United States), 100 U/ml penicillin and 100 µg/ml
streptomycin (Cellgro, Corning, United States) at 37°C with
5% CO2. Murine 4T1 mammary carcinoma cells were cultured
in Dulbecco’s Modified Eagle’s Medium (DMEM, Corning,
United States) supplemented with 10% FBS, 100 U/ml
penicillin and 100 µg/ml streptomycin at 37°C with 5% CO2.
Peripheral bloodmononuclear cells (PBMCs) were collected from
4T1 tumor-bearing mice, lysed with an ACK lysis buffer (KD,
United States) for 5 min on ice, and then maintained in complete
DMEM with 55 µM 2-mercaptoethanol (Gibco, United States).

Murine Tumor Model
All procedures in animal studies were carried out strictly
following a protocol approved by the Institutional Animal
Care (IACUC) at Houston Methodist Research Institute.
Female Balb/c mice (6 to 8-week-old) were purchased from
the Jackson Laboratory. 4T1 orthotopic breast cancer model
was established by inoculating 5×105 4T1 cells in 100 μl
phosphate buffered saline (PBS)/Matrigel (Corning,
United States) in the left mammary fat pad.

Detection of Free and Cell-Associated
Aptamers in Circulation
For aptamer in vivo partition experiments, 4T1 tumor-bearingmice
were treated intravenously (i.v.) by tail with 0.4 nmol Cy5-labeled
aptamers (Cy5-aptamer) in 200 µl PBS. Periphery blood samples
were collected 30min and 4 h post-injection. They were processed
with centrifugation, and cell pellets were treated with an ACK lysis
buffer for 5 min on ice. After one round of wash, cells were
resuspended in 100 μl 2% FBS, and fluorescent intensities from
all samples were measured with a Biotek Synergy H4 Hybrid
Reader, and further confirmed with flow cytometry.

In vitro and ex vivo Aptamer Binding Assays
Cells were resuspended in a PBS-based binding buffer containing
2% FBS, 10% glucose, 5 mM MgCl2, 0.1 mg/ml salmon sperm
DNA (ssDNA, R&D), and 100 µg/ml yeast tRNA (Invitrogen,
United States) for 5 min on ice, following a previously described
protocol with slight modification (Sefah et al., 2010). To measure
cell binding by aptamers in vitro, 40 nM Cy5-aptamer was added
to 1 million K562 or Molm14 cells. The cell suspension was
maintained on ice for 30 min, and unbound aptamer was washed
out before samples were applied for flow cytometry analysis. To
examine aptamer binding to PBMCs ex vivo, 0.5 million PBMCs
were mixed with 200 nM Cy5-aptamer in a 100 µl binding
solution. Cells were washed with 2% FBS in PBS before they
were applied for flow cytometry analysis.

G4 Hunter Application
Sequences were uploaded to a web-based server named DNA
analyser (http://bioinformatics.ibp.cz), and the system provided
automated analysis on G-quadruplex motifs (Brázda et al., 2019).
G4 Hunter parameters were set as recommended.

Aptamer Separation With Agarose Gel
Electrophoresis
Aptamers were separated with electrophoresis on both denatured
and non-denatured agarose gels. To separate on a non-denatured
gel, 5 µM sample in 10 µl PBS was loaded into each well in a 3%
agarose gel prepared with GelRed (Biotium, United States) in tris-
acetate-EDTA buffer. GeneRuler Low Range DNA Ladder
(Thermo Scientific, United States) ranging from 25 bp to
700 bp was used as standard markers. To separate on a
denatured gel, 5 µM sample in 10 µl PBS was heated at 70°C
for 5 min, and then chilled on ice for 3 min before it was loaded
onto a 2.5% agarose gel in an alkaline electrophoresis buffer
containing 30 mM NaOH and 2 mM EDTA. Electrophoresis was
run at a constant voltage of 90 V for 1.5 h.

Flow Cytometry Analysis
To identify binding capability of each aptamer on the K562 and
Molm14 cell lines, cells were resuspended in 2% FBS and stained
with DAPI at a 1:10,000 dilution before they were applied for flow
cytometry analysis. To assess aptamer binding on PBMCs, cells
were first incubated with fluorescently labeled antibodies, and
then stained with DAPI before flow cytometry analysis on an
LSRII Flow Cytometer or a BD FACS Fortessa (Bronte et al.,
2016). Antibodies used for flow cytometry analysis included
FITC-CD45 (BD Biosciences, United States), APC-Cy7- CD45
(BD Biosciences, United States), PE-CD11b (Tonbo,
United States), AF700-Ly6G (Biolegend, United States), FITC-
Ly6G (Biolegend, United States), PE-Cy7-Ly6C (Biolegend,
United States). Results were analyzed using the Flowjo software.

Aptamer Penetration Into Tumor Spheroids
To generate 4T1 tumor spheroids, 3,000 4T1 cells were added into
each well in an ultralow attachment round bottom microplate
(Corning, United States). They were cultured in complete DMEM
at 37°C with 5% CO2 for 3 days to generate tumor spheroids.
After washed twice with PBS, 5 to10 tumor spheroids with a
diameter around 500 μm were transferred into each well of a
Falcon chambered cell culture slide (Corning, United States). An
aliquot of either free Cy5-aptamer or Cy5-aptamer pre-incubated
with 5×105 CFSE-labeled (Invitrogen, United States) PBMCs was
added into each well. After coincubation at 37°C for 4 h, unbound
aptamer was washed out and cells were left in the culture medium
for another 4 h. Subsequently, cells/spheroids on the slide were
washed twice with PBS followed by fixing with 4%
paraformaldehyde. Finally, tumor spheroids were imaged
under a Fluo View™ 3,000 confocal microscope.

Statistical Analysis
Statistical analysis was performed with the GraphPad Prism 8
software. Data is presented as mean ± s. d. Two-tailed, unpaired
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Student’s t-test was applied to compare values between 2 groups,
and one-way ANOVA with Turkey’s correction was used to
analyze results from multiple groups. For correlation analysis,
data were fitted with linear regression, and Pearson correlation
coefficients were calculated. *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001.

RESULTS

Aptamer is Associated With MDSCs in
Circulation
In a previous study, we detected binding of tumor cells and
subsets of myeloid cells by the T1 aptamer (Liu et al., 2018). Here,
we performed studies to further investigate aptamer-cell
interaction in vivo. After mice bearing 4T1 tumors were
treated with Cy5-labeled T1 or scramble aptamers, we detected
dramatic decrease of T1 aptamer level in the serum within 30 min
compared to the scramble aptamer control, and a surge of cell-
associated T1 within 4 h (Figure 1A). Flow cytometry analysis
confirmed cell-bound T1 aptamer (Figure 1B). Cell type analysis
revealed that most T1 aptamers were associated with the
CD45+CD11b+Ly6C+Ly6G− monocytic MDSCs (M-MDSCs)
and CD45+CD11b+ Ly6C−Ly6G+ polymorphonuclear MDSCs
(PMN-MDSCs). In addition, there was an interesting shift of
T1 aptamer-associated cells from M-MDSCs at 30 min to PMN-
MDSCs at 4 h (Figure 1C). Given that tumor-bearing mice are
overloaded with MDSCs in circulation, these cells provide the
main source for retention of the aptamers. Since MDSCs tend to
infiltrate into the tumor and support tumor growth, theymay also

serve as a vector for tumor-orientated transportation of T1
aptamers and hence T1-conjugated therapeutic agents
(Ostrand-Rosenberg and Fenselau, 2018). Thus, it is necessary
to further evaluate T1 aptamer and its binding activity with
MDSCs (Hasegawa et al., 2016).

Structure-Activity Relationship Analysis
Reveals Key Structural Features of Aptamer
It is generally accepted that binding from an aptamer is
dependent on its spatial structural adaptability, and in most
cases, only a small part of it is responsible for direct docking
with the target (Ruscito and DeRosa, 2016; Azri et al., 2021).
Structure-activity relationship analysis has been applied to
determine key binding site(s) in an aptamer (De Fenza et al.,
2020). We applied a similar approach to map the cell-binding
sites in the T1 aptamer. The probable secondary structures were
determined with the Mfold software that is based on folding
Gibbs free energy calculation. Based on the prediction, T1
aptamer primarily consists of three stem-loop hairpin motifs
(Figure 2A). Subsequently, a series of modifications were made to
narrow down the pivotal segments of the T1 sequence (Table 1,
Supplementary Figure S1).

Cell-binding capacity from T1-derived new aptamers was
measured using two human leukemic cells as surrogates. K562
is a myelogenous leukemia line, and Molm14 is a monocytic
leukemia line. These cell lines bear close similarity with MDSCs
since they all represent poorly differentiated myeloid cells.
Overall, K562 cells displayed higher binding capacity to the T1
aptamer than Molm14 cells (Figure 2B, Supplementary Figure

FIGURE 1 | Partition of aptamer in circulation. 4T1 tumor-bearingmice were treated i.v.with 0.4 nmol Cy5-T1 thioaptamer (T1) or Cy5-scramble aptamer (Scr), and
periphery blood samples were collected 30 min and 4 h later for fluorescent analysis. (A) Fluorescent intensity in serum and PBMCs. ND: not detectable. (B) Flow
cytometry analysis of cell-associated Cy5-aptamers at the 30 min and 4 h time points. (C) Distribution of Cy5-aptamer among cell subsets in PBMC. MFI: median
fluorescence intensity.
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S2A). In the first set of study, we generated a group of new
aptamers by truncating big pieces in the T1 aptamer. The D1 and
D2 aptamers carried large deletions in the 5′ region (loop1 and
stem 1) and the middle region (loop 2 and stem 2), respectively.
D3 missed loop 3 and stem 3, and D4 had a larger sequence
deletion than D3 (Table 1, Supplementary Figure S1).
Truncation of the 5′ stem and loop (D1) resulted in partial
loss of activity, while depletion of loop 2 (D2) caused a total
loss of cell-binding ability. Interestingly, D3 and D4 retained cell-
binding activity (Figure 2C, Supplementary Figure S2B),
indicating that the 3′ loop 3 and stem 3 are not involved in
aptamer-cell interaction.

D3 aptamer was selected for further modifications. It has been
previously shown that the size of loop and stem has an impact on
the function and stability of a nucleic acid hairpin (Vallone et al.,
1999; Kuznetsov et al., 2008). Compared to the parental D3, M1

has an elongated stem 2 with six base pairs, while M2 has a
dGGGGG deletion in loop 2 resulting in a smaller loop. With
similar alterations in the 5′ region, M3 has a shorter stem 1, and
M4 adopts an enlarged loop 1 (Table1, Supplementary Figure
S1). Among these four new aptamers, M1 showed the highest
binding capacity to the human leukemia cells, and M3 and M4
retained their cell-binding capabilities. Surprisingly, M2
completely lost its cell-binding activity (Figure 2D,
Supplementary Figure S2C).

Based on the observations that depletion of loop 2 (D2) and
deletion of the dGGGGG segment in loop 2 (M2) caused
complete lose of cell-binding activity, we hypothesized that
either the size of loop 2 or a specific sequence feature in the
loop was essential for aptamer activity. Indeed, deletion of the
dGGGGG segment in M1 (M1d) caused a complete loss of
activity, while deletion of five nucleotides outside of the

FIGURE 2 | Analysis of aptamer binding to K562 cells. (A) Predicted secondary structures of T1 andM1 aptamers. Stems and loops in the aptamer are labeled. (B)
Dose-dependent binding of aptamers to K562 cells based on flow cytometry analysis. (C–G) Flow cytometry analysis on binding of K562 cells by T1 and derived
aptamers.
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dGGGGG segment in loop 2 (M2-2) retained partial activity
(Figure 2E, Supplementary Figure 2D). These results point to a
pivotal role of the dGGGGG segment in cell-binding activity.

To further evaluate contribution from dGGGGG segment on
cell binding, we mutated a number of nucleotides in loop 2 of
the M1 aptamer to generate aptamers with additional G-rich
segments or segments with different length (Table 1,
Supplementary Figure S1). M1g1 contains two G-rich
fragments while M1g2 has four of them. As expected, the
two new aptamers retained high cell-binding activity

(Figure 2F, Supplementary Figure S2). Reducing the length
of the G-rich segment from five to three guanine nucleotides
(M1g3) deprived M1 of its binding affinity, while extending the
segment to 7 guanine nucleotides (M1g4) did not further
enhance cell binding (Figure 2F, Supplementary Figure
S2). In addition, transposition of the G-rich segment in
loop 2 (M1g5 and M1g6) did not improve cell-binding
activity either (Figure 2F, Supplementary Figure S2).
These results strongly support the notion that a G-rich
segment with a certain length in loop 2 is strictly required

FIGURE 3 | Analysis of tetramolecular G-quadruplex. (A) Schematic view of special secondary structures of G-quadruplex. Left panel: molecular structure of a
G-quartets. Right panels: Secondary structures of unimolecular, bimolecular, and tetramolecular G-quadruplexes. (B–E) Images of agarose gel electrophoresis results.
Left panels: non-denatured gels; right panels: denatured gels. Orange arrows point to the monomer bands, and blue arrows point to the tetramer bands. (F) Correlation
between cell binding affinity and tetramer/monomer ratio.
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for aptamer activity. In the meanwhile, increasing the number
of G-rich segments did not further improve cell-binding
activity from M1.

Addition analysis was performed in aptamers with an
undisrupted loop 2. The D3 derivatives (D3L1, D3L1-2, D3L2,
D3L2-2) had elongated stem 2 over D3, and the M1 derivatives
(M1-2, M1L, M1L-2) had extended stem 2 compared to M1
(Supplementary Figure S1). These derivatives had either
comparable or inferior activities compared to M1 in a cell-
based assay (Figure 2G, Supplementary Figure S2).

Tetramolecular G-Quadruplex is Essential
for MDSC Binding
It has been reported that G-rich oligonucleotides have the propensity
to form aG-quadruplex (G4) structure under appropriate conditions
(Kwok and Merrick, 2017). G4 is a non-canonical nucleic acid
structure formed by stacking interaction of G-quartets where four
guanines are assembled into a planar arrangement through
hoogsteen hydrogen bonding (Figure 3A). Since aptamers with a
G4 structure are more resistant to nucleases, G4 structures have
often been incorporated into aptamer design (Bochman et al., 2012;
Roxo et al., 2019). We applied web-based G4 Hunter service for
G-quadruplex prediction to analyze the guanine-rich aptamers. This
program has been successfully used to identify genome-wide
G-quadruplex motifs and to correlate with their specific functions
(Gazanion et al., 2020; Bohálová et al., 2021). The system assigned
G4 Hunter score representing a quadruplex propensity in each
sequence and predicted the number of putative quadruplexes
(Table 1).

Since there is only one consecutive G-rich region in T1 and
T1-derived aptamers, an intermolecular interaction is needed to
form a G4 structure (Pedroso et al., 2007). To test this
hypothesis, we performed agarose gel electrophoresis under
both denatured and non-denatured conditions. Each aptamer
showed one band on the denatured gel that correlated with the
proper molecular weight; however, many aptamers had two
bands on the non-denatured gel, one correlating with the
molecular weight and the other a higher molecular weight
(Figure 3B–E). Careful analysis revealed that all aptamers
that showed two intense bands on the non-denatured gel
carried a dGGGGG segment, a result that precisely
confirmed G4 Hunter prediction (Table 1). Among the
G-rich segment-modified M1 derivates, there was a linear
correlation between intensity of the quadruple bands
(displayed by a tetramer band/monomer band ratio) and
cell-binding activity, with M1 showing the highest tetramer
ratio and the highest binding capacity (Figure 3F).

The M1 Aptamer has a High Tumor
Penetration Potential
We performed an ex vivo assay to compare cell-binding capacity
between the T1 and M1 aptamers. Both aptamers were applied to
incubate with PBMCs derived from 4T1 tumor-bearing mice, and
flow cytometry was performed to determine percentage of cells
associated with the aptamer (Supplementary Figure S3).
Interestingly, both aptamers were associated with the same
pool of CD45+CD11b+myeloid cells (Figure 4A). However,
binding capacity from M1 was twice as high as that of T1

FIGURE4 |HighMDSC-binding capacity from theM1 aptamer (A) tSNEmap of T1 andM1 binding to PBMCs ex vivo. (B)Quantitative analysis of PBMCbinding by
aptamers. MFI: median fluorescence intensity. (C) Images of 4T1 spheroids with cell-transported aptamers. Upper panels: spheroids co-cultured with PBMCs pre-
incubated with Cy5-aptamer. Bottom panels: spheroids co-cultured with free Cy5-aptamer. Green dots: CFSE-labeled PBMCs; red dots: Cy5-aptamer. Scale bar:
100 mm.
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based on fluorescent intensity from the cell-bound aptamers
(Figure 4B).

To explore the feasibility of MDSC-mediated drug delivery, we
performed an in vitro co-culture assay with PBMCs and 4T1
tumor spheroids (Supplementary Figure S3B). There have been
many studies demonstrating the utility of tumor spheroids on
interaction between tumor tissue and therapeutic reagents
(Ibarra et al., 2020; Zheng et al., 2020). Confocal
microscopic analysis revealed that CFSE-labeled PBMCs (in
green) were able to penetrate deep into the tumor spheroids,
with a concurrent increase of fluorescence from the Cy5-
labeled aptamers (in red) hitchhiking inside the spheroids
(Figure 4C). More importantly, fluorescent intensity was
much stronger in samples treated with M1 aptamer than
those with T1 or the scramble aptamer (Figure 4C),
indicating that M1 was more effectively transported into the
tumor spheroids by MDSCs.

DISCUSSION

In the current study, we performed structure-activity relationship
studies to understand sequence requirement for our previously
identified T1 aptamer on its binding to the poorly differentiated
MDSCs. In the process, we identify new aptamers with improved
binding capacity over T1, and M1 showed the highest MDSC-
binding potential. Another interesting finding is that both T1 and
M1 aptamers can bind to the circulating MDSCs. Since such cells
are constantly recruited into the malignant tissue in support for
tumor growth and metastasis, they can also serve as an ideal
vehicle for intratumor drug delivery. Hence, both T1 and M1 can
serve as precious reagents for tumor-targeted drug conjugates,
and are expected to play important roles in cell-mediated tumor
delivery of therapeutic agents. Based on our current study, M1 is
more effective than T1 for the role.

An interesting feature of this set of aptamers is their ability to
form tetramolecular G-quadruplexes. Our structure-activity
relationship analysis confirmed the importance of the
dGGGGG segment in forming a tetramolecular structure.
Since the length and positions of loops and flanking
sequences, together with other structural elements can all
impact the stability of the tetramolecular structure, application
of the G4 Hunter program provided systematic analysis for the
T1-derived aptamers. In the meantime, we established a
correlation between the special polymeric structure and its
MDSC-binding capacity from the aptamer in the study. It is
very interesting to observe a positive correlation between

tetramer-to-monomer ratio and cell-binding activity
(Figure 3F). It is highly likely that a unique tertiary structure
containing the G-quadruplex is required for MDSC binding.
Future study should be focused on confirmation of the tertiary
structures and identification of the protein or protein cluster on
cell surface that interacts with the aptamer. A recently reported
fluorescence melting competition assay can be a useful tool in the
study (Luo et al., 2021).

In conclusion, we have identified a group of aptamers with a
high binding capacity to MDSCs. Among them, the M1 aptamer
has the highest cell-binding capacity. This aptamer is expected to
serve as a unique reagent for cell-mediated tumor delivery of
therapeutic agents.
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