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Abstract: Defects in pre-mRNA splicing are frequently a cause of Mendelian disease. Despite the
advent of next-generation sequencing, allowing a deeper insight into a patient’s variant landscape,
the ability to characterize variants causing splicing defects has not progressed with the same speed.
To address this, recent years have seen a sharp spike in the number of splice prediction tools leveraging
machine learning approaches, leaving clinical geneticists with a plethora of choices for in silico
analysis. In this review, some basic principles of machine learning are introduced in the context of
genomics and splicing analysis. A critical comparative approach is then used to describe seven recent
machine learning-based splice prediction tools, revealing highly diverse approaches and common
caveats. We find that, although great progress has been made in producing specific and sensitive
tools, there is still much scope for personalized approaches to prediction of variant impact on splicing.
Such approaches may increase diagnostic yields and underpin improvements to patient care.

Keywords: Mendelian disease; diagnostics; variant interpretation; variant prioritization; RNA splicing;
bioinformatics; machine learning; genomic medicine; effect prediction

1. Introduction

Accurate interpretation of genomic variants is the backbone of genomic medicine. Determining
the causative variant in patients with Mendelian disorders facilitates both management and potential
downstream treatment of the patient’s condition, as well as providing peace of mind and allowing more
effective counselling for the wider family. Rare genomic disorders impact 1 in 17 individuals [1], can
be severely debilitating or life-limiting, and may also require expensive specialist care, placing a huge
emotional burden on sufferers and their families. Thus, there is a moral and economic imperative
to ensure as many patients as possible receive molecular diagnoses, and to ensure there is clarity in
diagnostic interpretation of genomic variation. This is further emphasized by the recent revolution of
genomic sequencing within healthcare in the UK, where diverse diagnostic testing approaches are
available nationwide for many disease subtypes [2].

The advent of next generation sequencing (NGS) technologies, which allow accurate, high-throughput
identification of the body of variants in an individual’s genome, has revolutionized the way we generate
genomic patient data. Gene panels—sequencing workflows designed to identify variants in a subset of
disease-related genes—have shown great promise for improving diagnostic rates in diverse disease areas,
for example, inherited retinal dystrophies [3] and hereditary tumor syndromes [4]. Exome and genome
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sequencing are now also commonplace in the diagnosis of Mendelian patients and allow identification of
the vast majority of coding variants in a patient’s genome [5–8].

Despite these recent improvements in the ease with which we generate genomic datasets, certain
causative mutations still often elude diagnostic pipelines, and, as such, molecular diagnosis rates
remain between 25–40% for most diagnostic centers [9,10]. Large and/or complex structural genomic
rearrangements, for example, are often difficult to identify from short-read sequencing alone, although
strategies to incorporate copy number variations are now commonplace in diagnostic settings and have
been shown to increase diagnostic yields [11,12]. Furthermore, pathogenic variation in non-coding
regions, which may cause disease through impairing RNA secondary structure [13] or gene expression
and regulation [14,15], is difficult to discern from genomic datasets alone.

One similarly underappreciated source of pathogenic variation is that impacting RNA splicing,
the process by which introns are removed co-transcriptionally from nascent pre-mRNA transcripts.
Recent estimates suggest between 9–30% of causative variants in Mendelian disorders cases may act
through disruption of splicing [16], and so deeper consideration of variant impact on splicing is likely
to be of great benefit in improving diagnostic yield for rare disease patients.

Recent research has shown that direct analysis of RNA mis-splicing via RNA-seq may prove highly
beneficial in improving molecular diagnosis for disease subtypes such as neuromuscular disease [17,18].
However, the tissue-specific nature of splicing imposes limits on the subtypes of disease for which
biopsy and subsequent RNA-seq analysis of relevant tissues may be effective.

Recent years have seen a surge in bioinformatics tools designed to predict variant impact on
splicing, and these offer an opportunity to circumvent many limitations of RNA-seq-based approaches.
An increasing number of these tools rely on machine learning—computational approaches that can
identify patterns in data and use this knowledge to speculate on new data. Machine learning is already
being applied to great effect in diverse biological fields, such as the modelling of social networks in animal
behavior studies [19,20] and protein secondary structure prediction [21]. The application of machine
learning to the prediction of variant impact on splicing has been assisted by the recent availability of
large-scale transcriptomic datasets, such as the GTEx project [22], which allow researchers to link genomic
and transcriptomic variation across large numbers of individuals and tissue types [23–25].

Depending on sequencing strategies, clinical scientists will be expected to interpret and triage
hundreds to millions of genomic variants per individual, although many variants can be immediately
excluded due to their frequency in the general population [26]. The development of effective machine
learning tools for the prediction of splicing impact will allow prioritization of likely pathogenic variants
among the mass of genomic variants returned by standard diagnostic pipelines. Ultimately, these tools
may prove a valuable asset in improving diagnostic yield globally.

This review aims to provide a summary of some of the major machine learning-based splice
analysis tools released to date. While the focus here is largely on the functionality of these tools, some
basics of machine learning are introduced to allow easier understanding of their computational basis,
as described below. For a more thorough grounding in machine learning, the reader is pointed to an
excellent recent review by Eraslan et al. [27], describing many aspects of computational modelling
in genomics.

2. Pre-mRNA Splicing and Its Role in Pathogenesis

The co-transcriptional splicing of pre-mRNA is an intricate and tightly regulated process. Over
the course of the splicing reaction, highly specific and complex interactions between the trans-acting
components of the spliceosome and cis-acting sequences in the RNA transcript occur in a stepwise
fashion. Mutations in the core spliceosome components themselves, as well as in auxiliary splice
factors, can be causes of Mendelian disease. For example, mutations of the spliceosomal U5 snRNP
component EFTUD2 cause the autosomal dominant craniofacial disorder mandibulofacial dysostosis,
Guion–Almeda type [28], and mutations in several pre-mRNA processing factors are known as a cause
of autosomal dominant inherited retinal disease, for example PRPF31 [29] and SNRNP200 [30].
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Moreover, homozygous knockout of most splicing factors is embryonic lethal [31], demonstrating
the vital importance of the splicing process in sustaining eukaryotic life.

However, splicing dysregulation in Mendelian disease predominantly occurs at the cis-acting level,
where disruption of vital sequence elements leads to aberrant splicing events (Figure 1), such as single or
multi-exon skipping [32,33] (Figure 1b), and the creation of new “cryptic” splice sites [34,35] (Figure 1c,d)
which can cause the retention of whole introns [36,37] (Figure 1e) and the inclusion of pseudoexons [38–40]
(Figure 1f). Besides the well-characterized mutation of canonical splice sites, disruption of all manner of
cis-acting elements has been described as a cause of Mendelian disease; mutation of the wider splice region
around canonical sites [41,42], exonic and intronic silencers/enhancers [43,44], the 3′ branch point [45,46],
and poly-pyrimidine tract [47,48] have all been implicated in monogenic disease. As a result of the varied
molecular mechanisms underlying splicing aberration, there are diverse sets of computational models for
splicing prediction, including both those which focus on prediction of a particular subset of splice aberration,
and others which adopt more holistic approaches to consider multiple possible impacts on splicing.

(a) Wild-type splicing

(b)  Exon skipping

(c)  Cryptic intronic splice donor/acceptor

(d)  Cryptic exonic splice donor/acceptor

(e)  Intron retention

(f)  Pseudoexon inclusion

pre-mRNA mRNA

Figure 1. Cont.
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pre-mRNA mRNA

Figure 1. Diverse mechanisms of splicing dysfunction may be pathogenic. (a) Wild-type splicing.
Schematic of a three-exon region of a gene (exons in blue, green and orange) with corresponding
wild-type splicing activity. (b) Exon skipping. Mutations in or around an exon may lead to it being
skipped from a final transcript. (c) Cryptic intronic splice donor/acceptor. Mutations in the intron may
lead to generation of cryptic splice sites that outcompete canonical sites, leading to inclusion of intronic
sequences. (d) Cryptic exonic splice donor/acceptor. Exonic mutations that activate cryptic sites may
also outcompete canonical sites, causing exclusion of exonic sequences. (e) Intron retention. Splicing
of a particular intron may be abrogated, leading to complete inclusion of the length of an intron. (f)
Pseudoexon inclusion. Deeply intronic mutations may activate cryptic sites that aberrantly define
lengths of intron as exonic, leading to inclusion of short segments of intronic sequence (pseudoexons).
Solid lines, introns; black dashed lines, wild-type splicing; red dashed lines, mis-splicing events;
hashed boxes, intronic regions aberrantly included as a result of a mis-splicing event; empty boxes,
exonic regions that are usually retained after splicing, but which are erroneously excluded from the
final transcript.

3. Early Computational Methodologies to Prioritize Genomic Variants Impacting Splicing

Despite the relatively recent advent of machine learning-based splicing models, many other
computational approaches to the prediction of splice disruption have been described over the last
two decades.

Many early tools for the prediction of splicing regulatory element (SRE) binding sites were
based on position weight matrices (PWMs)—log-scaled representations of the frequency of particular
nucleotides within sequences predicted to bind splicing factors. Experimental derivation of such PWMs
formed the basis of tools such as ESEFinder [49] and Human Splicing Finder [50], and decreased fitting
of mutant sequences to the PWM model was seen as evidence for impairment of splice factor binding.

Many computational and experimental approaches to splice prediction have involved the
investigation of nucleotide hexamers (i.e., sequences of 6 bases length). The method RESCUE-ESE,
for example, computationally identified 10 splice-enhancing hexanucleotides in the vicinities of weak
splice sites [51]. An approach named ESRseq [52] made use of a saturation technique in which all
4096 possible nucleotide hexamers were scored for splicing impact based on in vitro minigene splicing
assays. The tabulated results of these experiments, published online, could then be used to speculate
on the splicing potential of a mutant sequence versus its wild-type counterpart.

One tool that remains widely used in splice site prediction is MaxEntScan [53]. Based on the
principles of maximum entropy modelling (MEM) from the field of information theory, MaxEntScan
generates two models based on a set of real and decoy splice sites. It then compares the probability
that a presented nucleotide sequence belongs to each of the two distributions and returns how much
more likely it is that the sequence is a real, rather than decoy, site.

4. Basics of Machine Learning Techniques

Splice prediction tools have incorporated a wide range of machine learning-based models.
In-depth descriptions of deep learning architectures have been given extensively elsewhere [27]. Here,
we instead give a broader overview of machine learning and cover basic elements of machine learning
in the context of splicing analysis. Italicized terms are defined in Table 1.
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Table 1. Glossary of machine learning terms. SVM, support vector machine.

Term Definition

Backpropagation The computational process by which a neural network adjusts the weights and biases of
the network in such a way as to reduce the loss of the model.

Bagging
Abbreviation for bootstrap aggregation. The training of a model on random subsets of

data entries and features to improve generalizability of a model (usually a decision
tree-based model).

Bias A (usually negative) value that represents a neuron’s inherent tendency towards
inactivity. Usually randomized for each neuron before the training of a network.

Classification A type of machine learning system in which the output is assignment of a data point to
a discrete group. Usually contrasted with regression.

Feature One of a set of variables in a dataset that are input to a machine learning model. Machine
learning models classify data according to the values of features in the dataset.

Hidden layer One of any number of layers of neurons lying between the input and output layers of
a deep neural network.

Hyperplane

A surface with one fewer dimensions than the space it occupies. SVMs separate datasets
with n features using a hyperplane of n − 1 dimensions. For example, if there are

6 features, an SVM attempts to create a 5-dimensional hyperplane that best
separates data.

Kernel trick The use of a mathematical function allowing inference of relational qualities of data
without explicitly carrying out computationally expensive mathematical calculations.

Loss function A mathematical function measuring the degree to which a model’s predictions deviate
from the true classifications of data.

Machine learning The use of computer systems to detect patterns in and make inferences from data
without explicit instruction.

Multiclass SVM A subtype of SVM used when data may be classified into more than two classes.

Neuron The basic unit of a neural network, taking in input from previous neurons and
propagating a weighted response to subsequent ones.

Regression A type of machine learning system in which the output is the prediction of a continuous
or ordered value. Usually contrasted with classification.

Support vectors Data points that lie along the margins between classifications in an SVM model.

Training set A dataset containing the data that is presented to a machine learning system and then
used to make inferences and learn patterns present within the data.

Test set The dataset used to evaluate performance of the model. The test set is generally taken
from the same source as the training set, but may come from elsewhere.

4.1. Basics of Machine Learning

All machine learning models require both training and testing—to do this, a relevant data set is
divided into both a training set and a test set. Importantly, no entry in one set is present in the other;
were there to be overlap, the model would be over-trained to recognize those items in the test set that
it had already seen, and measurement of model efficacy would show it to be more effective than it
really was. The variables or characteristics in each dataset that are input to a model are termed features.
Initially, some model-specific algorithm is applied (usually iteratively) to this training set to develop
an initial model. The model is then applied to the test set and its efficacy quantified. Measurement
across different versions of the model then allows the model to be fine-tuned to maximize its efficacy.

The efficacy of a machine learning model is generally measured as some kind of loss function – in
essence, a measurement of how far a model’s predictions deviate from the expected outcome, and
machine learning algorithms strive to minimize this value over the course of the generation of the
model. In other words, these models are gradually tweaked so that their ability to accurately classify
data improves over the training process.

4.2. Features

A key element of machine learning is the use of features: these are the underlying characteristics
or variables that are input to the models and from which inferences are ultimately made. It is these
features by which data are classified or separated. In the context of genomic and transcriptomic
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analysis, many of these features are often sequence-based, representing the frequency or position of
particular nucleotide sequences over a given region. Biochemical features, such as GC content and
thermodynamic properties, are often also employed. Moreover, some tools adopt a meta-analytical
approach through the incorporation of output from other tools as features, such as the use of SPANR [54]
and CADD [55] scores in S-CAP [56] (see below). Differences in choice of features may often underlie
the various strengths and caveats of particular tools.

4.3. Training and Test Sets

One major contributing factor to the rapid surge in the number of machine learning-based splice
prediction tools is the increased availability of publicly-available datasets. Particularly valuable are
experimentally-derived RNA-seq datasets, which allow effective linking of genome- and transcriptome-level
features. Several tools also incorporate measurements of pathogenicity in the form of variant classifications
from ClinVar [57]. Many tools use raw sequence data as input; in such cases, these sequences are taken from
a reputed transcript model, most often GENCODE [58], as in the cases of MMSplice [59] and SpliceAI [60].

4.4. Outputs

Machine learning models broadly fall into the categories of regression and classification models.
Classification models identify the class (of a set of classes) to which an unseen data entry is most
likely to belong. On the other hand, regression models use input data to predict a quantitative value.
Thus, the output of a model depends on its design, the types of features which are utilized as input
and the objectives of the prediction tool. Most splice prediction tools utilize regression models, and
generate predictive scores corresponding to, for example, the strength of a novel splice site (SpliceAI),
the magnitude of an exon skipping event (SPIDEX), or variant pathogenicity (S-CAP). How scores
from these tools are utilized and interpreted is thus highly dependent on the tool being used.

4.5. Model Evaluation

As described above, many machine learning models refine themselves over training iterations by
minimizing some kind of loss function. However, comparative analysis of the relative performance of
different models usually relies on the construction of an unseen test dataset that can be applied to both/all
models. Model performance metrics, such as the area under curve (AUC) of both receiver-operating
characteristic (ROC) and precision-recall (PR) curves, can then be used to more directly compare model
performance, although this may be confounded by many factors (see Discussion).

5. Common Machine Learning Models in Splice Prediction

In this section, we present a non-exhaustive list of some common machine learning architectures
seen in splice prediction software.

5.1. Support Vector Machines (SVMs)

SVM models aim to use a hyperplane (a surface with one fewer dimension than the space around it)
to separate data belonging to different classes. This is done such that the distance between the
hyperplane and data that lie closest to the overlap between two classes—the so-called support vectors
—is maximized (Figure 2a). Data presented to an SVM are then classified according to which side of the
hyperplane they lie on. Multiclass SVM approaches can also be used where there are more than two
outcome classes to which data may be assigned. Finally, data which cannot be separated by a single
continuous hyperplane (Figure 2b) are able to be transformed using the kernel trick. This approach
makes use of kernel functions—mathematical operations that allow inference of relational qualities
between data points in a computationally inexpensive manner. Common kernels used in machine
learning are the polynomial and radial basis function (RBF) kernels, although a multitude of others exist.
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basis function, or RBF, kernel shown here) which infer relational qualities of data in a computationally 
inexpensive manner. (c) Decision trees use a series of binary choices (orange) to most effectively 
separate data into different categories (red and blue). (d) Random forest models consist of large 
numbers (often hundreds or thousands) of trees each derived from bootstrap aggregating (bagging) 
of both input features and data entries in the original training set. (e) To mitigate overfitting problems 
common to decision trees, gradient tree boosting generates successive trees of fixed structure that 
each contribute a small amount to the final classification, with each tree scaled by a learning rate 
between 0–1. (f) In a neural network, a single neuron receives quantitative input (xi) from neurons in 
the preceding layer and scales them according to the weights of its connection to them (wi). Each 
neuron also has a “bias” (b), representing a tendency for inactivity. The output (or activation) of a 
neuron is the sum of each input neuron multiplied by its respective weight, plus this bias value. (g) 
A deep neural network has an initial layer of input neurons (orange), which are coded representations 
of data features. These are connected to 1 or more layers of “hidden neurons” (green), which are, in 
turn, connected to an output layer of neurons (red and blue) corresponding to the possible 
classifications of the data. Predictions may be categorical or continuous and are based on the relative 
activation of the output neurons. Biases for each neuron and weights for each connection are 
randomized before the network is trained. After a set of training data is presented, the loss function 
of the model is calculated (i.e., how accurately or inaccurately the model has classified the known 
data) and an approach termed backpropagation is used to modulate each weight and bias so as to 
reduce this loss. More data is then presented and this process repeated iteratively to refine the model. 

Figure 2. Basic machine learning models. (a) Support vector machines (SVMs) classify linearly-separable
data using a single hyperplane (solid line), with points classified according to the side of the hyperplane
on which they lie. Construction of the hyperplane is done using support vectors (indicated by arrows),
data points that mark boundaries (dotted) within which the hyperplane must lie. (b) Where data
are not linearly separable, they may be transformed using kernel functions (radial basis function,
or RBF, kernel shown here) which infer relational qualities of data in a computationally inexpensive
manner. (c) Decision trees use a series of binary choices (orange) to most effectively separate data
into different categories (red and blue). (d) Random forest models consist of large numbers (often
hundreds or thousands) of trees each derived from bootstrap aggregating (bagging) of both input
features and data entries in the original training set. (e) To mitigate overfitting problems common to
decision trees, gradient tree boosting generates successive trees of fixed structure that each contribute
a small amount to the final classification, with each tree scaled by a learning rate between 0–1. (f) In
a neural network, a single neuron receives quantitative input (xi) from neurons in the preceding layer
and scales them according to the weights of its connection to them (wi). Each neuron also has a “bias”
(b), representing a tendency for inactivity. The output (or activation) of a neuron is the sum of each input
neuron multiplied by its respective weight, plus this bias value. (g) A deep neural network has an
initial layer of input neurons (orange), which are coded representations of data features. These are
connected to 1 or more layers of “hidden neurons” (green), which are, in turn, connected to an output
layer of neurons (red and blue) corresponding to the possible classifications of the data. Predictions
may be categorical or continuous and are based on the relative activation of the output neurons. Biases
for each neuron and weights for each connection are randomized before the network is trained. After
a set of training data is presented, the loss function of the model is calculated (i.e., how accurately or
inaccurately the model has classified the known data) and an approach termed backpropagation is used
to modulate each weight and bias so as to reduce this loss. More data is then presented and this process
repeated iteratively to refine the model.
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Importantly, standard SVMs are only able to classify data as belonging to one group or another;
to provide probabilistic measures of confidence or effect size, models need to be adapted and extended.

5.2. Decision Trees

Decision trees are a simple but powerful form of machine learning model in which a series of
binary choices is designed that produces the most effective classification or prediction of a dependent
variable (Figure 2c)—this is done through selecting whichever choice allows most accurate separation
of data at each stage in the tree-building process. The single decision tree that is generated for a given
training set, however, is prone to overfitting and bias for the input data. To remedy this, random forest
models are often used (Figure 2d). Here, iterative bagging (bootstrap aggregating) of the training data,
as well as of the variables considered at each stage of the tree-building process, allows the model to be
more generalizable to unseen data. Gradient tree boosting (Figure 2e) adopts a different approach to
bypass overfitting by using the generation of successive trees, each of small contribution to the final
model, until decreases in the model loss are negligible.

5.3. Deep Neural Networks (DNNs)

DNNs are computational networks modelled on the activity of biological neurons (Figure 2f).
These neurons are arranged in layers (Figure 2g): the first is an input layer, where each neuron is
assigned a value corresponding to a feature of the model for that data entry. The final layer contains
neurons corresponding to the possible outcomes of the model. Between these are a number of hidden
layers. Hidden layer neurons receive weighted input from all the neurons in the previous layer, and
subsequently distribute the sum of these inputs to all neurons in the next layer by another series of
weighted connections. These weightings are assigned at random before the training of the model.

Training data are presented sequentially to a DNN and the resulting output in the final layer
recorded and averaged over many training iterations. The efficacy of the model is then compared
in relation to expected results. Through a process termed backpropagation, the weightings of the
connections between neurons are proportionally adjusted so as to minimize the loss function of the
model. This is repeated over multiple presentations of training data, or epochs, gradually refining
the model. Particularly popular in the analysis of nucleotide sequences is a variation termed the
convolutional neural network, or CNN, in which input data are ordered in the form of an n-dimensional
array—that is, nucleotides are input to the model in windows.

6. Machine Learning-Based Tools for Splicing Prediction

Below, we describe 7 tools incorporating different aspects of splicing prediction. We provide
a tabulated summary of key characteristics of each model for reference (Table 2), with more information
on code/score access given in Supplementary Table S1. We also include a tabulated and schematic
representation of the transcript regions amenable to analysis by each tool, using the pre-mRNA
transcript of the APO3 gene as an exemplar (Table 3, Figure 3).
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Table 2. Summary of splice prediction bioinformatics tools. Citation column denotes references to articles describing tools themselves. SVM, support vector
machine; RBF, radial basis function; MPRA, massively parallel reporter assay; HGMD, Human Gene Mutation Database; PSSM, position-specific scoring matrix; pLI,
probability of loss-of-function intolerant; RVIS, residual variation intolerance score; AUC, area under receiver operator characteristic (ROC) curve; PR-AUC, area
under precision-recall curve.

Tool Name Function ML Model Training/Testing Data Features Efficacy Citation

CADD General purpose
pathogenicity scoring

v1.0: linear SVM
Later releases:
L2-regularized

logistic regression

Benign training: evolutionarily neutral
variants; pathogenic training: simulated

de novo pathogenic variants
Benign testing: common benign variants;
pathogenic testing: pathogenic ClinVar

variants, somatic cancer mutation
frequencies

60, covering conversation scores,
epigenetic modifications, functional

analyses, and genetic context

AUC = 0.916, across all variant
types [55,61]

TraP
Quantification of
variant impact on

transcripts

Random forest of
1000 individual
decision trees

Benign: De novo mutations in healthy
individuals

Pathogenic: Curated pathogenic
synonymous variants

20, including several PSSM-based
splice site scores, GERP++

conservation scores, and models of
feature interactions

AUC = 0.88, all ClinVar
variants

AUC = 0.83, ClinVar intronic
variants only

[62]

SPANR Cassette exon
skipping prediction

Group of neural
networks modeled on
Bayesian framework

ψ values for all human exons across 16
tissues, based on the Illumina Human

Body Map project

1393, including exon/intron lengths,
distances to nearest alternative splice

sites, conservation and RNA
secondary structure

AUC = 0.955, when
distinguishing between high

(≥67%) and low (≤33%) ψ
values

[54]

CryptSplice

Effect of variants on
existing splice sites

and cryptic splice site
prediction

SVM with RBF kernel True and false splice sites from
GenBank-derived datasets

3 types, all sequence-based, relating
to the probability of finding given

nucleotide sequences at certain
points in splice region

Sensitivity = 97.8% and 88.9%
in correctly labeling canonical

donors and acceptors,
respectively

[63]

MMSplice

Prediction of exon
skipping, competitive
interactions, changes
in splicing efficiency
and pathogenicity

Modular neural
networks, and linear

and logistic regression

Donor/acceptor modules: GENCODE
v24 true and false splice sites

Exon/intron modules: MPRA data from
[64]

Downstream models: various

Direct encoding of the sequence

R = 0.87 and 0.81, correlation
between predicted and actual

∆ψ values for acceptor and
donor mutations, respectively
PR-AUC = 0.41, exon skipping

prediction

[59]

S-CAP

Variant pathogenicity
scoring with the

compartmentalization
of genomic space

Gradient boosting
tree

Pathogenic variants curated from
HGMD and ClinVar; benign variants

curated from gnomAD

Features across chromosomal, gene,
exon and variant levels, e.g., pLI [65],
RVIS [66], CADD and SPIDEX scores,

exon length, splice site strengths

AUC: 0.828–0.959, across
6 regions [56]

SpliceAI

Prediction of variant
impact on

acceptor/donor loss or
gain

32-layer deep neural
network

GENCODE v24 pre-mRNA transcript
sequence for human protein-coding

genes
Direct encoding of the sequence

PR-AUC = 0.98 in correct
prediction of splice site location

from raw sequence
[60]
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Table 3. Tabulated list of loci on pre-mRNA transcripts amenable to predictive analysis by each of 7
splice prediction tools.

Tool Loci Covered

SPANR Any exon that is not first or terminal, plus 300 bp flanking intronic sequence

CryptSplice Within 60 bp of a canonical splice junction; >100 bp into intron if novel donor/acceptor
is created

MMSplice Any exon, plus 50 bp upstream or 13 bp downstream
S-CAP Any exon, plus 50 bp flanking intronic sequence
CADD All loci

TraP All loci
SpliceAI All loci

Exon 1 Exon 4

SPANR

CryptSplice

SpliceAI

S-CAP

TraP

MMSplice

CADD

Exon 2 Exon 3

34
629

68 124
135 1867

309

5′ UTR 3′ UTR

5′ 3′ APOC3
pre-mRNA

Figure 3. Location of variants amenable to analysis by splice prediction software. With diverse underlying
training sets and purposes, different splice prediction tools are only able to analyze variants at particular
sites in a pre-mRNA transcript. To-scale representation of the loci amenable to analysis by each of 7 tools
for the pre-mRNA transcript of the human APOC3 gene (RefSeq accession NM_000040.3). Dotted lines
signify canonical exon-intron boundaries. Hashed bars represent loci where the variant effect can be
modeled only if a novel splice donor or acceptor is created. Italicized numbers show exon/intron length
in nucleotides. UTR, untranslated region.

6.1. CADD (Combined Annotation-Dependent Depletion)

CADD [55,61] was among the earliest machine learning-based variant scoring systems; it generates
a score that is approximately interpretable as a measure of pathogenicity.

To train the CADD model, both benign and pathogenic variant sets were derived. For the former,
variants with high mean allele frequency (≥95%) in the 1000 Genomes dataset [67] were chosen that
had arisen since the split between humans and chimpanzees, based on the assumption that such
variants had been fixed under natural selection, and so are, at worst, weakly pathogenic. De novo
pathogenic variants—both indels and SNVs—were simulated genome-wide using a model informed
by local mutation rates and CpG dinucleotide mutation asymmetry.

A wide range of features were incorporated into the CADD model. Such features included:
conservation metrics, such as phyloP [68], GERP [69], and phastCons [70]; regulatory information,
such as transcription factor binding [71] and DNAse I hypersensitivity regions [72]; and protein-level
predictions, for example Grantham [73], SIFT [74], and PolyPhen [75] scores. Transcript-level features,
such as gene expression levels, were also derived, along with some consideration of splicing in the
inclusion of variant distance to the nearest canonical splice site.

The initial releases of CADD adopted an SVM-based approach (Figure 1) with a linear kernel.
However, with later releases, L2-regularized logistic regression—a form of regression model allowing
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the modeling and prediction of a binary dependent variable—was shown to lead to improved sensitivity
and specificity, and so became the model of choice [55].

CADD has been rapidly and widely adopted since its creation, with uses in pathogenicity
prediction for many disease subtypes, both Mendelian and complex. In a study of autism spectrum
disorder (ASD) in 85 quartet families, for example, CADD scoring was used to filter genomic variants
of interest, resulting in the identification of ASD-relevant mutations in 69.4% of affected siblings [76].

The use of CADD scoring has become a gold standard for the prediction of protein-coding variant
impact. This ubiquity has led to CADD becoming a benchmark against which many predictive tools
are measured. However, its efficacy in terms of splicing prediction is undermined by certain features:
the use of conservation scores, for example, may not be informative at the poorly-conserved bases of
introns, where cryptic splice sites and pseudoexonisation events are liable to occur. Thus, while a highly
effective tool for protein-coding impact prediction, CADD lacks the splice-specific considerations to
accurately predict variant effect at the transcript level.

6.2. TraP (Transcript-Inferred Pathogenicity) Scores

TraP [62] is a random forest-based tool (Figure 2d) for the analysis of non-coding variant impact
at the transcript level, providing a score between 0–1 to reflect the scale of this impact. This score
corresponds to the proportion of decision trees in the model that predict a variant as pathogenic, and
may thus be used as a proxy for the degree of impact a variant is likely to have on a transcript.

TraP was trained on 75 pathogenic and 402 benign variants. To source the former, the authors
curated a list of solely synonymous variants associated with rare disease to avoid any incorporation
of protein-coding consideration in the model. Synonymous de novo variants in healthy individuals
were selected as the benign dataset. These rare variants were selected over common variants in the
population to avoid training the model to distinguish solely between rare and common variants.

The TraP model consists of 20 features, primarily splicing-related, including whether or not the
variant lies within the splice site region (as pre-defined by the authors); the score of new splice sites
where cryptic GT-AG dinucleotides are introduced, according to a position-specific scoring matrix
(PSSM); and a bespoke “variant regulatory score”, which incorporates several other features that do
not directly affect existing splice sites. The model further incorporates the GERP++ conservation
metric [77]. The random forest model underlying TraP consists of 1000 decision trees harboring various
combinations of these 20 features.

The authors suggest a 3-tier threshold system for TraP scoring: variants with a TraP score below
0.495 are considered likely benign. Variants scoring ≥0.495 but below 0.93 are in an intermediate range,
representing variants that may possibly have an impact at the transcript level. Variants scoring ≥0.93
are likely pathogenic. When considering intronic variants, the authors suggest a threshold of 0.75 to
avoid inclusion of large numbers of false positives.

The authors compared the performance of TraP compared to CADD in distinguishing pathogenic
and benign variants, both intronic and synonymous. They demonstrated that matching the specificity
of TraP at a 0.495 threshold would give CADD a sensitivity of just 6% or 18.8%, for synonymous and
intronic variants, respectively. Thus, it is evident that TraP scoring offers a marked improvement on
the CADD model for the prioritization of variants impacting splicing.

In addition, TraP considers the potential impact of variants across multiple transcripts, a feature not
considered by many splicing prediction tools. The efficacy of the model is also impressive, particularly
given the relatively small size of the training and test sets. While the model works well in identifying
pathogenic intronic variants, retraining a second model using such pathogenic intronic variants, rather
than synonymous ones, may improve the performance of TraP yet further.

6.3. SPANR (Splicing-Based Analysis of Variants)

SPANR [54] seeks to model variants impacting cassette exon splicing—the inclusion or skipping
of a given internal exon—across a number of human tissues. It achieves this using a Bayesian deep
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learning model based on the percentage spliced in (PSI, or Ψ) metric, a measure of the percentage of
mature mRNA transcripts containing, rather than excluding, a particular exon. This model seeks to
maximize a “code quality” metric that is a measure of the improvement of the model to predict Ψ
values over a random guesser. SPANR works on a variation of a two-layer neural network, where the
hidden layers of the model are common to all tissues, but each tissue has a distinct output layer.

Transcripts from RefSeq [78] were mined, and Human UniGene data from NCBI analyzed,
to identify instances of cassette and constitutive exon splicing in the normal human transcriptome,
leading to the identification of 10,689 cassette and 33,159 constitutive exons (all flanked by an exon on
either side). The Ψ metrics for each of these central exons was then computed genome-wide using
RNA-seq data from the Illumina BodyMap 2.0 project (NCBI GSE30611) and used as input for training
an ensemble of DNN models. ∆ψ values representing the predicted change in exon inclusion were
then able to be generated, with the paper using |∆ψ ≥ 5%| as a general threshold over which a variant
is considered to impact cassette exon splicing.

In the original paper, the authors demonstrated the utility of SPANR in the analysis of specific
variant cohorts in patients with spinal muscular atrophy (SMA) and Lynch syndrome, implicating
common causative variants in these disorders as splice-impacting. They also showed that predicted
effects of simulated variants in intron 7 of the SMN2 gene are recapitulated with RT-PCR. They conducted
a wider analysis of SNVs in genome data from 5 patients with autistic spectrum disorder and observed
an enrichment of splice-impacting variants in genes associated with neurodevelopmental roles,
thus demonstrating a wide range of potential uses for the tool in the study of both Mendelian and
complex disease.

The model is somewhat limited by the scope of the cassette exon model—a variant must lie within
300 bp of an exon that itself lies between two other exons, meaning variants in first or terminal exons
are not analyzable. This also renders the model obsolete for analysis of pathogenic variant types such as
cryptic splice sites and deep intronic mutations. However, a webserver is provided, allowing easy
analysis of small batches of variants, while a tabulated version of the SPANR dataset called SPIDEX,
comprising pre-computed scores for all eligible variants in the genome, can be downloaded by the user
and used during variant annotation with the ANNOVAR package for larger variant sets [79]. SPANR
may thus be a powerful component of a predictive pipeline, but is likely too limited in scope to be
considered proof of pathogenicity in isolation.

6.4. CryptSplice

CryptSplice [63] aims to predict the effects of the generation of cryptic splice sites. Namely,
it considers three scenarios: the weakening of a canonical site by the introduction of a new splice site
nearby, the outcompeting of a canonical site by a novel site, and the introduction of a functional deep
intronic splice site.

An SVM forms the basis of CryptSplice, with input data being transformed with an RBF kernel,
which was shown to yield the greatest accuracy. To provide probabilistic estimates to accompany
classifications, the model was trained using 10-fold cross validation; that is, the training set was
randomly divided into 10 equal parts and each part successively used to generate a new model.
The distribution of accuracies across different models then formed the basis of probability metrics.

For training, CryptSplice was trained on a series of “true” splice sites derived from the NN269 [80]
and HS3D [81] datasets, repositories of splice junctions curated from GenBank annotations following
various quality control and cleaning processes. An equal number of “false” sites were derived, consisting
of sequences with GT or AG dinucleotides at least 60 bp from a canonical splice site. All features for the
model were sequence-based and fell into one of three categories (Table 2).

If a cryptic donor or acceptor is created, CryptSplice is able to cover regions >100 bp into the intron
(Figure 3), lending it some strength over some tools that lack applicability far from splice junctions.
However, some weaknesses in the model are apparent—the training junctions, for example, are derived
from transcript annotations over 17 years old. Thus, the model may be underpowered to detect weaker
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splice sites that may not have become part of standard transcript models until more recently, and other
tools are likely more effective for analysis of variants lying outside deeply intronic regions.

6.5. MMSplice (Modular Modeling of Splicing)

The tool MMSplice [59] aims to model the competitive interaction between splice sites in close
proximity, supplementing this with predictions of exon skipping, splicing efficiency (i.e., the proportion
of transcripts undergoing, rather than bypassing, splicing at a particular junction) and pathogenicity.

MMSplice has a complex underlying modular architecture containing 6 basic models of the
transcript space (Figure 4a), covering donor and acceptor sites, plus 3′ and 5′ intronic and exonic
sequences. Each was generated by a neural network with 2–4 layers, and all but the donor model
had at least one convolutional layer. To generate the donor and acceptor models, all splice donor and
acceptor sites present in the GENCODE v24 annotation [58] were derived as examples of positive
sites. Random sequences from within the same genes were then used as negative sequences, provided
they did not overlap the position of the positive splice sites. The output of these models is a positive
or negative score, corresponding approximately to the strength of the presented variant sequence as
a donor/acceptor.
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Figure 4. Compartmentalization of the splice region by S-CAP and MMSplice. Both MMSplice and
S-CAP divide the splice region into six sub-regions, although the length and location of these divisions
are different between the two tools. MMSplice (a) consists of 6 initial deep neural network modules
corresponding to each region, with exonic and intronic modules both trained on the results of a massively
parallel reporter assay (MPRA) experiment [64] and the acceptor and donor modules trained to predict
functional acceptors and donors based on the real and decoy sites in the GENCODE v24 annotation.
The scores from all modules are then passed to linear and logistic regression models to predict downstream
effects, such as exon skipping, alteration of splicing efficiency, and competitive splice site interactions.
S-CAP (b) consists of six separate models trained on pathogenic and benign variants curated for each
region. The most significant consequence is returned for a given variant. Length of bars not to scale.

To generate the 5′ and 3′ exonic and intronic models, the authors leveraged a massively parallel
reporter assay (MPRA) generated by Rosenberg et al. [64], in which the relative splicing efficiencies
of pairs of random 25-mer oligonucleotides were evaluated on both the exonic and intronic sides of
an intronic splice junction. These models derive either ∆ψ5 or ∆ψ3 metrics, corresponding to the relative
usage of a variant sequence as a splice acceptor or donor, respectively, compared to the canonical site.

A series of regression models were then designed based on the output of these models in order to
predict variant impact on splicing. Four linear regression models were constructed: one analyzed
variant impact on exon skipping through analysis of data from the splice analysis pipeline Vex-seq [82];
two were designed to predict ∆ψ5 or ∆ψ3 values based on cross-referencing of genome and RNA-seq
data from the GTEx study [22]; the fourth leveraged a massively parallel splicing assay, or MaPSy [83],
to predict splicing efficiency. In addition to this, a logistic regression model to predict pathogenicity was
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derived based on known pathogenic and benign variants in the splice region, as listed on ClinVar [57].
Thus, MMSplice provides a powerful combination of both biological and clinical predictions.

MMSplice is highly intricate and versatile, and is also easily clinically applicable, being able to take
variant call format (VCF) files as input, and incorporating both SNV and indel predictions (unlike many
tools) to predict a wide range of variant impacts on splicing. However, the training set of all splice
junctions in the GENCODE v24 annotation may also contain substantial numbers of false positives
where particular transcripts have been computationally predicted and remain experimentally unverified.
Furthermore, modelling of competitive splice site interactions using GTEx data was based solely on
samples from brain and skin tissue, which may underpower the model for predicting competitive
interactions that predominate in other tissue types.

6.6. S-CAP (Splicing Clinically Applicable Pathogenicity Prediction)

S-CAP [56] is a splice prediction tool designed to directly predict the pathogenicity of
splice-impacting variants. Much like MMSplice, S-CAP compartmentalizes the splicing landscape.
In S-CAP, this compartmentalization comprises 6 distinct regions: 3′ intronic, 3′ core, exonic, 5′ core, 5′

extended, and 5′ intronic (Figure 4b), all lying within 50 bases of the canonical exon-intron junction.
This approach aims to counter the tendency for prioritization of core splice site mutations in most
machine learning models, which may understate the pathogenicity of more intronic variants.

S-CAP took both the Human Gene Mutation Database (HGMD) [84] and ClinVar [57] as sources
for pathogenic variation, while benign variants were sourced from gnomAD (minor allele frequency
≥1%). The model is trained on 29 different features, classified as chromosome, gene, exon or variant
level features. These features include highly tailored analyses, such as the number of rare variants
found in the given exonic locus, or the SPANR and CADD scores for the variant. Intolerance of the
gene as a whole to mutation is incorporated into the model through the use of pLI (probability of being
loss-of-function intolerant) [65] and RVIS (residual variation intolerance) [66] scores.

In cases of 5′ and 3′ core mutations, the downstream consequence is almost universally impairment
of splicing, removing the requirement of evaluating splice impact. This leaves only the question of
whether this impairment of splicing is likely pathogenic. This is highly dependent on whether the
variant is present in a heterozygous or hemi/homozygous state. To this end, core splice variants are
run through two models, one based on a recessive and the other on a dominant inheritance model, and
a score returned for each possibility.

Pre-computed scores are available for all variants lying within 1 of the 6 regions considered by the
model, and individual thresholds are predefined for analysis of each of these regions. These thresholds,
however, are designed for 95% sensitivity, coming somewhat at the expense of specificity and leading
to the generation of large numbers of false positives also being identified. There is also substantial
variety in the efficacy of the 6 models: exonic and 5′ intronic mutations are particularly difficult to
characterize. This is most likely accounted for by the method of generation of these two models,
for which variants had to be co-opted from other compartments prior to training, in order to boost
an otherwise small pool of pathogenic variants. While S-CAP is underpowered to detect these variant
types compared other types, it regardless outperformed SPIDEX, CADD and TraP in both sensitivity
and specificity.

Although it doubtless plays a huge part in the efficacy of the tool, the division of the genomic
landscape also comes at the expense of universal applicability: variants lying more than 50 bp into
the intron are not covered by the model. Despite this, for the cohort of variants lying within these
predefined regions, S-CAP has the potential to be a highly effective predictive tool.

6.7. SpliceAI

The deep learning tool SpliceAI [60] analyses each position in a pre-mRNA transcript and evaluates
whether it is likely to be a splice donor, acceptor, or neither. The model considers all bases within
50 bp of a presented variant and returns the one with the most substantial gain or loss of acceptor or
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donor potential as a result of the mutation. The model analyses the impact of a variant on the splicing
potential of residues in the surrounding genomic space.

SpliceAI consists of a 32-layer deep residual neural network, a subtype of neural network in which
the network is arranged into so-called “residual blocks”—sub-networks containing “skip connections”
that output directly to deeper layers in the model. This helps bypass common pitfalls for particularly
deep neural networks, such as vanishing/exploding gradients, and also improves the speed with which
the network learns [85].

To train the model, the authors selected over 20,287 principal protein-coding transcripts from the
GENCODE v24 annotation, and used those from a selection of particular chromosomes (all except chr1,
chr3, chr5, chr7, and chr9) as a training set, with the remainder acting as the test set, following removal
of paralogs within the set. Each base within these transcripts was designated either a splice donor,
acceptor or non-splice site. Four architectures were specifically designed: SpliceAI-80nt, SpliceAI-400nt,
SpliceAI-2k, and SpliceAI-10k, where the suffix denotes the total number of bases flanking the variant
that are input to the model.

SpliceAI is designed to infer features from the transcript sequence itself; as such, the only input to
the model is a coded representation of the variant of interest and the flanking sequence of variable
length, dependent on the above choice of model. Scores of gain or loss of acceptor or donor potential
are generated for all residues lying within 50 bp of the variant on the pre-mRNA transcript. The residue
within this flanking region that experiences the most significant change is then returned for each of
these 4 consequences.

The authors demonstrate the ability of SpliceAI to faithfully identity true splice sites from
nucleotide sequence alone, allowing recreation of entire gene transcripts; SpliceAI-10k exhibits 95%
top-k accuracy and a PR-AUC (area under precision recall curve) of 0.98, both remarkably high figures.
While the authors demonstrate very favorable model performance in comparison to earlier tools, e.g.,
MaxEntScan [53], GeneSplicer [86] and NNSplice [77], they did not analyze performance against any
newer, machine-learning based tools. Such comparisons will prove very valuable in ascertaining the
utility of SpliceAI in clinical practice.

In using a near-agnostic approach to model training, SpliceAI is able to identify features that
may not be apparent to most humans. Because of this, it is quite possible that many features of
the above tools, such as the modelling of competitive interactions between neighboring and novel
splice sites, are already encompassed within the model. As acknowledged by the authors, however,
this agnosticism may mean that certain features incorporated into the model do not truly reflect
phenomena with biological meaning. Despite this, the power of the model, as well as the public
availability of precomputed scores for all possible single nucleotide substitutions in the genome, suggest
that SpliceAI may prove the gold standard for clinical interpretation of splice-impacting variants.

7. Discussion

The ever-growing range of splice prediction tools complicates variant interpretation by providing
a surplus of choices for bioinformatics analysis. Identifying the optimal choice through direct,
head-to-head comparisons of these tools is not a simple task. The genomic loci analyzable by different
tools vary considerably, thus making construction of a universal test variant set difficult without the
introduction of missing data points for at least one of the tools. The diverse functions of these tools also
complicate comparative analysis. Comparing the performance of a tool predicting competitive splice
site interactions with one predicting exon skipping, for example, may not ultimately prove informative.

Despite this, many of the papers describing the above tools do attempt such comparisons. SpliceAI,
for instance, significantly outperforms the splice prediction tools GeneSplicer [86], MaxEntScan [53],
and NNSplice [77] in both top-k accuracy and precision-recall. These latter tools are not machine
learning-based, however, and were created over a decade ago, when sizeable training datasets were
not so readily available. MMSplice [59], meanwhile, shows favorable performance over the similar tool
COSSMO [87], and S-CAP [56] outperforms SPANR [54], CADD [61], TraP [62], and others across all
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six of its considered regions. Many tools described here are too novel to have conducted comparisons
with one another; however, one recent comparison between the ability of three of these tools (SpliceAI,
SPIDEX, and CADD) to correctly ascribe splice-impacting activity to variants showed SpliceAI to be
superior in both sensitivity and specificity [88].

The different approaches adopted by these models offers clinical geneticists the opportunity to
consider variant impact from many perspectives, both in terms of the specific splicing consequences
predicted by the given model and the value it outputs. Broadly, tools may predict either pathogenicity
or splicing impact. Care may need to be taken with the former, as training of a pathogenicity score
is reliant on human annotations of pathogenicity, such as through ClinVar [57]. These annotations
may be flawed, and may also suffer from ascertainment bias, whereby the main body of pathogenic
variants in the database reflect the current state of our understanding of splice-impacting variants,
thus underpowering models in the analysis of more elusive splice variant types. The ACMG have
produced detailed guidelines for the scoring of variant pathogenicity [26]; consideration of splicing
impact first and then following these guidelines on a variant-by-variant basis may prove a more robust
and sensitive way to characterize pathogenic variants.

Machine learning models are often seen as “black boxes”, in that the inner workings of the model
are not discernible to the user, and it is thus difficult for meaningful biological inferences to be made.
However, variants flagged by these tools may prove a valuable jumping-off point for research into the
mechanisms underlying the inability of earlier tools to correctly predict certain variants.

One such mechanism is the existence of long-distance splicing interactions: SpliceAI has
demonstrated that consideration of wider genomic context significantly improves model performance.
Such an improvement likely reflects the interactions between trans-acting splicing complexes bound
across the often-significant lengths of introns, as well as their respective cis-acting binding sites [89,90].
Thus, SpliceAI may provide a useful resource in the investigation of long-range determinants of splicing,
and ultimately improve our understanding of splicing in both a healthy and pathogenic context.

Many of these tools share common caveats. Few tools, for example, are able to predict the splice
impact of indels, with the exceptions of CADD, MMSplice, and SpliceAI. Future tools will certainly
benefit from more thorough consideration of such variants, which may have a significant impact on
ultimate transcript structure. Indels affecting the poly-pyrimidine tract (PPT), for example, are known
to have significant effects on splicing that may be more marked than the effect of many PPT SNVs,
as spacing between the PPT and 3′ splice site is crucial for correct assembly of the spliceosome [91,92].

It should also be noted that atypical splice sites (i.e., those not consisting of GT-AG dinucleotide
pairs) comprise just 1% of the body of human introns [93], and so do not feature prevalently in training
sets. Some tools, such as CryptSplice, actively exclude such introns from model training. Thus, many
models may be underpowered to predict changes affecting these low-frequency sites. The effect of
variants in AT-AC introns (also known as U12 introns), which are instead processed by the biochemically
distinct “minor spliceosome” [94], may be particularly difficult to predict. While the relative occurrence
of such introns is low, they nonetheless represent a possible source of pathogenic variants [95], with
mutations affecting the U12 5′-splice sites of introns in the STK11 [96] and TRAPPC2 [97] genes being
shown to cause Peutz–Jeghers syndrome and spondyloepiphyseal dysplasia tarda, respectively. Special
care may need to be taken, therefore, when considering variants in the vicinity of splice sites for
such introns.

A final valuable consideration for models is the inclusion of more personalized and patient-specific
prediction of splicing. The single-variant functionality of most of the above tools, for example, neglects
to consider the interactions between multiple variants in close (or even distant) genomic space. Studies
in mice suggest such interactions between common SNPs (i.e., an individual’s genetic background) and
rare variants may underlie phenomena such as incomplete penetrance and variable expressivity [98,99]
in Mendelian disorders. Consideration of these common genomic variants in tandem with variants of
interest may allow further clarification of variants of uncertain significance.
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The rapid increase in number of machine learning-based splice prediction tools, and the burgeoning
power and efficacy of such tools, is an exciting development in the area of variant interpretation.
However, it should be borne in mind that even the most powerful tools should not be taken as
proof in isolation: the ACMG guidelines [26] assign only the lowest level of pathogenicity support to
bioinformatics tools. All positive findings from splice prediction require corroboration using in vitro
approaches, such as minigene splicing assays [100]. Thus, it is the combined consideration of predictive
bioinformatics and functional analysis that will lead to the greatest strides forward in improving
diagnostic yield for Mendelian disease patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/12/1513/s1,
Table S1. Summary of bioinformatics tools with data access details. Tabulated list of 7 bioinformatics tools with
links to online data access (links correct and functional as of 15 November 2019). PMID, PubMed ID.
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