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Abstract: Carbon nanotube-Graphene (CNT-Gr) hybrids were prepared on stainless steel substrates
by the electrophoretic deposition (EPD) to make the thermo-electrochemical cell (TEC) electrodes.
The as-obtained TEC electrodes were investigated by the SEM, XRD, Raman spectroscopy, tensile,
and surface resistance tests. These hybrid electrodes exhibited significant improved TEC performances
compared to the pristine CNT electrode. In addition, these hybrid electrodes could be optimized by
tuning the contents of the graphene in the hybrids, and the CNT-Gr-0.1 hybrid electrode showed the
best TEC performance with the current density of 62.8 A·m−2 and the power density of 1.15 W·m−2,
30.4% higher than the CNT electrode. The enhanced TEC performance is attributed to improvements
in the electrical and thermal conductivities, as well as the adhesion between the CNT-Gr hybrid
and the substrate. Meanwhile, the relative conversion efficiency of the TECs can reach 1.35%.
The investigation suggests that the growth of CNT-Gr hybrid electrodes by the EPD technique may
offer a promising approach for practical applications of the carbon nanomaterial-based TEC electrodes.

Keywords: carbon nanotube; graphene; hybrid electrode; electrophoretic deposition; adhesion;
thermo-electrochemical cell

1. Introduction

The thermo-electrochemical cell (TECs) also called as thermo cell or thermogalvanic cell [1–3],
converting directly the thermal energy to electrical energy, is an attractive renewable energy device
for harvesting the low-grade heat (e.g., waste heat from industry and vehicles, the heat from storage
or computer system) due to advantages of low cost, simple configuration, direct energy conversion,
and stable operation [4,5].

The current (I) and the voltage (Voc) between the two working electrodes are two important
parameters for the TECs. The relation between I and Voc can be obtained by the equation: I = Voc/R,
where Voc represents the open-circuit potential, which is mainly determined by the temperature
difference [6]. R is the internal resistance of the TEC, including four aspects, i.e., charge transfer, ohmic,
solution diffusion, and thermal diffusion resistances [5,7]. The material with high electrical conductivity
means lower charge transfer resistance. Similarly, the material with high thermal conductivity means
lower thermal resistances, which can benefit for decreasing the temperature loss at the bodies of
two electrodes, leading to higher energy conversation efficiency of the TEC [4,5,7]. Due to good
electric and thermal conductivities, excellent chemical stability, and unique structural properties,
carbon nanotubes (CNTs) showed promising properties in the TEC application [4,5,7–14], and the
electrophoretic deposition (EPD) method was applied to fabricate CNT TECs for merits of process
simplicity and large-scale capability [5,10,15]. The graphene, with priorities of large surface area,
high electric/thermal conductivities, and high chemical/electrochemical stabilities, has been widely
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investigated in the energy storage and conversation applications [16–20]. Recently, CNT-based hybrid
electrodes, i.e., the electrodes with at least two composition materials, were applied to fabricate TEC
electrodes with improved energy conversation efficiency because of the synergetic effect between
different materials [8,11–13]. Im et al. reported that the CNT-Pt hybrid nanostructure could achieve
much higher conversation efficiency in comparison with the pristine CNTs for the faster kinetics and
larger electroactive sites [12]. Our investigation showed that CNT-Ag hybrids exhibited better TEC
performances due to higher electric and thermal conductivities, as well as more activation sites [11].
Romano et al. reported that the TEC performances of single-walled CNT-reduced graphene oxide
hybrid electrodes were improved significantly compared to the pristine CNT sample, due to the
enhancement of the mass transport property [13]. Despite this progress, the controllable synthesis of
CNT-Graphene hybrids by the EPD technique to make the TEC electrode has not yet been reported,
which is very significant for promoting practical applications of the CNT-based TECs.

In this study, the CNT-graphene hybrids were facilely fabricated by the EPD technique to make the
TEC electrodes. These hybrid electrodes exhibit much improved TEC performances compared to the
pristine CNT electrode. The TEC performances of CNT-Graphene hybrid electrodes were optimized
by tuning the graphene content in the CNT-Graphene hybrids and the optimized TEC performance
was obtained with the maximum current density of 62.8 A·m−2 and the power density of 1.15 W·m−2,
30.4% higher than the pristine CNT electrode. The enhanced TEC performance is attributed to the
better electrical and thermal conductivities, as well as stronger adhesion between the CNT-Graphene
hybrid electrode and the substrate. Meanwhile, the relative conversion efficiency of the TECs could
reach 1.35%. This investigation suggests that facilely synthesis of CNT-Graphene hybrid electrodes by
EPD technique provides a promising approach to develop practical CNT-based TEC devices.

2. Materials and Methods

2.1. Synthesis of the CNT-Graphene Hybrid Electrodes

The CNT-Graphene hybrids were synthesized on the stainless steel (SS) substrate by the EPD
method. Firstly, the stainless-steel substrates and the multiwalled carbon nanotubes (MWNTs,
Shenzhen Nanotech. Port Co. Ltd., Shenzhen, China) were ultrasonically cleaned and carboxylic
pretreated, respectively, as described in our previous reports [5,10]. Secondly, the carboxylic CNTs,
Graphene powder, and MgCl2 (99.5%, Aladdin) were added into ethanol solution and sonicated for
about 2 h to form the stable suspension. The stainless-steel substrate and the counter electrode (the SS
foil) were immersed into the suspension with a distance of 4 cm and the constant voltage of 120 V.
Finally, the CNT-Graphene hybrid was annealed in the furnace at 700 ◦C with the duration of 1 h.
The TEC performances of the CNT-Graphene hybrids were optimized by tuning the concentration of
Graphene. The as-prepared hybrids are denominated as CNT-Graphene-x, where x is the concentration
of the Graphene from 0 to 0.4 g L−1. The main synthesis processes of the CNT-Graphene hybrid are
illustrated in Figure 1.
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Figure 1. Production process of carbon nanotube CNT-Graphene hybrid.

2.2. Characterization

The morphologies of the pristine CNTs and the CNT-based hybrids were observed using scanning
electron microscopy (SEM, JEOL JSM-7100F). The species of all samples were identified by X-ray
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diffraction (XRD, GmbH SMART APEX with the X-ray source wavelength of 0.154056 nm) and Raman
spectroscopy (Renishaw Invia Raman Microscope with the laser wavelength of 633 nm). To investigate
the adhesion between the pristine CNT or the CNT-based hybrid and the SS substrates, tensile tests
were performed by an Instron 3343 equipment [10]. Briefly, the sample was fixed with a clamp and
then pasted with the double-sided tape. During the test, the CNT-based films were dragged by the
tape until these films detached from the substrate. The surface resistances of all the electrodes were
measured by four probe testers [10].

2.3. TEC Measurements

The CNT and the CNT-based hybrid electrodes were tested by the Cup-Shaped TEC equipment
and the Cup-Shaped device of TEC and characterization of TEC performance were described in other
reports and our previous investigations [4,5,11]. Briefly, two test electrodes were immersed in the
potassium ferri/ferrocyanide (0.4 mol·L−1, Aladdin) aqueous solution, the temperatures of two test sides
were controlled by the heating tape and ice water, respectively, and measured by OMEGA thermocouple
probes. The TEC parameters, such as short-circuit current and the open-circuit potential, were acquired
by the KEITHLEY 2440 multimeter (Tektronix Technology Co. Ltd., Beaverton, OR, USA).

3. Results and Discussion

3.1. Structure Characterization

Typical SEM images of the pristine CNTs and CNT-Graphene hybrids are exhibited in Figure 2.
As shown in Figure 2a, after deposition on the SS substrate, the pristine CNTs exhibited entanglements
due to the existence of MgO after heat treatment [5,10]. As shown in Figure 2b, the surfaces of the
CNTs were covered by a few graphene sheets. With increasing the concentration of the graphene
(Figure 2c,d), the electrode surface was mixed with more graphene sheets. When the content of
graphene was increased up to 0.4 g·L−1 (Figure 2e), the surface was almost completely wrapped by
the graphene sheets, similar results could be observed in other hybrids, e.g., CoMoO4 modified with
chitosan [21,22]. Figure 2f illustrates the cross-section of the CNT-Graphene hybrid, showing the tightly
binding properties between the CNT-Graphene hybrid of about 30 µm thick and the SS substrate.
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(f) Cross-section of the CNT-Graphene hybrid. Note: The concentrations of CNTs and Mg2+ were 
kept certain values of 0.1 and 0.03 g·L−1, respectively [10]. 

Figure 2. SEM images of the pristine CNTs and CNT-Graphene hybrids. (a) the pristine CNTs, (b–e) the
hybrids obtained by adding 0.04, 0.1, 0.2, and 0.4 g·L−1 graphenes in the suspension, respectively,
(f) Cross-section of the CNT-Graphene hybrid. Note: The concentrations of CNTs and Mg2+ were kept
certain values of 0.1 and 0.03 g·L−1, respectively [10].

XRD and Raman characterizations were applied to check the compositions of the products,
as shown in Figure 3. XRD result (Figure 3a) indicates that the peak at 26.4◦ belongs to (002)
crystallographic planes of CNT [10,11,23], and other four peaks should be attributed to the (111), (110),
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(200), and (220) planes of the stainless steel substrate, respectively [10,11]. As shown in Figure 3b,
the Raman spectrum shows three typical characteristic peaks of the CNTs, i.e., D band (1350 cm−1), G
band (1585 cm−1), and G’ (2706 cm−1), respectively [11,24]. The D band represents the defects of CNTs
due to the existence of the disordered carbon structures in CNTs. The G band represents the graphite
degree of CNTs [11]. In comparison with the pristine CNT, higher G peak from the CNT-Graphene
hybrid shows better graphitization due to the introduction of the graphene. Generally, the higher
the IG/ID ratio, the better the conductivity of the sample [11,25,26]. Compared to the pristine CNTs,
the higher IG/ID ratio of the CNT-Graphene-0.1 hybrid suggests that the construction of CNT-Graphene
hybrid would enhance the electrode conductivity.
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3.2. Tensile and the Surface Resistances Tests

From Figure 4a, all the CNT-Graphene hybrids exhibited higher maximum stresses than the
pristine CNTs, showing clearly the adhesion improvement with the addition of graphene. Meanwhile,
the maximum stress, i.e., the adhesion, of the hybrid depended highly on the graphene concentration.
As shown in Figure 4b, the four-probe test showed the surface resistance of the pristine CNT electrode
of about 59.6 Ω. Compared with the pristine CNT electrode, the CNT-Graphene hybrid electrodes
showed lower surface resistances of 47.5, 14.6, 20.9, and 33.9 Ω, respectively, corresponding to the
graphene contents of 0.04, 0.1, 0.2, and 0.4 g·L−1, demonstrating significant reductions of surface
resistances with graphene doping. The CNT-Graphene-0.1 hybrid electrode exhibited the lowest
resistance, attributed mainly to two reasons. Firstly, comparing with other grapheme doped electrodes,
the CNT-Graphene-0.1 electrode presented the highest adhesion value (Figure 4a), implying the best
surface contact between the hybrid and the substrate. Secondly, excessive graphene doping may
lead to the agglomeration of the graphene and over-enwrapping of the CNTs with graphene sheets
(Figure 2d,e), weakening the intrinsic CNT property drastically.

3.3. TEC Measurements

The Cup-Shaped device was used to investigate the TEC performances of the pristine CNT and
CNT-Graphene hybrid electrodes [5,11]. As shown in Figure 5a, by linear fitting, the thermoelectric
coefficient is about 1.44 mV·K−1, in agreement with the previous reports for potassium ferri/ferrocyanide
electrolyte [4,5,11]. For the TEC electrodes, the current densities (JSC) increased with the temperature
differences (Figure 5b). Compared with the pristine CNT electrode, the CNT-Graphene hybrid
electrodes exhibited higher JSC at the same temperature difference, due to the better electrical and
thermal conductivities [27–29] and stronger adhesion between the CNT-Graphene film and the substrate.
Among all hybrid electrodes, the CNT-Graphene-0.1 exhibited the best TEC performance, with JSC of
62.8 A·m−2 and JSC/∆T of 1.25 A·m−2

·K−1) under a temperature difference of 50 ◦C.
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0.36 cm2.

The discharge curves, the fitting relation between the internal resistance (R) with the test time,
and the plots of the specific output power (P) of the TECs for the pristine CNT and CNT-Graphene-0.1
hybrid electrodes were shown in Figure 6. As shown in Figure 6a,b, the internal resistances climbed
with increasing the test time for both pristine CNT and CNT-Graphene-0.1 hybrid electrodes. R could
be obtained by linear fitting based on U-I curves, where U and I represented the cell potential and
output current of the electrode, respectively. The output current of the electrode could be adjusted
by changing the external resistance (Rext) according to the relation: U = Voc–IR, where Voc is the
open-circuit potential, which is mainly determined by the temperature difference [6], and R relies
on the structure of the TEC [6,14,30]. For the given temperature difference, Voc can be regarded as
a constant, thus the relationship between U and I is approximately linear. During the continuous
operation for the TEC, the built up concentration gradient, i.e., the mass transport overpotential, could
be easily formed at the cold side [8,11]. The mass transport overpotential could be investigated by
measuring the relation between the time and the internal resistance. As shown in Figure 6c, for the
CNT-Graphene-0.1 hybrid electrode, TEC experienced a 2 min equilibrium process before obtaining
a steady R, less time than the pristine CNT electrode of 3 min. In addition, the CNT-Graphene-0.1
hybrid electrode reached a steady state with R of 31.05 Ω, lower than that of the pristine CNT electrode
of 42.63 Ω, attributed to the lower thermal resistance [20,27,28]. The output power is obtained based
on the equation: P = UI = (Voc–IR) I = Voc I–I2R, thus a quadratic relationship can be observed in
the P–I curve (Figure 6d). As shown in Figure 6d, the CNT-Graphene-0.1 hybrid electrode generated
JSC of 62.8 A·m−2 and PMAX of 1.15 W·m−2 at the temperature different of 50 ◦C, corresponding to
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a normalized current density of 1.26 A·m−2
·K−1 and specific power density of 0.460 mW·m−2

·K−2,
respectively, 30.4% higher than those for the pristine CNT electrode, due to better conductivity and
lower thermal resistance at the electrode/substrate junction [4,5,20].
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The energy conversion efficiency (η) can be obtained using the following formula [4,8,12]:

η =
0.25vocIsc

Ak(∆T/d)

Isc and Voc are the short-circuit current and the open-circuit potential, respectively. A is the area
of the test electrode, k is the thermal conductivity of the potassium ferri/ferrocyanide, ∆T and d
are the temperature difference and the distance of the test electrodes, respectively. The relative
energy conversion efficiency (ηr) can be achieved by the equation: ηr = η/(∆T/Th) [4,5,11], where Th

is the temperature of the hot side. Based on the above equations, ηr of the pristine CNT electrode
and CNT-Graphene-0.1 hybrid electrode reached 0.95% and 1.35%, respectively, at the temperature
difference of 50 ◦C. Comparing with the CNT and CNT-based hybrid electrodes, the TEC performance
of CNT-graphene-0.1 was moderate (See Table S1 in Supplementary Materials). Future investigations
should focus on the optimization of the carbon nanomaterial with lower thermal resistance and high
conductivity, e.g., single wall CNTs or doped CNTs [7,31,32]. In addition, to obtain high ηr, it would be
preferred to select the flowing type TEC to decrease further the solution diffusion resistance [4,33].

The temperature difference versus current density, the discharge curves, the fitting results of the
internal resistance, and the plots of the specific output power of the TECs for the CNT-Graphene-0.1
hybrid electrode with different separation distances are shown in Figure 7. As shown in Figure 7a,
with increasing the distance between the two CNT-Graphene-0.1 hybrid electrodes, the current density
decreased correspondingly at the same temperature difference. In addition, the current density
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increased to 4.89 mA·cm−2 at a distance of 3 cm, 39.88% higher than that of 7 cm at the temperature
different of 30 ◦C. Figure 7b shows different U-I curves corresponding with varying the distance,
and each internal resistance can be obtained by linear fitting of the corresponding U-I curve. The values
of R in Figure 7c are derived from the linear fitting of U-I curves in Figure 7b. As shown in Figure 7c,
the internal resistance of the TEC increased from 26.91 Ω to 34.58 Ω, corresponding to the distance
from 3 cm to 7 cm, due to extended diffusion distances of the solution [14]. As shown in Figure 7d,
while reducing the separation distance of two electrodes from 7 cm to 3 cm, the specific output power
could increase up to 1.33 w·m−2 at the distance of 3 cm, associated mainly to the drops of the internal
resistance and the mass transport overpotentials [6,14]. However, the relative energy conversion
efficiency decreased from 1.58 to 0.96, because the heat transport turns to be quicker thus more input
thermal energy is needed to keep the same temperature difference with reducing the distance, leading
to the decline of the relative energy conversion efficiency [14].
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Figure 7. (a) Temperature difference versus current density, (b) Cell potential versus current, (c) Internal
resistance versus time, and (d) plots of specific output power versus current density at different
separation distances for the CNT-Graphene-0.1 hybrid electrode.

4. Conclusions

In this paper, CNT-Graphene hybrids were synthesized on stainless steel substrates using the
electrophoretic deposition (EPD) technique to make the TEC electrodes. Such hybrid electrodes show
significantly improved TEC performances in comparison with the pristine CNT electrode, due to
better electrical and thermal conductivities and stronger adhesion between the CNT-Graphene hybrid
electrode and the substrate. By tuning the concentrations of the graphene in the suspension, the hybrid
electrodes could be optimized with the maximum current density of 62.8 A·m−2 and the power density
of 1.15 W·m−2 at a temperature different of 50 ◦C, 30.4% higher than the pristine CNT electrode.
Meanwhile, the relative conversion efficiency of 1.35% could be reached. These results suggest that the
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production of CNT-Graphene hybrid electrodes by EPD technique may offer a promising approach for
developing CNT-based TEC electrode materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/10/1450/s1,
Table S1: Comparison on TEC performances of different nanomaterials.
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