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Abstract: Apoptosis, also known as programmed cell death, is a biological process that is critical
for embryonic development, organic differentiation, and tissue homeostasis of organisms. As an
essential mitochondrial flavoprotein, the apoptosis-inducing factor (AIF) can directly mediate the
caspase-independent mitochondrial apoptotic pathway. In this study, we identified and characterized
a novel AIF-2 (HlAIF-2) from the tropical sea cucumber Holothuria leucospilota. HlAIF-2 contains
a conserved Pyr_redox_2 domain and a putative C-terminal nuclear localization sequence (NLS)
but lacks an N-terminal mitochondrial localization sequence (MLS). In addition, both NADH- and
FAD-binding domains for oxidoreductase function are conserved in HlAIF-2. HlAIF-2 mRNA was
ubiquitously detected in all tissues and increased significantly during larval development. The
transcript expression of HlAIF-2 was significantly upregulated after treatment with CdCl2, but not
the pathogen-associated molecular patterns (PAMPs) in primary coelomocytes. In HEK293T cells,
HlAIF-2 protein was located in the cytoplasm and nucleus, and tended to transfer into the nucleus
by CdCl2 incubation. Moreover, there was an overexpression of HlAIF-2-induced apoptosis in
HEK293T cells. As a whole, this study provides the first evidence for heavy metal-induced apoptosis
mediated by AIF-2 in sea cucumbers, and it may contribute to increasing the basic knowledge of the
caspase-independent apoptotic pathway in ancient echinoderm species.
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1. Introduction

Apoptosis, also known as programmed cell death, is an essential biological process
that plays critical roles in embryonic development, organic differentiation, and normal
tissue homeostasis in metazoans [1]. During immune responses, apoptosis is also important
in the cell-mediated killing mechanism for target cells that are invaded by pathogens [2].
The core functions of apoptosis are considered to be mediated by the classical intrinsic and
extrinsic pathways with initiator and executioner caspases [3]. In addition, several caspase-
independent apoptotic pathways play important roles in the immune system, including the
release of apoptosis-inducing factor (AIF) from mitochondria, which can induce caspase-
independent peripheral chromatin condensation and large-scale DNA fragmentation in the
nucleus [4].

AIFs are essential mitochondrial flavoproteins with multiple cellular functions, includ-
ing the maintenance of electron transport chain function, the regulation of reactive oxygen
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species (ROS) production, and the mediation of cell death [5]. AIFs are caspase-independent
death effectors that may trigger chromatin condensation and DNA fragmentation to induce
apoptosis [6]. The apoptotic functions of AIFs have been well confirmed in vertebrates [7].
The oxidoreductase activities of AIFs are performed by the small nicotinamide adenine
dinucleotide (NADH)-binding domain within the larger flavin adenine dinucleotide (FAD)-
binding domain [8,9]. However, regardless of the presence or absence of NADH and/or
FAD, AIFs can induce nuclear apoptosis [8]. Among them, apoptosis-inducing factor 2
(AIF-2), also known as apoptosis-inducing factor-homologous mitochondrion-associated
inducer of death (AMID) or ferroptosis suppressor protein 1 (FSP1), is ubiquitously found
in either prokaryotes or eukaryotes [7,10,11]. AIF-2 belongs to the conserved pyridine
nucleotide-disulphide oxidoreductase-2 (Pyr_redox_2) family in the Pfam database. In
vertebrates, the mitochondrial localization sequence (MLS) that directs the protein to mito-
chondria is found in the amino-terminus of AIF-1 and AIF-3 but not AIF-2. Thus, AIF-2 is
located in the outer mitochondrial membrane instead of in the mitochondrial intermem-
brane space, similar to AIF-1 and AIF-3 [4,12]. However, AIF-2 retains the C-terminal
domain that contains a nuclear localization sequence (NLS) that directs the protein to the
nucleus and a pro-apoptotic segment that can trigger apoptosis when it is activated [6].
Mitochondria play a key role in oxidative stress-induced apoptosis; among which, AIFs
mainly exercise their functions by transferring from the mitochondrial membrane to the
nucleus [13].

In mammalian cells, heavy metals, such as cadmium (Cd2+), cause oxidative stress in
cells, and Cd2+-induced apoptosis is mediated by the activation of both caspase-dependent
and AIF-mediated caspase-independent pathways [14,15]. In the kidney cells of grass carp,
lipotoxic molecules, such as palmitic acid, cause endoplasmic reticulum stress by activating
AIF-mediated apoptosis via the mitochondrial pathway [16]. In crustacean mud crabs
and Pacific white shrimps, AIF participates in the immune response against white spot
syndrome virus (WSSV) infection by inducing apoptosis of haemocytes [17,18]. However,
knowledge is limited regarding caspase-independent apoptotic pathways in echinoderms,
except in a case reported for the sea cucumber Apostichopus japonicus, in which AIF-1 could
mediate apoptosis induced by heat stress with a negatively correlated expression of heat
shock protein 70 (HSP70) [19].

The tropical sea cucumber (Holothuria leucospilota) is naturally distributed in the Indo-
Pacific region, and can protect the seafloor environment by digesting the bottom organic
debris and adjusting the seawater pH [20]. The artificial culture of H. leucospilota has been
developed for future applications in the decontamination of marine environmental pollu-
tants [21]. Mechanisms for the caspase-dependent extrinsic apoptotic pathway have been
well investigated in H. leucospilota. In this case, the tumor necrosis factor receptor (TNF-R)
that binds with its ligand has been shown to initiate this pathway [22], which may lead
to the orderly activation of initiator caspase-8 and executioner caspase-6 [23,24] via Fas-
associated death domain protein (FADD) [25]. This caspase-dependent apoptotic pathway
has been found to be positively and negatively regulated by myeloid differentiation factor
88 (MyD88) and inhibitory kappa B kinase (IKK), respectively [26–28]. However, little is
known about the caspase-independent apoptotic pathway in H. leucospilota, especially in
response to environmental factors, such as Cd2+ stress. In the present study, the full-length
cDNA of H. leucospilota AIF-2 (HlAIF-2) was cloned, and its structure and phylogeny were
characterized. Expression patterns of HlAIF-2 were detected in various tissues and different
embryonic and larval developmental stages, and in primary coelomocytes after challenge
with the heavy metal Cd2+ and pathogen-associated molecular patterns (PAMPs). Further-
more, the involvement of HlAIF-2 in apoptosis was investigated by its overexpression in
HEK293T cells and its intracellular location and translocation in the absence and presence
of Cd2+ stress.
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2. Results
2.1. Molecular Cloning and Sequence Analysis of HlAIF-2

By using 3′-/5′-RACE approaches, the full-length cDNA sequence of HlAIF-2 was
obtained from H. leucospilota and deposited in GenBank under the accession number
OM417064. The open reading frame (ORF) of HlAIF-2 cDNA is 1119 bp in length and is
predicted to encode a protein of 372 amino acids (a.a.) (Figure S1). The calculated molecular
weight of HlAIF-2 is 40.94 kDa, and the estimated isoelectric point is 5.50. HlAIF-2 contains
a putative C-terminal NLS (residues 291–322) but lacks an N-terminal MLS (Figure S1).

Based on the SMART program, a conserved Pyr_redox_2 domain (residues 11–300)
was predicted in the HlAIF-2 a.a. sequence (Figure 1A). In addition, a casein kinase II
phosphorylation site and a protein kinase C phosphorylation site were further indicated in
the HlAIF-2 a.a. sequence by the ScanProsite program (Figure 1A).
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2.2. Phylogenetic, Homology and Structural Analysis

The results of the phylogenetic analysis revealed that AIFs from multiple animal
species were classified into three branches: namely, AIF-1, AIF-2, and AIF-3 (Figure 1B). The
branch of AIF-2s was further separated into two clades: vertebrate AIF-2s and invertebrate
AIF-2s. Our newly identified HlAIF-2 was found in the clade of invertebrate AIF-2s and
shared a close evolutionary distance with the A. japonicus AIF-2 (Figure 1B). Multiple
alignments of a.a. sequences showed that AIF-2s from different species in echinoderms
and vertebrates shared considerably conserved sequences (Figure 2A). Most, if not all, a.a.
which were supposed to interact with FAD and NADH were strongly conserved in AIFs,
as precisely mapped in Figure 2A. Additionally, the core consensus for the typical motif
GXGXXG was found at two distinct regions of the HlAIF-2 a.a sequence (residues 17–22 and
148–153, Figure 2A). Three-dimensional (3-D) modeling was performed for the vertebrate
AIF-2 from humans (Homo sapiens) and the echinoderm AIF-2s from the sea cucumber A.
japonicus and H. leucospilota. As shown in Figure 2B–D, the probably conservative binding
sites of NAD/FAD were highly comparable based on their 3-D structures.
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Figure 2. Sequence alignment and three-dimensional (3-D) structure of AIF-2 in different species.
(A) A.a. sequence alignment of AIF-2 in nine Deuterostomia species. The conserved a.a. residues of
H. leucospilota are presented in WebLogo format, and the conserved and similar a.a. residues between
different species are labeled in dark blue and light blue, respectively. Residues that interact with FAD
or NAD (in H. leucospilota) are marked as “F” or “N”, respectively. Two core consensus sequences of
the typical motif “GXGXXG” are boxed in red lines. (B–D) Comparison of the 3-D protein of AIF-2
among human H. sapiens and the sea cucumber A. japonicus and H. leucospilota. Space-filling symbols
indicate the most conserved binding sites of FAD (orange) and NAD (blue).
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2.3. Expression Patterns of HlAIF-2 among Different Tissues

The mRNA expression pattern of HlAIF-2 was analyzed in various tissues and different
embryonic developmental stages by qPCR. As shown in Figure 3A, HlAIF-2 mRNA was
ubiquitously expressed in all the examined tissues, and the strongest expression was
found in the intestine, followed by the transverse vessel, rete mirabile, Cuvierian tubules,
esophagus, respiratory tree, body wall, coelomocytes, muscle, gonads, and polian vesicle
(Figure 3A). However, the expression of HlAIF-2 mRNA in the polian vesicle reached half
of that in the transverse vessel (Figure 3A).
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2.4. Expression Patterns of HlAIF-2 during Embryonic and Larval Development

As shown in Figure 3B, HlAIF-2 mRNA was constitutively expressed in all detected
embryonic and larval developmental stages, and the highest expression level was observed
at the auricularia stage. After that, the expression level of HlAIF-2 mRNA decreased
sharply, reached its bottom at the pentactula stage, and increased again at the juvenile stage.
Generally, HlAIF-2 mRNA remained expressed at low levels in the embryonic stages but
changed significantly in the larval stages.

2.5. HlAIF-2 Expression in Response to Challenges of CdCl2, LPS, and Poly (I:C)

Temporal expression of HlAIF-2 mRNA in the coelomocytes was detected after chal-
lenge with cadmium chloride (CdCl2, 20 µM) as an oxidative stress (Figure 4A). After
exposure to CdCl2, the expression of HlAIF-2 was first upregulated with a 13.28-fold change
(p < 0.001) at 12 h, followed by a 22.68-fold change (p < 0.001) at 24 h. In a parallel experi-
ment, treatments with lipopolysaccharides (LPS) or polyriboinosinic polyribocytidylic acid
[poly (I:C)] did not alter the expression level of HlAIF-2 (Figure 4B,C).

2.6. Subcellular Localization of HlAIF-2 in HEK293T Cells

The subcellular location of HlAIF-2 was determined by transfection into HEK293T cells
in the presence and absence of Cd2+. In the control group without Cd2+ treatment, HlAIF-2
was located in both the cytoplasm and nucleus of the HEK293T cells. After incubation with
CdCl2 for 24 h, part of the cytoplasmic HlAIF-2 translocated into the nucleus (Figure 5),
indicating that HlAIF-2 tended to transfer into the nucleus during Cd2+-induced apoptosis.
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Temporal expression pattern of HlAIF-2 after treatment of CdCl2 (20 µM), LPS (10 µg/mL) smf poly
(I:C) (10 µg/mL). Data are presented as mean ± SE (n = 3), and significant differences are analyzed
using one-way ANOVA, and shown as n.s. p > 0.05 and *** p < 0.001.
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stained cell nuclei; “EGFP-AIF” represents the EGFP-labeled HlAIF-2 protein; “Merge” represents the
combination of cell nuclei and HlAIF-2 protein. Cd2+ treatment (12 h) could trigger HlAIF-2 nuclear
translocation, compared with the “Control” group. The arrows indicate the typical cells located in
cytoplasm or translocated into nuclei.

2.7. Effects of HlAIF-2 Overexpression on Cell Apoptosis

The function of HlAIF-2 in the mediation of apoptosis was validated by transfection
with the pcDNA3.1/HA/HlAIF-2 plasmid in HEK293T cells. As shown in Figure 6, the
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apoptosis rate was detected by TUNEL assay. The results demonstrated that HlAIF-2
overexpression could significantly induce apoptosis with DNA fragmentation in cell nuclei
(Figure 6A), and the percentage of apoptosis was 17.05%, 31.54%, and 55.48% in the blank
group, control group, and experimental group, respectively (Figure 6B).
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Figure 6. Apoptotic property of HEK293T cells transfected with pcDNA3.1/HA/HlAIF-2 recombi-
nant plasmid. (A) Detection of apoptosis by TUNEL assay. “DAPI” represents the DAPI-stained
cell nuclei; “FITC” represents the FITC-stained fractured DNA fragments (marker for apoptosis);
“Merged” represents the combination of cell nuclei and fractured DNA fragments. (B) Compari-
son of apoptosis rates for HEK293T cells in different groups. “Blank” represents the blank group
(untransfected HEK293T cells); “Control” represents the control group (HEK293T cells transfected
with pcDNA3.1/HA); “AIF” represents the experimental group (HEK293T cells transfected with
pcDNA3.1/HA/HlAIF-2). The values are expressed as mean ± SE (n = 3), and significant difference
was analyzed by the Student’s t-test and shown as *** p < 0.001.

3. Discussion

It is generally known that invertebrates lack adaptive immunity and so, as an alter-
native, innate immunity becomes a vital part of their immune system against invading
pathogens and environmental stresses [29,30]. Apoptosis is a highly regulated and con-
trolled process that confers advantages for organisms, and AIF is an ancient and conserved
apoptotic executor that mediates apoptosis via a caspase-independent mitochondrial path-
way [5,6].

Based on their widespread existence in various species, from invertebrates to hu-
mans [18,19,31,32], AIFs have been proposed to have an ancient and conserved pyridine
nucleotide-disulfide oxidoreductase domain (Pyr_redox domain), which could generate
superoxide rather than exhibit antioxidant activity [5]. Our current study found that
HlAIF-2 contained a Pyr_redox_2 domain and a deduced C-terminal NLS but lacked a
recognizable MLS (Figure 1A). AIF precursors are usually synthesized in the cytoplasm
and then imported into mitochondria through N-terminal MLS. However, in the presence
of FAD, the MLS of AIF may be removed by proteolysis to produce mature AIF protein [4].
In contrast, AIF lacking MLS can spontaneously bind FAD and refold into mature AIF with
a potential apoptosis-promoting function [4,8]. Normally, AIF performs mitochondrial
functions and translocates to the nucleus only under the induction of apoptotic signals [33].
Once DNA damage occurs, the permeability of the mitochondrial outer membrane changes,
and AIF is released from mitochondria [4,33]. However, subcellular localization experi-
ments indicated that most HlAIF-2 was localized in both the cytoplasm and nucleus of
HEK293T cells without Cd2+ treatment (Figure 5). When Cd2+ was added, HlAIF-2 in the
cytoplasm tended to concentrate into the nucleus, indicating that overexpression of HlAIF-2
may increase basic apoptosis. In addition, the similar phenomenon that Cd2+ treatment (12
h) could trigger AIF nuclear translocation dose-dependently has been observed in rat cells,
previously [15,34].
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Phylogenetic analysis showed that vertebrate AIF-2s first grouped with AIF-1s and
AIF-3s, and then clustered into a branch of invertebrate AIF-2s (Figure 2B), illustrating
that HlAIF-2 is a fairly ancient gene with a conserved structure. The a.a. sequence of
HlAIF-2 shared high similarity with AIF-2s in other species (Figure 2A). AIFs are known
for their oxidoreductase function, which is endowed by their NADH- and FAD-binding
domains [35]. The Pyr_redox_2 domain is actually a smaller NADH-binding domain
within a larger FAD-binding domain [9]. The binding sites of NADH and FAD in AIF-2s
are highly conserved among different species (Figure 2A). Consistently, the 3-D structure
of the HlAIF-2 protein was highly comparable with those of AIF-2s from H. sapiens and A.
japonicus (Figure 2B), including NADH- and FAD-binding domains.

Studies have shown that AIFs are widely distributed in various tissues in mam-
mals [36,37]. In the present study, the transcripts of HlAIF-2 were detected in all the tested
tissues, with the highest expression level in the intestine (Figure 3A). Similarly, the intestine
was the tissue with the highest expression level of AIF mRNA in Pacific white shrimps [18].
Previous studies showed that HSP70 could inhibit the nuclear translocation of AIFM1 dur-
ing hibernation and thermal stimulation in A. japonicus, indicating a potential antiapoptotic
response in the intestinal cells of sea cucumbers [19]. On the other hand, AIF-2 is reported to
be involved in neural differentiation during embryonic development in vertebrates [37,38].
However, our present study showed that HlAIF-2 expression continuously remained at a
low level during embryonic development but increased significantly at the larval stages
(Figure 3B). It is possible that the nerves of the sea cucumber initially formed at the larval
stages, as was reported in A. japonicus, with the formation of five radial symmetrical nerve
structures at the base of the oral tentacle [39,40]. In addition, the intestine of sea cucumbers
gradually matures at the larval stages [41,42], and they need to accumulate nutrition for
the transformation of planktonic to benthic lifestyles [21,43]. Hence, the roles of HlAIF-2 in
the embryonic and larval stages are speculated to be related to neurogenesis and intestinal
development.

With the increasing global attention to marine’s sustainable development, an increas-
ing number of studies are focused on the responses of marine animals to polluted marine
environments. Among them, heavy metal (e.g., Cd2+) pollution will cause irreversible
damage to plants, animals, aquatic life, and humans [30]. Cd2+ can induce mitochon-
drial oxidative stress and endoplasmic reticulum stress, consequently leading to apoptosis.
Mitochondria release pro-apoptotic proteins via both the caspase-dependent pathways
and the caspase-independent pathways, and the mechanism of Cd2+-induced apoptosis
is believed to be complex [15]. In mammalian cells, oxidative stress caused by Cd2+ may
induce the release of cytochrome c from mitochondria, followed by the activation of in-
tracellular procaspase-9 protein, to form apoptosomes and produce active caspase-9 and
caspase-3 proteins in a cascade, which ultimately induce apoptosis [44]. On the other
hand, AIFs are released directly from the mitochondrial membrane and translocated to the
nucleus to undergo apoptosis when mitochondria suffer from oxidative stress [45]. The
mitochondrial apoptotic pathway has also been reported in the invertebrate Pacific oyster
Crassostrea gigas [46]. In this study, we explored the caspase-independent mitochondrial
apoptotic pathway that was induced by heavy metals in sea cucumbers. The expression of
HlAIF-2 in coelomocytes was significantly upregulated by challenge with Cd2+ (Figure 4A).
Combined with subcellular localization experiments, showing that HlAIF-2 concentrated
from the cytoplasm to the nucleus during Cd2+ challenge, it is speculated that a conserved
AIF-2-mediated apoptotic pathway could be induced by heavy metal stress in echinoderms.

To date, the roles of AIF-2 overexpression in the induction of apoptosis are still con-
troversial. A previous study showed that overexpressed human AMID (AIF-2) could
induce apoptosis in HEK293T cells in a dose-dependent manner, resulting in the condensa-
tion of chromatin and the formation of apoptotic bodies [10], while another study found
that neither chromatin fragmentation nor protein translocation was observed with AMID
overexpression [47]. Recent studies have shown that FSP1 (AIF-2) is an unrecognized anti-
ferroptotic gene [11] that can inhibit the proliferation of lipid peroxides and prevent lipid
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damage and, consequently, ferroptosis [48]. The present study showed that overexpressed
HlAIF-2 could induce apoptosis after transfection into HEK293T cells (Figure 6), suggesting
a conversed AIF-2-mediated apoptotic pathway in an ancient echinoderm model.

In conclusion, a novel AIF (HlAIF-2) was identified from the sea cucumber H. leucospi-
lota in this study. With its conserved functional domains and NLS, HlAIF-2 can actively
respond to Cd2+-induced oxidative stress in coelomocytes by translocation from the mito-
chondrial membrane into the nucleus. Moreover, the overexpressed HlAIF-2 could induce
apoptosis in HEK293T cells, with characteristics of DNA fragmentation in cell nuclei. These
results collectively suggested that HlAIF-2 was a conserved apoptotic executor that par-
ticipated in the mitochondrial apoptotic pathway, that could be induced by heavy metal
stresses. In addition, HlAIF-2 mRNA was significantly upregulated during sea cucumber
larval development and was expressed in the intestine with the highest expression level,
suggesting its role in neurogenesis and intestinal development. Given that apoptosis is a
complicated mechanism that can be mediated by multiple pathways, the conservation and
specificities of apoptosis in echinoderms still need to be further investigated.

4. Materials and Methods
4.1. Animals and Tissue Collection

Healthy tropical sea cucumbers (H. leucospilota) weighing 100 ± 10 g were obtained
from Daya Bay (Shenzhen, China) and temporarily reared in an aquarium with filtrated and
aerated seawater (salinity of 35‰ and temperature of 30 ◦C) for a week before experiments.
Sea cucumbers were dissected on ice, and the tissues were collected, frozen rapidly in
liquid nitrogen, and stored at −80 ◦C until RNA extraction. The coelomic fluids were
centrifuged at 1000× g for 10 min at 4 ◦C to harvest the coelomocytes, which were then
kept in 1 mL of TRIzol reagent (Invitrogen, Carlsbad, CA, USA) at −80 ◦C. All animal
experiments were conducted in accordance with the guidelines of the South China Sea
Institute of Oceanology, Chinese Academy of Sciences, and this research does not contain
any studies with human participants.

4.2. Molecular Cloning of HlAIF-2 Full-Length cDNA

Total RNA from the intestine of H. leucospilota was extracted using TRIzol reagent (In-
vitrogen) and reverse-transcribed to synthesize first-strand cDNA, using the PrimeScript™
II 1st Strand cDNA Synthesis Kit (Takara, Kusatsu, Japan). To obtain corresponding
full-length cDNA sequences, 3′- and 5′-rapid amplification of cDNA ends (RACE) was
performed using the 3′ Full Race Core Set Ver. 2.0 and 5′ Full Race Kit (Takara) with
gene-specific primers (3′ RACE1/3′ RACE2 and 5′ RACE1/5′ RACE2, Table S1), respec-
tively, which were designed based on a partial sequence for the HlAIF-2 homolog from a
transcriptomic library of H. leucospilota coelomocytes previously constructed by our lab [49].

4.3. Bioinformatics Analysis

Open reading frame (ORF) and a.a. sequences were deduced using ORF Finder
(https://www.ncbi.nlm.nih.gov/orffinder/, accessed on 20 August 2021). Structural do-
mains were predicted using the SMART (http://smart.embl-heidelberg.de/, accessed on
30 September 2021) and ScanProsite (http://prosite.expasy.org/, accessed on 30 Septem-
ber 2021) programs. A phylogenetic tree was constructed based on the a.a. difference
(p-distance) with the neighbor-joining method (pairwise deletion) with 1000 bootstrap
replicates using MEGA X (downloaded from http://www.megasoftware.net/, accessed on
7 October 2021. Alignment for a.a. sequences among various species was performed with
the Clustal Omega program (http://www.ebi.ac.uk/Tools/msa/clustalo/, accessed on
7 October 2021) and demonstrated using the Jalview program (http://www.jalview.org/,
accessed on 7 October 2021). Three-dimensional (3-D) models were deduced with Swiss
modeling software provided by the SWISS-MODEL server (http://swissmodel.expasy.org/,
accessed on 10 January 2022) and visualized by the VDM program (http://www.ks.uiuc.
edu/Research/vmd/, accessed on 10 January 2022).

https://www.ncbi.nlm.nih.gov/orffinder/
http://smart.embl-heidelberg.de/
http://prosite.expasy.org/
http://www.megasoftware.net/
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.jalview.org/
http://swissmodel.expasy.org/
http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/
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4.4. Tissue Distribution and Ontogeny of HlAIF-2 mRNA Expression

The tissue distribution of HlAIF-2 mRNA was quantitatively detected in three individ-
uals, and the selected tissues included coelomocytes, intestine, outer body wall, respiratory
tree, rete mirabile, transverse vessel, polian vesicles, muscle (longitudinal muscle bands),
esophagus, Cuvierian tubules, and gonads, as previously described [24]. Embryos and
larvae of H. leucospilota were sampled in different developmental stages according to their
morphologies [42], including fertilized egg, 2-cell, 4-cell, 8-cell, 16-cell, morula, blastula,
rotated blastula, early-gastrula, late-gastrula, early-auricularia, mid-auricularia, auricularia,
doliolaria, pentactula, and juvenile.

4.5. Primary Culture and Challenge of Coelomocytes

Sea cucumber primary coelomocytes were prepared as previously described [49]. After
culture at 28 ◦C for 18 h in Leibovitz’s L-15 culture medium (Invitrogen), coelomocytes
were challenged with CdCl2 (20 µM), LPS (10 µg/mL) or poly (I:C) (10 µg/mL), and the
cells were harvested at 0, 3, 6, 12, and 24 h after administration.

4.6. Detection of HlAIF-2 Transcript by Real-Time PCR

Total RNA was extracted with TRIzol reagent, digested with gDNA Eraser (Takara),
and reverse-transcribed using the PrimeScript™ RT Reagent Kit (Takara) for quantitative
PCR (qPCR). Specific primers QHlAIF-2-F and QHlAIF-2-R (Table S1) were designed based
on the obtained HlAIF-2 cDNA sequences. qPCRs were performed using SYBR Premix Ex
Taq™ II (Takara) in a final volume of 20 µL, with the conditions of 40 cycles of 95 ◦C for 5 s
and 60 ◦C for 30 s. In this experiment, Hlβ-actin was used as an internal control to verify
qPCR results.

4.7. Plasmid Construction, Cell Line Culture and Transfection

The coding region of HlAIF-2 was amplified by PCR, using the gene-specific primers
PHlAIF-2-F and PHlAIF-2-R (Table S1) and subcloned into the expression vectors pEGFP-N1
(Promega, Madison, WI, USA) and pcDNA3.1/HA (Invitrogen) by homologous recom-
bination using a Hieff Clone Plus One Step Cloning Kit (Yeasen, Shanghai, China). All
the plasmids used for transfection were extracted from overnight bacterial cultures us-
ing a Plasmid MiniPrep DNA Kit (Axygen, Union City, CA, USA), and all constructed
recombinant plasmids were subsequently verified by DNA sequencing.

HEK293T cells were seeded in a 6-well plate and cultured in Dulbecco’s modified
Eagle’s medium (HyClone, Logan, UT, USA) containing 10 % fetal calf serum (FCS),
penicillin (100 µg/mL), and streptomycin (100 µg/mL) at 37 ◦C with 5 % CO2 for 24 h. Then,
pEGFP-N1/HlAIF-2 plasmid (2 µg/well) and pcDNA3.1/HA/HlAIF-2 plasmid (2 µg/well)
were transfected into HEK293 cells using 3 µL of Lipofectamine 2000 (Invitrogen). In
parallel, the pcDNA3.1/HA blank plasmid was transfected into HEK293 cells as a control.

4.8. Subcellular Localization and Translocation

After transfection for 24 h, HEK293 cells transfected with pEGFP-N1/HlAIF-2 plasmid
were, then, treated with CdCl2 (20 µM) for 12 h. As a control, HEK293 cells were trans-
fected with pEGFP-N1/HlAIF-2 plasmid and cultured for 36 h without CdCl2 treatment.
Subsequently, HEK293 cells were rinsed with PBS for 5 min, fixed with precooled 4%
paraformaldehyde for 10 min, rinsed again with PBS for 5 min, treated with 0.5% Triton
X-100 for 10 min, and stained with DAPI (1 mg/mL) for 10 min in the dark. Finally, HEK293
cells transfected with fluorescent vectors were directly observed by a confocal fluorescence
microscope (Leica, Wetzlar, Germany).

4.9. Detection of Apoptosis

After transfection for 4 h, the untransfected HEK293 cells (blank group) and HEK293
cells that were transfected with pcDNA3.1/HA (control group) or pcDNA3.1/HA/HlAIF-2
(experimental group) were cultured in 10 mL of DMEM containing 10 % FCS at 37 ◦C with
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5 % CO2 for 48 h. Then, the apoptotic cells in the three groups were observed by a terminal
deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay, as
described previously [23].

4.10. Data Transformation and Statistical Analysis

All data are presented as the mean ± standard error (SEM). Statistical analysis was
performed using one-way ANOVA followed by Fisher’s least significant difference (LSD)
test with SPSS 22.0 (IBM Software, Armonk, NY, USA), and statistical significance was
determined at n.s. p > 0.05, * p < 0.05, ** p < 0.01, and *** p < 0.001.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23063008/s1.
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