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Abstract: Scattering medium brings great difficulties to locate and reconstruct objects especially
when the objects are distributed in different positions. In this paper, a novel physics and learning-
heuristic method is presented to locate and image the object through a strong scattering medium.
A novel physics-informed framework, named DINet, is constructed to predict the depth and the
image of the hidden object from the captured speckle pattern. With the phase-space constraint and
the efficient network structure, the proposed method enables to locate the object with a depth mean
error less than 0.05 mm, and image the object with an average peak signal-to-noise ratio (PSNR)
above 24 dB, ranging from 350 mm to 1150 mm. The constructed DINet firstly solves the problem of
quantitative locating and imaging via a single speckle pattern in a large depth. Comparing with the
traditional methods, it paves the way to the practical applications requiring multi-physics through
scattering media.

Keywords: inverse scattering; locating and imaging through scattering medium; deep learning

1. Introduction

Reconstructing the image and locating the depth of the object through the scattering
medium play an important role in atmospheric and biomedical optics [1,2]. Sensing the
objects in scattering is a classical problem with a complex mapping principle. The scat-
tering media disrupts original information of the objects, it brings difficulty to imaging
and locates objects through scattering medium in a large depth [3]. Nowadays, the object
recovery mainly focuses on imaging objects in the camera sensor and locating the depth
of hidden objects. Some methods have been put forward to solve the scattering imaging
problem, such as single-pixel imaging [4,5], time-gated holographic imaging [6,7], wave-
front shaping imaging [8–10] and speckle correlation imaging [11–15]. However, the use
of compressive sensing with single-pixel imaging is limited to scenes that are sparse on
the chosen basis [4], the time-gated holographic imaging is mainly focusing on detecting
ballistic and near-forward scattered photos [7], the state-of-the-art devices cannot shape
the complex-valued wavefront precisely via wavefront shaping methods [16] and the
speckle correlation methods have a strict limitation on the field of view [11,12]. Instead
of building a complex physical model, deep learning (DL) is efficient to solve complex
mapping relationships, which can generate an optimized model driven by a large-scale
dataset [17]. For imaging through scattering media, the DL methods have been successfully
demonstrated to reconstruct objects through ground glasses, multimode fibers and fat
emulsion with high quality and efficiency [16,18–22].

The image restoration of a hidden object is the main focus of the above research works,
rather than other physical information, for example, the location and the size of the hidden
object. The observation and ranging of the celestial bodies can help the astronomers make a
good sense of the universe. The precise locating and imaging for biological tissues is the key
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information to analyses and research for biologists. Thus, the object ranging and locating
are essential to the atmosphere or biological applications. To date, some techniques can
acquire the hidden object depth via WFT-based (Windowed Fourier Transforms) memory
effect measurement in phase space [23], PSF manipulation [24], chromatic aberration
compensation [25] and coherence gating [26]. In order to obtain the depth information, the
traditional physical methods are realized by indirectly mapping the relationship between
the speckle patterns and the depth of the objects. The chromatic aberration compensation
and coherence gating methods have good performance among traditional methods, which
need additional optical reference arm to provide depth-related reference information.
The reference arm configuration makes the experimental arrangement and adjustment
more complicated. Besides, these depth detection methods are difficult to build complete
physical models for obtaining absolute depth. These critical requirements to acquire
the physical information in these detection methods restrict their wide application in
practice. In which, the reported maximum range for locating and imaging is 500.07 mm via
coherence gating [26]. Further expansion of the depth detection capabilities is meaningful
for expanding practical applications. However, the DL method on depth detection is
limited with physical instruction and effective network structure. The depth information
of hidden objects cannot be measured efficiently, with or without prior information, due to
the scattering disruption and the model ability. Thus, selecting an efficient neural network
structure and designing the DL framework with physical prior are the way to solve the
inverse problem in scattering.

In this paper, for the first time, a novel framework is proposed to realize depth
prediction and image reconstruction (DINet) from a single speckle pattern, which is a dual-
path network providing different attributes. Unlike usual DL applications, the information
distribution or degradation degree is more serious in the case of scattering. It is hard
to extract effective features from speckle patterns directly via usual DL methods. Thus,
DINet needs the great capability of physical mapping and data mining to obtain useful
information from the scattered light. DINet with a phase-space informed locating-path
network and an effective Encoder-Decoder structure imaging-path network is proposed to
solve the challenge of depth prediction and image reconstruction in a large depth. DINet
can also simplify the hardware requirements and experimental process by removing the
reference arm configuration. To the best of our knowledge, this is the first model that
solves the problem of quantitative locating and imaging in a field up to 1150 mm through a
strong scattering medium, and the maximum depth mean error is about 0.1 mm nearby the
1150 mm depth.

2. Principle

The end-to-end DINet is proposed to learn a statistical model relating to the speckle
patterns generated in different depths. The practical systematic configuration, which is
designed to collect the experimental data including the speckle patterns and the distance
between object and diffuser, is drawn schematically in Figure 1a. As for Figure 1b, it is the
description of locating distance with the optical path unfolded. The content structure of
DINet is shown in Figure 1c. A single speckle pattern is the input of the dual-path network,
which produces a depth value by the locating-path network and a recovered 256× 256
image with the imaging-path network.
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Figure 1. Systematic configuration. (a) Experimental arrangement. CL, collimating lens; TIR, total
internal reflection prism; DMD, digital micro-mirror device. (b) Description of imaging distance with
optical path unfold. (c) Schematic diagram of DINet Architecture.

2.1. Basics of Locating and Imaging

Phase-space measurement of scattered light can provide the features for depth in-
formation calibration [27]. Phase-space optics contains the spatial and spatial frequency
information, which allows the visualization of space depth information [23]. The Wigner
distribution function (WDF) can be used to describe the phase space features as

f (r, k) =
∫
〈ψ∗(r + ξ

2
)ψ(r− ξ

2
)〉eikξ dξ, (1)

where r = (x, y) and k = (kx, ky) are the two-dimensional spatial and spatial frequency
vectors, ξ is the transverse spatial variable centered on r, and ψ(r) is the wave spread
function [28,29]. Due to the visible phenomenon after post-processing, the depth variation
makes the phase-space features change regularly, and the fitted slope of speckle patterns,
A, is related to variable depth linearly as A ∝ 1/dx [23]. Thus, the DFT process of speckle
patterns can help the locating-path network to extract the distance features for depth
prediction. DINet can regress the depth value via effective data mining and powerful
fitting capability, which can optimize the complex mapping relationships as:

dx = z(S, d0, λ), (2)

where z is the mapping function, S is the speckle pattern, d0 is the distance between the
CMOS and the scattering medium, and λ is the wavelength of the light source.
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To restore the object through the scattering medium is a highly ill-posed and prone
noise-induced problem. The prior knowledge can be introduced to optimize the inverse
problem, for example, the physics-prior features and the ground truth. The optimization
function can be expressed as

Ô = argminO‖G(O)−M‖2 + αλR(O), (3)

where G is the forward operator in the scattering system, O is the object through the
scattering medium, M is the raw intensity image, R(O) is the regularization term, and Ô is
the estimate of the object. The DL method is good at optimizing inverse problems using a
large amount of data and mining the physical mapping relationship, which can reconstruct
the object with high imaging quality in case of scattering [18,22].

2.2. DL Framework Implementation

The key structure of the multi-task network is based on Efficient Residual Factorized
(ERF) layers [30], which is a residual architecture with reducing the computational costs
and remaining the remarkable accuracy. The locating-path consists of Discrete Fourier
Transform (DFT), encoder part and fully connected layers to extract the location features
and regress the depth values. The necessity of the DFT step is presented in the Appendix A.
The imaging-path follows the encoder-decoder architecture with modification of the long-
range skip connection to improve the reconstruction quality [22]. The details of DINet are
provided in Appendix B.

To train DINet, the mean absolute error (MAE) and the mean squared error (MSE) are
used as the loss function. The MAE for the locating-path and the MSE for the imaging-path
have a good performance in this multi-task. The loss functions are calculated as

LossD =
1
N

N

∑
i
|Di − Dgt|, (4)

LossI =
1
N

N

∑
i
|Ii − Igt|2, (5)

where Di and Dgt are the predicted values and true values, Ii and Igt are the reconstructed
images and ground truths, respectively; i is the index number in the training dataset, and N
is the mini-batch size. Two sub-networks can be trained synchronously via LossDI , which
defined as

LossDI = LossD + LossI . (6)

The locating-path network and the imaging-path network are sharing the same input
instead of other layers in the DINet framework. Thus, the locating-path network and the
imaging-path network are two independent networks. If only one particular function is
needed, the sub-path network can also be trained and work independently.

2.3. Setup and Data Acquisition

The proposed DINet is tested on real optical datasets and the datasets acquisition
system is displayed in the Figure 2. A digital micro-mirror device (DMD) (pixel count:
1024 × 768, pixel pitch: 13.68 µm) is employed to display handwritten digits, which are
selected as object images from the MINIST database on its surface. A TIR prism is employed
to fold light path for capturing the patterns conveniently. A ground glass (Thorlabs, Newton,
NJ, USA, DG100X100-220-N-BK7, 220 Grit) is selected as the diffuser with strong scattering
so that objects are completely hidden. The LED (Thorlabs, M625L4) combined with a filter
(Thorlabs, FL632.8-1, central wavelength: 632.8 ± 0.2 nm) is designed as the narrow band
partially coherent light source for the experimental arrangement. The speckle patterns
corresponding to different positions can be obtained by moving the motorized stage.
As shown in Figure 1b, the optical path can be unfolded from TIR prism between the
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DMD and the CMOS (Balser, acA1920-155 um). The value of d0 is 80 mm which is the
distance between the ground glass and the CMOS camera working surface. The devices in
the dashed box are fixed relatively to ensure a constent d0. Thus, the experimental setup
within the dashed box are moved within the working stroke by the motorized stage to get
the variable depth of the hidden objects, and the effective working distance between the
diffuser and the CMOS is ranging from 350 mm to 1150 mm. If necessary, DINet can be
also used in the different positions, even more than 1150 mm or other specific scenarios.

Figure 2. Schematic of Speckle collecting setups.

3. Results and Analysis

For the training of DINet, 1100 speckle patterns are recorded at each depth and select-
ing 1000 speckle patterns as the training data, 50 speckle patterns, and another 50 speckle
patterns are selected as validation data and testing data, respectively. The training set is
processed with a mini-batch size of 32. Each model is trained with 400 epochs by Adam
optimizer for up to 8 h. The learning rate starts from 5× 10−4 in the first 200 epochs to
5× 10−5 for the final 200 epochs. The training and testing environment is PyTorch 1.3.1 and
CUDA 10.1 version under ubuntu 16.04. The hardware specifications for the workstation is
composed of a single NVIDIA GeForce Titan RTX graphics unit and the intel Core i9-9940X
central processing unit.

3.1. Quantitative Evaluation in the Whole Working Stroke

To quantitatively evaluate the locating and imaging performance of DINet, the MAE
and peak signal-to-noise ratio (PSNR) are employed to measure the locating accuracy and
imaging quality. The multi-task results of untrained samples in the whole working stroke
are shown in Figure 3a, which include the locating testing results and imaging examples
with corresponding ground truth. The distance of the object relatively moves from 350 mm
to 1150 mm with a stride of 200 mm. The abscissa is the testing sample sequence and
each depth has 50 untrained samples. Obviously, DINet can regress the depth of different
distribution and restore the hidden object. The locating accuracy and error distribution
are represented clearly via comparing with the mean depth error, which is 0.04541 mm
indicated with the green dash line. From the depth error distribution, the locating accuracy
is reducing with distance increasing. Meanwhile, the result of the imaging-path evaluated
via MAE and PSNR is drawn in the Table 1 and the average PSNR of imaging result is up
to 24.71 dB in the whole working stroke. As the distance increases, the size of imaging
results is decreasing proportionally and the imaging quality is also reducing slightly.

DINet has subdivision capability to locate and reconstruct from large stride to slight
range. Both ends of the working stroke are selected to test DINet with changing the stride
to 2 mm. As shown in Figure 3b,c, DINet can obtain higher locating accuracy and better
imaging quality in the beginning stroke (350–354 mm) on the multi-task. Corresponding
to the beginning stroke, DINet can also complete the multi-task during the ending stroke
(1146–1150 mm) of the subdivided working stroke. Furthermore, the refining capacity of
the ending stroke is lower than the beginning in case of the same stride, with a mean error
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declining from 0.00948 mm to 0.07622 mm. The results agree with the above analysis of the
error distribution. To conclude, DINet has good performance in locating and imaging as
shown in Figure 3 and the Table 2. However, with the distance increasing, the quantity of
the collected speckle patterns is limited by CMOS sensitivity. Besides, more system noise
will be introduced, such as stray light and stage collimation error. All of the above factors
will result in a negative impact on locating accuracy and imaging quality. Furthermore, we
also provide the additional imaging results which comparing with conventional Unet [31]
and Dense-Unet [19], and the imaging-path of DINet has better imaging results through
scattering medium in a large depth.

Table 1. Quantitative evaluation of reconstruction each position.

Depth Value (mm) 350 550 750 950 1150

Imaging-path of DINet [22] MAE 0.0145 0.0155 0.0159 0.0168 0.0188
PSNR (dB) 25.51 25.02 24.82 24.46 23.73

Unet [31] MAE 0.0214 0.0203 0.0195 0.0196 0.0201
PSNR (dB) 21.88 22.58 22.92 22.88 22.83

Dense-Unet [19] MAE 0.0240 0.0243 0.0263 0.0274 0.0294
PSNR (dB) 21.53 21.59 21.10 20.98 20.40

Figure 3. Quantitative evaluation for the DINet. (a) The depth predictions and errors in 5 positions.
An object ground truth and corresponding reconstruction are shown in each sample range. (b,c) are
the resolution capability of the DINet in different ranges.



Sensors 2021, 21, 90 7 of 12

Table 2. Results of depth generalization.

Training Depth (mm) Generalization Depth (mm) Mean Error (mm)

352, 354, 356, 358 350 0.66128
350, 352, 356, 358 354 0.21434
350, 352, 354, 356 358 0.52759
350, 550, 950, 1150 750 48.3811

3.2. Depth-Resolved Results with Randomly Distributed Objects in a Plane and Different Sizes of
the Objects

When the objects are in the center of the planar, the DINet can locate and reconstruct
objects accurately. Furthermore, DINet can also locate and reconstruct the objects with
no-fixed position in a plane. As shown in Figure 4, single characters with no-fixed position
were selected as hidden objects, DINet has the accurate locating capability with a depth
mean error 0.02375 mm and can reconstruct the correct objects correspondingly. However,
comparing to the objects with a fixed position in the center of the plane, the locating
accuracy and imaging quality are decreasing slightly with randomly distributed objects.
The experimental results with no-fixed position objects in a plane prove that the locating
capability of DINet is relevant to the depth of the objects and DINet can also reconstruct
the correct spatial position of the objects.

Figure 4. Locating and imaging results with no-fixed position objects in a plane.

It should be further clarified that the size of ground truth captured without scattering
medium is proportional to the distance between the CMOS and the DMD in the experi-
mental results corresponding to Figure 3a. Meanwhile, the size of speckle autocorrelation
through the scattering medium is also proportional to the distance between the diffuser
and the DMD [32]. However, the distance dx is the only variable related to the recording
depth of the speckle patterns via DINet. In order to obtain a similar imaging size, the size
of objects on the DMD is adjusted according to the system magnification with different dx.
Thus, the 80× 80 pixel objects and the 102× 102 pixel objects are selected in the 350 mm
depth and the 450 mm depth, respectively. The depth can be measured accurately even
if the object size is scaled on the DMD, the regressed depth and reconstructed image are
shown in Figure 5. The experimental result with multiple object sizes proves that the
depth-resolved capability of DINet is mainly relevant to the depth of the object and has
nothing with the size of the object. Both the depth of the object and structure information
is contained in a single speckle image, which can be separated via the DL method.
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Figure 5. Locating and imaging results with the different object size and the same imaging size.

3.3. Generalization Capability

When the object movement is within a certain range of depth, the speckle pattern of
a diffuser is relatively deterministic along the z-direction, and this character is the basis
of the PSF manipulation method. Once the movement range is a too large, the correlation
of speckle will be greatly reduced which results in the maximum range is 36.6 mm by the
PSF manipulation method [24]. We utilize the DINet to extend the efficient stroke up to
1150 mm with the depth mean error 0.05 mm. Furthermore, in order to use the conclusion
along the z-direction from [24] which the adjacent speckle pattern has a certain relevance
along the z-direction, we provide results of DINet about the generalization capability with
different sampling intervals.The more relevant speckles along the z-direction with a 2 mm
stride can provide the better generalization capability of locating unknown depth, and the
too large stride (e.g., 200 mm) will cause the relatively poor generalization capability in
unknown depth. On the other hand, different scenes have different acceptable margin of
errors, the proper sampling interval can be selected as the training dataset.

As shown in Table 2, DINet has a different performance with the distribution of depth
and step size. The accuracy of the generalized depth in 354 mm is better than 350 mm
and 358 mm with four training depths. And the locating generalization performance
of 2 mm stride is much better than 200 mm. From Figure 6, the imaging-path network
can also restore the hidden objects in generalized depth. The quality of reconstruction in
354 mm is better than 350 mm and 358 mm, and the imaging results of 2 mm stride are
much better than 200 mm. The generalization of missing distance in the middle is better
than the marginal and the smaller sampling step is better than the large relatively. The
results of depth generalization capability can also be explained from the aspect of data
acquisition, which corresponds to the distribution of uniform sampling and the effective
interval of sampling points. Thus, to refine the stride and expand the depth of coverage
can improve the generalization performance of the locating accuracy and imaging quality.
DINet can obtain relatively accurate generalization via the subdivision ability of dense
measurement and extending the coverage of distance. The multi-modal measurement
technology through a single speckle pattern based on DINet has potential in practical
applications, for example, removing the effect of inclement weather conditions to produce
a photo and a depth map in fog. The capability of depth generalization makes DINet pave
the way to practical applications.

Figure 6. Reconstruction results in generalization depth.
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4. Discussion

According to the experimental results, several discussions are presented as followed:

(i) DINet is a novel framework that has good performance in locating and imaging
through scattering medium in a large depth. This method can obtain accurate depth
and imaging results in a large depth ranging from 350 mm to 1150 mm in strong
scattering, with a mean error less than 0.05 mm in depth prediction and an average
PSNR above 24 dB in image reconstruction.

(ii) DINet has great robustness in depth-resolved capability and good generalization
performance in unseen planar position and unseen axial depth. DINet can locate
and reconstruct the correct objects with high accuracy, even for the no-fixed position
objects in the plane in different depths. For the locating capability of DINet, it should
be noted that the depth-resolved capability of DINet is mainly relevant to the depth
of the object and has nothing with the size of the object. Meanwhile, DINet has depth
generalization capability to regress the depth value and reconstruct the objects with
an unseen depth in the training process.

(iii) It should be clarified that DINet has different performance in locating and imaging
with different scenarios. The locating accuracy and imaging quality of DINet are
limited with the sensitivity of the CMOS with different working distances and the
complexity of the dataset. The depth generalization capability also depends on the
sampling strategy and the distribution of the training dataset.

5. Conclusions

In this paper, a novel DL framework is designed for depth prediction and image
reconstruction using a single speckle pattern. This method, which is not limited to the
discussed two tasks, does not need a complex experimental setup and can be applied to
measure other physical information, such as locating in-plane coordinates and hidden
object classification. The proposed DINet technique opens up the way to multiple physical
information measurement in practical application in case of scattering. However, DINet
can only regress the plane depth value in the case of scattering. In the future, for pixel
locating or three-dimensional measurement in scattering, the physics-prior knowledge can
also be introduced to help us design the DL method.
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Appendix A

The DFT step informed with phase-space-prior is crucial for locating through scatter-
ing media. Firstly, according to References [23,27], the phase-space measurement based on
the windowed Fourier transform (WFT) can fit out the source distance from the diffuser as
A ∝ 1/dx, A is the fitted slope of speckle patterns. Thus, the discrete Fourier transform
(DFT) process of speckle patterns can help the locating-path network to extract the distance
features for depth prediction. Secondly, the locating result with phase-space constraint
with high accuracy in a large depth ranging from 350 mm to 1150 mm can also prove
that the DFT features are useful for the locating-path network. As shown in Figure A1, we
select the whole working stroke dataset to train and test. The neural network is competent



Sensors 2021, 21, 90 10 of 12

to learn a DFT process, if we removed the DFT step, the speed of convergence is lower
than before. Furthermore, comparing with the locating-path network with phase-space
constraint, if we use the same initialization method and hyper-parameter with the same
training strategy, the accuracy of the locating-path network without the DFT step is worse.

Figure A1. The influence of DFT step for locating accuracy and the speed of model convergence.

Appendix B

In Tables A1 and A2, the details of locating-path and imaging-path structure are
provided, respectively. The table includes the input, output shapes, and the details of each
CNN layer, where dilated denotes the size of dilated convolution, output size denotes the
size of layer output, and Non-bt-1D denotes Non-bottleneck-1D block [30].

Table A1. Details of locating-path network.

Type Output Size

Step 0 DFT Step 2× 256× 256

Encoder

Step 1 Downsample Layer 16× 128× 128

Step 2 Downsample Layer 64× 64× 64
5 × Non-bt-1D 64× 64× 64

Step 3

Downsample Layer 128× 32× 32
Non-bt-1D (dilated 2) 128× 32× 32
Non-bt-1D (dilated 4) 128× 32× 32
Non-bt-1D (dilated 6) 128× 32× 32
Non-bt-1D (dilated 8) 128× 32× 32
Non-bt-1D (dilated 2) 128× 32× 32
Non-bt-1D (dilated 4) 128× 32× 32
Non-bt-1D (dilated 6) 128× 32× 32
Non-bt-1D (dilated 8) 128× 32× 32

Decoder

Step 4 Average pooling Layer 128× 10× 10

Step 5
Fully connected Layer 12,800
Fully connected Layer 1000
Fully connected Layer 1
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Table A2. Details of imaging-path network.

Type Output Size

Encoder

Step 0 Downsample Layer 16× 128× 128

Step 1 Downsample Layer 64× 64× 64
5 × Non-bt-1D 64× 64× 64

Step 2

Downsample Layer 128× 32× 32
Non-bt-1D (dilated 2) 128× 32× 32
Non-bt-1D (dilated 4) 128× 32× 32
Non-bt-1D (dilated 6) 128× 32× 32
Non-bt-1D (dilated 8) 128× 32× 32
Non-bt-1D (dilated 2) 128× 32× 32
Non-bt-1D (dilated 4) 128× 32× 32
Non-bt-1D (dilated 6) 128× 32× 32
Non-bt-1D (dilated 8) 128× 32× 32

Decoder

Step 3 Upsample Layer 64× 64× 64
2 × Non-bt-1D 64× 64× 64

Step 4 Upsample Layer 16× 128× 128
2 × Non-bt-1D 16× 128× 128

Step 5 Upsample Layer 1× 256× 256
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