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ABSTRACT
Objective The COVID- 19 outbreak was first reported in 
Wuhan, China, and has been acknowledged as a pandemic 
due to its rapid spread worldwide. Predicting the trend 
of COVID- 19 is of great significance for its prevention. A 
comparison between the autoregressive integrated moving 
average (ARIMA) model and the eXtreme Gradient Boosting 
(XGBoost) model was conducted to determine which was 
more accurate for anticipating the occurrence of COVID- 19 
in the USA.
Design Time- series study.
Setting The USA was the setting for this study.
Main outcome measures Three accuracy metrics, mean 
absolute error (MAE), root mean square error (RMSE) and 
mean absolute percentage error (MAPE), were applied to 
evaluate the performance of the two models.
Results In our study, for the training set and the validation 
set, the MAE, RMSE and MAPE of the XGBoost model were 
less than those of the ARIMA model.
Conclusions The XGBoost model can help improve 
prediction of COVID- 19 cases in the USA over the ARIMA 
model.

INTRODUCTION
First detected in Wuhan, China, and 
subsequently spread to all over the world, 
COVID- 19 (http://COVID-19.who.int/) 
promises to be a defining global health event 
of the 21 century and has posed a severe and 
growing threat to public health.1 2 Immedi-
ately after the first case in the USA was iden-
tified on 20 January 2020, COVID- 19 cases 
increased exponentially until 11 July 2021, 
on that date were 33 595 701 cases and 598 
442 deaths.3 The majority of cases experi-
ence mild- to- moderate respiratory illness, 
but even death has resulted.4 The common 
symptoms resulting from COVID- 19 infec-
tion appear to be wide, encompassing fever, 
cough, fatigue and sore throat.5 6 The clinical 
features of most patients are fever, and some 
have dyspnoea and extensive pneumonia 
infiltrates on CT scan of the chest.7 8

Given the uncertainty around decisions 
on the accurate time of the emergence and 
disappearance of the disease, it has been 
an increasingly important area of study in 

short- term forecasting to create better plans 
and more appropriate responses. Time- series 
analysis is beneficial for understanding the 
association of variables by using different 
models and obtaining more accurate predic-
tions. The autoregressive integrated moving 
average (ARIMA) model by Box and Jenkins 
is the most common analytical method in 
data science. It is used for processing not only 
stationary but also non- stationary time series 
and is even applicable to seasonal time series.9 
However, infectious diseases are affected by 
many factors, and their time series usually do 
not conform to a linear function. Therefore, 
the Box- Jenkins based ARIMA model is insuf-
ficient to handle non- linear situations well. 
In contrast, the eXtreme Gradient Boosting 
(XGBoost) model is a flexible machine 
learning method capable of dealing with the 
non- linearity of time series through its strong 
self- learning ability.

The incidence of COVID- 19 has varied 
greatly among countries,10 and it has been 
noted that vaccination may play a key 
role in the containment of the COVID- 19 
pandemic.11 12 Vaccines against COVID- 19 
now used in the USA have demonstrated high 
effectiveness.13 Therefore, effective vaccines 
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 ⇒ This study used the autoregressive integrated 
moving average and eXtreme Gradient Boosting 
(XGBoost) models to predict cases of COVID- 19 in 
the USA.

 ⇒ Data on vaccination in the USA were introduced into 
the XGBoost model.

 ⇒ The seasonality of data was considered in both 
models.

 ⇒ The study period was relatively small and should be 
expanded to better reflect the future development of 
COVID- 19 in the USA.

 ⇒ The XGBoost model was built based on 
prevaccination- induced herd immunity. Therefore, 
as the cases of more transmissible variants in-
crease, the accuracy of prediction may decline.
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against COVID- 19 will be essential to lowering morbidity 
and mortality. Nevertheless, to date, no researchers have 
included vaccinated individuals in the XGBoost model to 
forecast the incidence of COVID- 19.

In this study, ARIMA and XGBoost models were devel-
oped to fit and forecast COVID- 19 in the USA. In addi-
tion, we determined which of those models is a better 
predictor of COVID- 19 in the USA by comparing the fit 
and forecast accuracies of the two models.

METHODS
Data sources
Data on COVID- 19 cases3 and vaccination13 in the USA 
were collected from the website of the Centers for Disease 
Control and Prevention of the USA (https://COVID-19. 
cdc.gov). The daily data on COVID- 19 in the USA from 13 
December 2020 to 30 June 2021 were split into training 
(13 December 2020 to 16 June 2021) and validation sets 
(17 June 2021 to 30 June 2021). The models were estab-
lished on training data and tested on the validation set.

Seasonal ARIMA model
ARIMA models have often been used for the prediction of 
infectious diseases, such as dengue,14 Hemorrhagic fever 
with renal syndrome (HFRS)15 and malaria.16 Consid-
ering time trends, periodic changes and random fluctu-
ations, it has become a common model in data science. 
ARIMA is optimal for data containing trend, cyclicity and 
seasonality.17 In our study, an ARIMA (p, d, q) (P, D, Q) 
[S] model was built, in which p represents the autore-
gression (AR) order, d the difference order and q the 
moving average (MA) order. S denotes the period of the 
seasonal trend and P, D and Q are the seasonal terms for 
the seasonal ARIMA. Parameters (P, D, Q) and (p, d, q) 
are determined according to the partial autocorrelation 
function (PACF) and autocorrelation function (ACF). 
Parameter S is chosen by the periodic length of season-
ality. The seasonal model can be presented as follows:
 Yt = Tt + St + Rt   

where  Tt  ,  St   and  Rt   denote the tendency, seasonal effect 
and random effects, respectively. By differencing, we stabi-
lised the time series. An augmented Dickey- Fuller (ADF) 
test is used to confirm this stabilisation. The corrected 
Akaike’s information criterion (AICc) informs us of the 
goodness of fit of the ARIMA model. The model with the 
minimum value will be regarded as optimal. Finally, the 
Ljung- Box test was used to examine whether the residual 
sequences were white noise.

XGBoost model
The XGBoost model is a decision tree- based machine 
learning algorithm that is widely used in data science. 
By using an internal algorithm that combines the results 
from multiple individual trees, we can yield accurate 
predictions.18 Simultaneously, the model shows the 
ranking of input features. Moreover, XGBoost can help 
us obtain a stronger classifier from other classifiers and 

has other benefits, such as avoiding overfitting, effectively 
dealing with missing values and reducing running time by 
parallel and distributed calculation.19 The objective func-
tion of the XGBoost model is as follow:
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where n  denotes the number of training data,  xi   and 
 yi   are the feature vector and its label at the  ith  instance, 

 y
k−1
i   represents the prediction of the  ith  instance at the 

 t − 1th  iteration,  l   is a loss function that calculates the 
difference between the label and the final forecast plus 
the new tree output,  fk  denotes a new tree that classifies 
the  ith  instance with  xi  , and denotes the regularisation 
term that penalises the complexity of the new tree.20 
In the process of building the XGBoost model, the lag 
terms in the data are the input items, which are used for 
the prediction of data. Given the existence of a seasonal 
trend, we built seven lag terms (1- day to 7- day lag) as 
input items. To transform week variables to a common 
format, a one- hot encoding technique was used, which 
can convert categorical variables into numerical values 
in machine learning preprocessing. The week variable is 
used as a one- hot representation encoded into a matrix, 
whose columns correspond to the presence of Monday, 
Wednesday, Thursday, Friday, Saturday and Sunday. The 
matrix of the week variable is represented as follows:

 

Wi =




1 if week is
(
Mon, Wed, Thu, Fri, Sat, Sun

)

0 otherwise   

We built a numerical variable from 1 to the number of 
observations to analyse the effect of the time trend. The 
hyperparameters, including SubsampRate, ColsampRate, 
Depth, MinChild and eta, should be adjusted to optimise 
the XGBoost model.

Model selection
In our study, three accuracy metrics were applied to eval-
uate the performance of the models: mean absolute error 
(MAE), root mean square error (RMSE), and mean abso-
lute percentage error (MAPE), as follows:
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In these equations, n ,  yi  and  yi   are the number of 
observations, the forecasted value, and the actual value, 
respectively. MAE is the mean of the absolute prediction 
error, which represents the MAEs between the actual and 
the prediction. RMSE is the square root of the average 
squared error, which is frequently used to evaluate the 
difference between the prediction and the actual value. 
MAPE represents the mean error between the actual and 
the prediction in percentage form, which computes the 
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average absolute percent difference between the actual 
and the prediction. As MAPE, RMSE and MAE approach 
zero, the prediction results are considered more accurate.

Data analysis
In our study, all data were processed in R V.4.1.0 software. 
We used the xts, TSstudio and tseries packages to analyse 
of data and the ggplots2 and dygraphs packages to draw 
diagrams. The proposed models were established via fore-
cast and xgboost packages (see R codes in online supple-
mental material 1).

Patient and public involvement
No patients were involved.

RESULTS
Characteristics of COVID-19 cases
As of 11 July 2021, the total number of COVID- 19 cases 
had reached 33 595 701 in the USA. According to the 
plot of daily cases, a study period was chosen from 13 
December 2020 to 30 June 2021. First, it was certain to 
make the series become stationary. The time- series graph, 
given in figure 1A, shows that the data have a down-
ward trend and fluctuate greatly, and the ADF test also 
confirms its non- stationarity. By Box- Cox transformation, 
the original data became more stationary with less fluctu-
ation (figure 1B),21 and we then decomposed it. The Box- 
Cox transformation data, seasonal trend, time trend and 
remainder are shown in figure 1C. The diagrams show 
that there is a seasonal pattern and a trend. Moreover, 
we drew the relationship between the transformed and 
lag series (figure 2). To stabilise the time series, seasonal 
and regular differencing were applied. We conducted 

first- order and seven- order differencing (seasonal differ-
encing) to address the instability caused by time trends 
and seasonal factors.

Forecasting the cases of COVID-19 by the seasonal ARIMA 
model
After first- order and seasonal differencing, the COVID- 19 
data transformed by Box- Cox transformation became 
stationary (figure 3), and the ADF test also supported 
stationarity (t=−5.6143, p<0.01). This result showed us 
that the parameters d and D are 1 and 1 in the seasonal 
ARIMA model.

The plots of ACF (figure 4A) and PACF (figure 4B) 
showed the temporal dependence of COVID- 19 cases, 
and thus, we tried to build a seasonal ARIMA model with 
nonseasonal (p, d, q) and seasonal (P, D, Q) parameters. 
After differencing, the peak values (lag 1, 4, 7 and 14) in 
figure 4A indicated that the maximum q and Q values 
should be set to 4 and 2, respectively. At the same time, 
significant peak values at lags 1, 2 and 4, and 7, 14, 21 and 
28 are observed in figure 4B, and thus, the maximum p 
and P values should be 4 and 4, respectively. Then, we 
found the model with the lowest AICc value via the  auto. 
arima function. Finally, the optimal model was ARIMA 

 
(
0, 1, 1

) (
0, 1, 1

)
7  (table 1), and the Ljung- Box test indi-

cated that the residual series was white noise (p=0.6325). 
The time plot of the residuals, the corresponding ACF 
and the histogram also checked that residuals from 
the model were white noise. (figure 5). The ARIMA 

 
(
0, 1, 1

) (
0, 1, 1

)
7  model performed well in the fit and 

forecasting of COVID- 19 cases. The details are given in 
figure 6A.

Figure 1 (A) Daily cases of COVID- 19 in the USA from 13 
December 2020 to 30 June 2021. (B) Contrast of the primary 
and transformed series of COVID- 19. (C) Decomposition of 
the transformed series of COVID- 19.

Figure 2 Difference correlations in the first seven lags.
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https://dx.doi.org/10.1136/bmjopen-2021-056685


4 Fang Z, et al. BMJ Open 2022;12:e056685. doi:10.1136/bmjopen-2021-056685

Open access 

Forecasting the cases of COVID-19 by the XGBoost model
In the application of the XGBoost model, the value of 
hyperparameters is essentially important. We consistently 
built models via preset bounds for hyperparameters, and 
then we obtained the best one in the final training with 
168 rounds. The hyperparameters of the optimal model 
were: SubSampRate=0.5, ColSampRate=0.2, Depth=4, 
MinChild=2 and eta=0.07. The fit and forecast results of 
the optimal model are shown in figure 6B.

Models comparison
For the ARIMA  

(
0, 1, 1

) (
0, 1, 1

)
7  model, we lost 8 obser-

vations in the training set after differencing, and only 
162 observations were used for analysis. For the XGBoost 
model, we built seven lag terms (1- day to 7- day lag) as 
input terms because of the existence of seasonal trends. 
Accordingly, only 163 observations remained for analysis. 
The fit and forecast information of the two models are 
illustrated in table 2. In the training set and the valida-
tion set, compared with the seasonal ARIMA model, the 
XGBoost model had smaller values of MAE, RMSE and 
MAPE. It should be noted that the performance of the 
test set in the XGBoost model outweighed that of the vali-
dation set in the seasonal ARIMA model. For the XGBoost 
model, the MAPE values of the training and validation 
sets (4.046% and 7.892%) were excellent.

DISCUSSION
In this paper, we developed two models (seasonal ARIMA 
and XGBoost) and used past data on daily cases of 
COVID- 19 to predict 14 days ahead in the USA. The fit 
and prediction accuracies of the proposed models were 
assessed by three criteria. The model results show that 

Figure 3 Cases of COVID- 19 in the USA after 
transformation and differences.

Figure 4 (A) Autocorrelation function (ACF) and (B) partial 
autocorrelation function (PACF) diagrams for cases of 
COVID- 19 in the USA after transformation and differences.

Table 1 Parameters of the ARIMA (0,1,1) (0,1,1)7 model

Series: train
ARIMA (0,1,1) (0,1,1)7

Coefficients   ma1 sma1

    −0.391 −0.917

  SE −0.070 0.067

CIs of coefficients   2.5% 97.5%

  ma1 −0.528 −0.253

  sma1 −1.048 −0.785

AICc   128.920   

AICc, Akaike’s information criterion; ARIMA, autoregressive 
integrated moving average.
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the XGBoost model has better fit and better forecast 
COVID- 19 cases in the USA. The prediction of cases of 
COVID- 19 can help the government and the public take 
precautionary measures to control the further spread of 
COVID- 19.

The ARIMA model is commonly used for the predic-
tion of time- series data, and it can show autocorrelations 
in data. The XGBoost model is a decision tree- based 
machine learning model, by which we can uncover 
the non- linearity in the time series of COVID- 19 cases. 
Accordingly, our models not only retain the irregular 
trend of the COVID- 19 data but also capture the inci-
dental fluctuation. The ARIMA model combines AR 
with the MA, which is beneficial for capturing the char-
acteristics of data in nature and making a more exact 
forecast. The seasonal ARIMA model has been among 
the most significant predictors for seasonal forecasts 
of time series.15 22 23 Normally, the loss of data happens 
more often with more differences. In our study, we only 
used the data on the daily number of COVID- 19 cases to 
build the ARIMA model. We first conducted a first- order 
difference while we found that the data did not become 
stationary. We conducted a seasonal difference in the 
next step, and the result was good. Finally, the ARIMA 

 
(
0, 1, 1

) (
0, 1, 1

)
7  model was selected as the optimal model 

with the minimum AICc. From the results of the ARIMA 

 
(
0, 1, 1

) (
0, 1, 1

)
7  model, we can conclude that the model 

precisely reflects the seasonality in the data on COVID- 19 
cases. Nevertheless, owing to the non- linearity of the data, 

the MAE, RMSE and MAPE in the validation set were not 
good.

Starting the experimental evaluation with the seasonal 
ARIMA, we then applied the XGBoost model to further 
analyse the time series in the USA. In current COVID- 19 
research, the effectiveness of vaccines against COVID- 19 
has been confirmed. Once vaccines have been approved 
for use in individuals, sufficient and effective vaccines will 
help build herd immunity among people.24–26 From the 
variable importance graph (figure 7) for the XGBoost 
model, we also see that the significance scores of vaccine 
variables (fully vaccinated and at least one dose vacci-
nated) rank in the second and fifth positions. As a result, 
vaccines have played an important role in the spread of 
COVID- 19 in the USA. Vaccinations have been adminis-
tered in countries on different dates. As of 11 July 2021, 
more than 158 million people were fully vaccinated and 
183 million had at least one dose against COVID- 19 in 
the USA. Based on the afore- mentioned evidence, in 
addition to the data on the daily number of COVID- 19 
cases, we also collected the vaccination data to build the 
XGBoost model. The vaccination data included the daily 

Figure 5 The combination of residuals, the corresponding 
autocorrelation function (ACF) diagram, and the histogram for 
the autoregressive integrated moving average (ARIMA) (0,1,1) 
(0,1,1)7 model.

Figure 6 Fit and forecast results of (A) autoregressive 
integrated moving average (ARIMA) (0,1,1)(0,1,1)7 and (B) 
eXtreme Gradient Boosting (XGBoost) models.
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cumulative number of fully vaccinated and those with 
at least one dose. The XGBoost model has already been 
carried out in studies to predict the trend in COVID- 
19.18 19 27–34 Luo et al19 used the long short- term memory 
and XGBoost models in the prediction of COVID- 19 
in the USA and assessed the ranking of features via 
the XGBoost model. Khan et al31 aimed to predict the 
mortality rate in confirmed COVID- 19 patients from 
146 countries employing the XGBoost model. Ahamad 
et al34 developed several machine learning algorithms 
and discovered that the XGBoost model could precisely 
predict COVID- 19 trends and simultaneously select 

features associated with them for all ages. In this paper, 
the XGBoost model is better than the seasonal ARIMA 
model based on the fit and forecast results, which is 
probably because vaccine variables were considered. The 
forecasting results showed that the MAEs of the seasonal 
ARIMA and XGBoost models were 2083.571 and 
962.357, respectively. The RMSE values were 2633.424 
and 1209.984, respectively. The MAPE (%) values were 
15.884 and 7.892, respectively. Additionally, the accuracy 
metric values for the training data (2331.134, 3500.331, 
4.016) and the validation data (962.357, 1209.984, 7.892) 
are quite small. As shown in table 2. This finding also 
suggests the high accuracy of the XGBoost model in 
the fit and forecast of COVID- 19. However, new variants 
ravaging the USA are raising worries about the effective-
ness of currently administered vaccines.35 36 The XGBoost 
model is built based on prevaccination- induced herd 
immunity in the USA. Therefore, as the cases of more 
transmissible variants increase, the accuracy of predic-
tion may decrease.

The time series of epidemics are always characterised 
by instability and volatility. Therefore, differencing and 
transformation are required to render them stationary. 
The ARIMA model is inapplicable to processing data 
that cannot be converted into stationary data, whereas 
the XGBoost model can dismiss it. Hence, compared 
with the traditional ARIMA model, the XGBoost model 
will achieve a broader application in practice. However, 
we first developed a seasonal ARIMA. According to the 
principle of this model, we used the past data on daily 
cases of COVID- 19 to predict 14 days ahead by using the 
forecast function in the forecast package. The one- step 
ahead prediction method was performed in the XGBoost 
model. One- step ahead prediction uses actual past data to 
obtain a 1- day prediction. For example, actual data before 
and at time t as the model inputs to forecast the daily 
cases at time t+1, and actual data before and at time t+1 
are used as the model inputs to forecast the daily cases 
at time t+2. According to the one- step prediction, we 
obtain the 14- day forecasting values. To a certain extent, 
the ARIMA model is more useful in real- world applica-
tions because it can forecast over a longer period. The 
XGBoost model can only use one- step ahead prediction, 
especially when impact factors are used as inputs of the 
model. New data are needed to rebuild the model to 
better reflect the future development of COVID- 19 in the 
USA. This prediction of cases of COVID- 19 by the models 

Table 2 Performance of the ARIMA (0,1,1) (0,1,1)7 and XGBoost model

Model

Training set Test set

MAE RMSE MAPE (%) MAE RMSE MAPE (%)

ARIMA (0,1,1) (0,1,1)7 7061.536 13 517.664 7.996 2083.571 2633.424 15.884
XGBoost 2331.134 3500.331 4.046 962.357 1209.984 7.892

ARIMA, autoregressive integrated moving average; MAE, mean absolute error; MAPE, mean absolute percentage error; RMSE, root mean 
square error; XGBoost, eXtreme Gradient Boosting.

Figure 7 Feature importance for COVID- 19 cases in the 
USA.
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can help the government make effective measures and 
policies to deal with COVID- 19.

CONCLUSIONS
Based on data from COVID- 19 cases in the USA, we 
developed the XGBoost and seasonal ARIMA models, by 
which we conducted a 14- day, out- of -sample prediction. 
We obtained the fit and forecast results and compared 
the performance of the two models with the MAE, RMSE 
and MAPE values. We concluded that the XGBoost model 
leads to a notable improvement in the fit and prediction 
accuracy.
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