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Abstract: Beak color diversity is a broadly occurring phenomenon in birds. Here, we used ducks to
identify candidate genes for yellow, black, and spotted beaks. For this, an F2 population consisting of
275 ducks was genotyped using whole genome resequencing containing 12.6 M single-nucleotide
polymorphisms (SNPs) and three beak colors. Genome-wide association studies (GWAS) was used to
identify the candidate and potential SNPs for three beak colors in ducks (yellow, spotted, and black).
The results showed that 2753 significant SNPs were associated with black beaks, 7462 with yellow,
and 17 potential SNPs with spotted beaks. Based on SNP annotation, MITF, EDNRB2, members of the
POU family, and the SLC superfamily were the candidate genes regulating pigmentation. Meanwhile,
isoforms MITF-M and EDNRB2 were significantly different between black and yellow beaks. MITF
and EDNRB2 likely play a synergistic role in the regulation of melanin synthesis, and their mutations
contribute to phenotypic differences in beak melanin deposition among individuals. This study
provides new insights into genetic factors that may influence the diversity of beak color.

Keywords: duck; beak color; GWAS; melanin

1. Introduction

Beak pigmentation is a common phenomenon observed in most birds. The color of
feathers, coats, and skin is primarily determined by melanocytes, which are involved in
the synthesis of melanin and play an important role in cosmetic change, heat regulation,
camouflage, and protection against UV radiation from sun exposure [1–3]. In addition,
melanin accumulation can lead to hyperpigmentation of the skin [4,5]. Previous studies
have shown that skin color is highly heritable and one of the most variable phenotypes.
This phenotype is influenced not only by genetic factors, but also by the environment [6,7].
Skin pigmentation is highly associated with latitude and fundamentally, the distribution of
ultraviolet (UV) radiation [8]. Skin pigmentation is also influenced by the concerted action of
different types of natural selection, including climate, lifestyle, diet, and metabolism [9,10].

With rapid development in genetics and genomics, researchers have gradually realized
that human skin color diversity is due to the natural positive selection of those genes that
affect human pigmentation, especially in melanosome biogenesis or melanin biosynthetic
pathways [11–14]. Recently, a large number of genome-wide association studies (GWAS)
of pigmentation have established that some single-nucleotide polymorphisms (SNPs) in
TYR, IRF4, TYRP1, OCA2, SLC45A2, MC1R, and KITLG genes are significantly associated
with human skin color [15–17]. Moreover, the α-MSH gene is a significant inherited factor
that acts mainly as an agonist of MC1R [18]. Furthermore, SLC45A2 (also known as AIM1
or MATP) encodes a transporter that mediates melanin synthesis and is expressed in a
high percentage of melanoma cell lines [19,20]. Several SLC45A2 mutations have been
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reported to lead to OCA4, and polymorphisms of this gene are significantly associated with
human skin, hair, and eye pigmentation [21–23]. Selected signatures of skin pigmentation
loci have been revealed by studies of modern and ancient populations, with some genes
showing variation associated with light skin pigmentation also showing polygenic selection
in western Eurasia [24]. However, this observation is the only recorded sign of polygenic
selection for skin pigmentation based on only four loci (SLC24A5, SLC45A2, TYR, and
APBA2/OCA2) [25].

Ducks, the second-largest poultry species in the world, mostly have yellow and black
beaks. Occasionally, spotting occurs, which directly affects carcass sales. However, genetic
factors that lead to the appearance of spot color remain unclear. Based on an F2 cross
between the Cherry Valley Duck and Runzhou White Crested Duck, we performed a
genome-wide association study (GWAS) with 275 birds to gain insight into the effects of
genetic factors on beak pigmentation. These studies provided insight into the molecular
regulatory mechanisms and genetic improvement of melanin deposition in duck beaks.

2. Materials and Methods
2.1. Ethical Approval

All experiments on ducks were performed in accordance with the Regulations on the
Administration of Experimental Animals issued by the Ministry of Science and Technology
(Beijing, China) in 1988 (last modified in 2001). The experimental protocols were approved by
the Animal Care and Use Committee of the Yangzhou University (YZUDWSY2017-11-07). All
efforts were made to minimize animal discomfort and suffering.

2.2. Samples and Sequencing

The F2 resource population, which crosses the Chinese Crested duck (CC duck) and
Cherry Valley duck (CV duck), was obtained from the Laboratory of Poultry Genetic
Resources Evaluation and Germplasm Utilization at Yangzhou University. The ducks were
raised in stair-step cages under the recommended environmental and nutritional conditions
at the conservation farm of Ecolovo Group, China. The CC duck is a Chinese indigenous
breed that has a black shank and beak, while the CV duck is a commercial breed that has
a yellow shank and beak and white plumage. In the F1 generation, 30 CC ducks and six
CV ducks were randomly selected and divided into six families to interbreed. To generate
F2 progeny, 30 males and 150 unrelated female ducks were used as hybrids. A total of
275 ducks were used in the next experiment. To identify candidate genes associated with
beak color, we classified beak color as yellow, spotted, or black. The R/ggcor package was
used to calculate the correlation between beak color and sex.

Blood samples were used to collect high-quality DNA at 42 days of age. Genomic
DNA (gDNA) was extracted from blood samples by using the DNA extraction kit method
(QIAampR DNA Blood Mini Kit), following the manufacturer’s protocol. Two paired-end
sequencing libraries with insert sizes of 350 bp were constructed according to the Illumina
protocol (Illumina, San Diego, CA, USA). All libraries were sequenced using the Illumina
NovaSeq platform.

2.3. Genotyping

Raw reads were filtered using the NGS QC Toolkit (version 2.3) with default parame-
ters [26]. The clean reads were mapped to the duck reference genome (the Chinese Crested
duck genome was assembled by our lab (unpublished) with a Burrows–Wheeler alignment
(BWA aln) using the default parameters) [27]. GATK then performed SNP calling [28]. VCF
tools were used to further filter the raw data [29]. The SNPs were screened with parameters
of a minor allele frequency (MAF) > 0.05, maximum allele frequency < 0.99, and maximum
missing rate < 0.01. After filtering, SNPs showed a mean density of 8.5 SNPs/kb across
the genome. All filtered SNPs were distributed on 37 autosomal chromosomes, ChrZ, and
ChrU (unplaced scaffolds).
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2.4. Population Structure

The population structure was assessed with multidimensional scaling (MDS) using
PLINK 1.9 software [30]. Independent SNPs were obtained on all autosomes using the
in-dep-pairwise option, with a 1000 bp window, five steps, and an r2 threshold of 0.2.
Pairwise identity-by-state (IBS) distances between all individuals were calculated using
these independent SNP markers, and MDS components were acquired using the mds-plot
option based on the IBS matrix. A relative kinship matrix was constructed using these
independent SNP markers.

2.5. Whole-Genome Association Analysis and Linkage Disequilibrium Analysis

The GWAS analysis of beak color used the linear mixed model in the Effective Mixed
Model Association eXpedited (EMMAX) software [31]. EMMAX makes the simplifying
and time-saving assumption that any given SNP’s effect on the trait is typically small, and
therefore only estimates the model variance components once per analysis to account for
population structure. EMMAX estimates variance components using the REML model.

y = Xa + Zb + e

where y is a vector of beak colors, X is the incidence matrix for a random additive effect, a
is the column vector of random additive effects, Z is the genotype value of the candidate
SNP, b is the regression coefficient of the candidate SNP, and e is the random residual. The
phenotypic variance–covariance matrix is var(y) = Var(a) + var(e) = K σa

2 + I σe
2, where K is

the IBS kinship matrix, I is the identity matrix, σa
2 is the additive variance, and σe

2 is the
variance of random residuals. The regional Manhattan plot and LD heatmap were obtained
using LDBlockShow software.

2.6. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Analyses

Based on the LD attenuation distance calculated using PopLDdecay [32], annotation of
related genes in a certain region upstream and downstream of the physical location of the
significant SNPs were performed. The sequences of the relevant genes were extracted from
the mallard genome and translated into a protein sequence, which was then analyzed using
KOBAS 3.0 software [33]. Chicken was selected as the reference species, and hypergeometric
tests along with Fisher’s exact test were used as the statistical methods.

3. Results
3.1. Phenotypic Description and Population Structure Analysis

To identify the candidate genes for beak color, we first focused on the correlation
between beak color and sex to determine whether there was a correlation between these
two traits. The results showed that there was no correlation between black, yellow, or
spotted beak color and sex (Figure 1a). We also identified the population structure of all the
samples used in the present study using MDS. The results showed that the three different
beak-colored ducks had no obvious clustering and were evenly distributed (Figure 1b).
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Figure 1. Beak color and sex correlation analysis (a); population structure analysis (b). 

3.2. Genome-Wide Association Study Identified the Candidate Variants for Beak Color 
EMMAX software was used to conduct the genome-wide association analysis in the 

present study. The Q–Q plot illustrated that the model used for the GWAS analysis was 
reasonable. The lambdas (inflation factor (λ)) of the three different color beaks were 0.98 
(black beak), 1.05 (spotted beak), and 0.99 (yellow beak), and the points at the upper right 
corner of the Q–Q plots were the significant markers associated with the traits under study 
(Figure 2). Thus, population stratification was adequately controlled. However, no signif-
icantly associated sites were found in the GWAS analysis of spotted beaks in the Q–Q plot, 
but we found a large number of potential associated sites for spotted beak through the 
Manhattan plot.  

 
Figure 2. Quantile–quantile (Q–Q) from GWAS for beak color trait in duck. Q–Q plot showing the 
late separation between observed and expected values. The red lines indicate the null hypothesis of 
no true association. Deviation from the expected p-value distribution is evident only in the tail area 
for each trait, indicating that population stratification was properly controlled. BB refers to black 
beak; BS refers to spotted beak; BY refers to yellow beak. 

The Manhattan plot of beak color showed that a total of 2753 significant SNPs asso-
ciated with black beak were identified using the threshold of significant p-value (threshold 
= 0.05/total number of all SNPs = 3.94885 × 10−09), and 1916 extremely significant SNPs 
were identified using the threshold of significant p-value (threshold = 0.01/total number 

Figure 1. Beak color and sex correlation analysis (a); population structure analysis (b).

3.2. Genome-Wide Association Study Identified the Candidate Variants for Beak Color

EMMAX software was used to conduct the genome-wide association analysis in the
present study. The Q–Q plot illustrated that the model used for the GWAS analysis was
reasonable. The lambdas (inflation factor (λ)) of the three different color beaks were 0.98
(black beak), 1.05 (spotted beak), and 0.99 (yellow beak), and the points at the upper right
corner of the Q–Q plots were the significant markers associated with the traits under
study (Figure 2). Thus, population stratification was adequately controlled. However, no
significantly associated sites were found in the GWAS analysis of spotted beaks in the Q–Q
plot, but we found a large number of potential associated sites for spotted beak through
the Manhattan plot.
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Figure 2. Quantile–quantile (Q–Q) from GWAS for beak color trait in duck. Q–Q plot showing the
late separation between observed and expected values. The red lines indicate the null hypothesis
of no true association. Deviation from the expected p-value distribution is evident only in the tail
area for each trait, indicating that population stratification was properly controlled. BB refers to black
beak; BS refers to spotted beak; BY refers to yellow beak.

The Manhattan plot of beak color showed that a total of 2753 significant SNPs asso-
ciated with black beak were identified using the threshold of significant p-value (thresh-
old = 0.05/total number of all SNPs = 3.94885 × 10−09), and 1916 extremely significant
SNPs were identified using the threshold of significant p-value (threshold = 0.01/total
number of all SNPs = 7.8977 × 10−10), most of which were located on chromosome 14 (ALP
14) (2708 SNPs) and ALP 11 (45 SNP) (Figure 3, top).



Genes 2022, 13, 1271 5 of 13

Genes 2022, 13, x FOR PEER REVIEW 5 of 13 
 

 

of all SNPs = 7.8977 × 10−10), most of which were located on chromosome 14 (ALP 14) (2708 
SNPs) and ALP 11 (45 SNP) (Figure 3, top).  

 
Figure 3. Manhattan plots showing the significance of genetic effects on the beak color according to 
the GWAS. 

For yellow beak, 7462 significant SNPs were identified using the threshold of signif-
icant p-value (threshold = 0.05/total number of all SNPs = 3.94885 × 10−09), and 5878 ex-
tremely significant SNPs were identified using the threshold of significant p-value (thresh-
old = 0.01/total number of all SNPs = 7.8977 × 10−10), most of which were located in ALP11 
(Figure 3, middle).  

For spotted beaks, there were no significant SNPs associated with them (p-value ≤ 
3.94885 × 10−09). However, we identified 17 potential SNPs associated with spotted beaks 
using the threshold of significant p-value (threshold = 1/total number of all SNPs = 7.8977 
× 10−08) (Figure 3, bottom). We found 45 shared SNPs between black and yellow beaks, 11 
shared SNPs between black and spotted beaks, and 5 shared SNPs between yellow and 
spotted beaks using a Venn analysis (Figure 4). In addition, based on the result of all SNP 

Figure 3. Manhattan plots showing the significance of genetic effects on the beak color according to
the GWAS.

For yellow beak, 7462 significant SNPs were identified using the threshold of signifi-
cant p-value (threshold = 0.05/total number of all SNPs = 3.94885 × 10−09), and 5878 ex-
tremely significant SNPs were identified using the threshold of significant p-value (thresh-
old = 0.01/total number of all SNPs = 7.8977 × 10−10), most of which were located in
ALP11 (Figure 3, middle).

For spotted beaks, there were no significant SNPs associated with them
(p-value ≤ 3.94885 × 10−09). However, we identified 17 potential SNPs associated with
spotted beaks using the threshold of significant p-value (threshold = 1/total number of
all SNPs = 7.8977 × 10−08) (Figure 3, bottom). We found 45 shared SNPs between black
and yellow beaks, 11 shared SNPs between black and spotted beaks, and 5 shared SNPs
between yellow and spotted beaks using a Venn analysis (Figure 4). In addition, based on
the result of all SNP synonymous analysis that all exonic SNPs were synonymous and not
predicted to alter protein function.
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3.3. Functional Analysis

The genes or genomic regions identified in the GWAS explained only part of the
genetic variation. To overcome this limitation, the GWAS was complemented with a
gene set analysis using GO and KEGG databases to detect potential functional categories
underlying the beak color. Based on the SNP annotation, we found that 94 genes, in-
cluding MITF, EDNRB2, SLC25A43, SLC25A5, SLC25A14, SPRY3, POU4F3, etc. (Table
S1), were the most significant candidates associated with a black beak. The results of the
KEGG and GO enrichment analysis showed that these candidate genes were involved
in melanogenesis, necroptosis, calcium signaling, the FoxO signaling pathway, primary
bile acid biosynthesis, apoptosis, the positive regulation of secretion by cells, positive
regulation of secretion, and the mitochondrial part (Figure 5a). In addition, MITF, POU4F1,
POU3F3B, POU1F1, POU2F1, SLC7A1, SLC46A3, SLC25A15, SLC25A30, SLC15A1, SLC10A2,
SLC5A7, SLC9A2, SLC9A4, and others were most significantly associated with yellow beak
(Table S2). Cytokine–cytokine receptor interaction, apoptosis, phototransduction, the
thyroid hormone signaling pathway, DNA replication, axon guidance, the cell adhesion
molecule pathway, cytokine receptor activity, lipid-transporting ATPase activity, gap junc-
tion channel activity, negative regulation of adherens junction organization, wide pore
channel activity, axon choice point recognition, axon midline choice point recognition,
negative regulation of negative chemotaxis, cellular response to vitamin K, positive regula-
tion of small-molecule metabolic processes, microtubule cytoskeleton, and pigmentation
were enriched (Figure 5b). Finally, we found MITF, TMLHE, EDNRB2, NUP98, ITPR1,
CHL1, ALG8, SPRY3, and PDHB genes (Table S3), which are involved in melanogenesis,
the calcium signaling pathway, the citrate cycle (TCA cycle), lysine degradation, etc.; and
dolichyl pyrophosphate Glc1Man9GlcNAc2 α-1,3-glucosyltransferase activity, trimethylly-
sine dioxygenase activity, inositol 1,4,5-trisphosphate receptor activity involved in regula-
tion of postsynaptic cytosolic calcium levels, pyruvate dehydrogenase (acetyl-transferring)
activity, inositol 1,4,5-trisphosphate-sensitive calcium-release channel activity, the carnitine
biosynthetic process, α-1,3-mannosyltransferase activity, endothelin receptor activity, the
amino acid betaine biosynthetic process, and regulation of postsynaptic cytosolic calcium
ion concentration terms were the potential candidate genes for spotted beak (Figure 5c).



Genes 2022, 13, 1271 7 of 13
Genes 2022, 13, x FOR PEER REVIEW 7 of 13 
 

 
 

Figure 5. Functional enrichment analysis of the beak color candidate genes. (a) KEGG (left) and GO
(right) enrichment of black beak candidate genes; (b) KEGG (left) and GO (right) enrichment of spotted
beak candidate genes; (c) KEGG (left) and GO (right) enrichment of yellow beak candidate genes.



Genes 2022, 13, 1271 8 of 13

3.4. The EDNRB2 and MITF Isoform Expression Level in Black and Yellow Beaks

The genes responsible for melanoblast migration and melanocyte development include
EDN3, EDNRB, EDNRB2, MITF, KIT, and KITLG [34]. Based on the GWAS analysis, we
found that MITF and EDNRB2 were candidate genes for beak color, and therefore might
regulate pigmentation. Duck MITF consists of two isoforms, MITF-B and MITF-M, with
isoform-specific first exons called 1B and 1M, respectively (Figure 6a). Thus, we determined
the expression levels of these two isoforms in black and yellow beaks. The results showed
that the MITF-M was significantly expressed in black beaks (Figure 6b). The EDNRB2
expression levels were compared between black and yellow beaks. EDNRB2 expression
levels showed that EDNRB2 was significantly expressed in black beaks (Figure 6b).
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Figure 6. Expression differences in EDNRB2 and MITF on three exon junctions between black and
yellow beaks according to RT-qPCR. (a) Information on the MITF isoform. The red triangle represents
the intronic insertion on chromosome 13 in Pekin ducks. Exon 1M is specific for the MITF-M transcript,
while exon 1B is specific for the MITF-B transcript. (b) EDNRB2 and MITF on three exon junctions
between black and yellow beaks. Each exon junction was assayed in six biological replicates with
three technical replicates. The indicated p-values were based on one-way ANOVA. NS, nonsignificant;
**, extremely significant.
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4. Discussion

Melanin is a substance in the body that is responsible for hair, eye, and skin pigmenta-
tion [35]. Melanin is a complex polymer that originates from the amino acid tyrosine [36].
Melanin is present in human and animal skin to varying degrees, and is responsible for
unique eye, hair, and skin colors [4,35,37]. The color of a bird’s beak, which is the exposed
skin tissue, results from concentrations of pigments, primarily melanin and carotenoids, in
the epidermal layers, including the rhamphotheca [38]. In duck beaks, melanin deposition
increases with age and UV exposure [39,40]. However, under the influence of domestication
and selection, many duck breeds have a significantly fixed and stable inheritance of the
black beak, as seen in Chinese Crested ducks and Lianchen ducks. Most duck breeds
exhibit yellow beaks. However, some duck breeds also exhibit spotted beaks. To determine
the genetic basis of beak color diversity, the present study designed an F2 population cross
between Chinese Crested ducks and Cherry Valley ducks. A GWAS was performed to
identify candidate genes associated with different beak colors. In black beaks, we found
two significantly associated signals: MITF and EDNRB2. Most genes belonging to the SLC
superfamily and POU (Pit-Oct-Unc) family were significantly associated with yellow beaks.
Although we did not identify a significantly associated signal in the spotted beak, we
found two candidate signal loci on chromosomes 11 and 14. By annotating the candidate
signals, we found that MITF and EDNRB2, two key genes responsible for melanin synthesis,
were enriched.

MITF has been shown to affect pigmentation in cattle [41–44], mice [45–47], horses [48–51],
dogs [52,53], humans [54,55], and ducks [56]. MITF belongs to the basic helix–loop–helix–
leucine zipper (bHLHZip) family of proteins. Studies have shown that it regulates melanogen-
esis by binding to the highly conserved M-box (GTCATGTGCT) and E-box (TCATGTG) motifs
upstream of the tyrosinase promoter, thereby strongly stimulating and promoting the activity
of the tyrosinase promoter. Tyrosinase expression promotes melanin production [57–60]. Our
results implied that melanin synthesis and metabolic pathways play crucial roles in inducing
melanin deposition in beaks and genes related to melanin synthesis and metabolic pathways,
such as MITF, MC1R, EDNRB2, the PMEL family, TYR, TYRP1, and TYRP2, affect melanin
syntheses. Our findings showed similar results, including a significant association of MITF.

EDNRB is a gene expressed in melanocytes that are derived from the neural crest, and
for this reason, EDNRB is particularly mentioned. EDNRB2 is a homolog of EDNRB, which
belongs to the endothelin receptor (EDNR) gene family and has been lost in mammalian
lineages. EDNRB signaling is required for melanocyte development [61,62]. Loss of
function variants in EDNRB leads to white spotting phenotypes in humans, animals [63,64],
and poultry [65,66]. A similar result was identified in our study, which showed that
EDNRB2 regulated melanin pigmentation in ducks. In addition, our results showed that
the spotted beak was mainly coregulated by MITF and EDNRB2. However, the mechanism
by which MITF and EDNRB2 are coregulated requires further investigation.

Our results suggested that the POU family and SLC superfamily are significantly
associated with yellow beaks. Yellow skin, beaks, and feet in most birds are caused by
carotene deposits. The results showed that most members of the POU family, which share
the typical POU domain structure [67], were significantly associated with yellow beaks. The
POU family is a transcription factor family member that can promote the transcription of
many genes related to development and metabolism, especially in Schwann and progenitor
cell development [68,69]. Thirteen POU gene family members were found in the duck
genome. In the present study, 44 POU transcription factors were predicted to be distributed
within the promoter region of MITF [40], and POU4F1, POU3F3B, POU1F1, and POU2F1
were identified. Therefore, we speculated that the yellow beak is coregulated by the POU
family and MITF, but the specific mechanism requires further experimental verification.
This study provided new clues for understanding the genetic factors that may influence
the diversity of beak color, but further experimental studies are needed to strengthen
this hypothesis.
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5. Conclusions

This study identified candidate genes closely related to duck beak color. MITF and
EDNRB2 were the candidate genes associated with beak melanosis. We speculated that
beak pigmentation may be coregulated by the POU family, MITF, and EDNRB2. However,
the specific mechanisms require further experimental verification.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13071271/s1. Table S1. The black beak candidate associated
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beak candidate associated SNP location.
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