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INTRODUCTION 
 
Prostate cancer (PCa) is the second most frequent 
cancer and the fifth leading cause of death in males 
worldwide [1]. Nowadays, prostate specific antigen 
(PSA) is the only circulating biomarker routinely used 
for early diagnosis of PCa [2]. However, PSA screening 
has some limitations. In some cases, prostatitis and 
benign prostatic hyperplasia (BPH), which frequently 
affect men, can also result in increments of serum PSA 
[3]. In addition, since the optimal PSA expression 
threshold for clinical samples  has not been determined 
[4], routine PSA screening sometimes leads to over-
diagnosis and over-treatment of indolent PCa [5, 6]. In 
the past decade, a growing number of microarray and 
next-generation sequencing technologies have been  

 

used to explore novel biomarkers and therapeutic 
targets for PCa [7]. However, small sample sizes in 
individual studies and use of different technological 
platforms create substantial inter-study variability and 
difficult statistical analyses. To solve this problem, 
integrated bioinformatics methods such as Robust Rank 
Aggregation (RRA) have been utilized in various cancer 
studies [8–10]. 
 
In the present study, 10 microarray datasets from Gene 
Expression Omnibus (GEO, http://www.ncbi.nlm.nih. 
gov/geo/) were analyzed with RRA to identify robust 
and stable differentially expressed genes (DEGs) 
between PCa tissues and matched controls [11]. These 
DEGs were then adopted to find key modules associated 
with clinical features through weighted gene co-
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ABSTRACT 
 
The pathogenic mechanisms of prostate cancer (PCa) remain to be defined. In this study, we utilized the Robust 
Rank Aggregation (RRA) method to integrate 10 eligible PCa microarray datasets from the GEO and identified a 
set of significant differentially expressed genes (DEGs) between tumor samples and normal, matched 
specimens. To explore potential associations between gene sets and PCa clinical features and to identify hub 
genes, we utilized WGCNA to construct gene co-expression networks incorporating the DEGs screened with the 
use of RRA. From the key module, we selected LMNB1, TK1, ZWINT, and RACGAP1 for validation. We found that 
these genes were up-regulated in PCa samples, and higher expression levels were associated with higher 
Gleason scores and tumor grades. Moreover, ROC and K-M plots indicated these genes had good diagnostic and 
prognostic value for PCa. On the other hand, methylation analyses suggested that the abnormal up-regulation 
of these four genes likely resulted from hypomethylation, while GSEA and GSVA for single hub gene revealed 
they all had a close association with proliferation of PCa cells. These findings provide new insight into PCa 
pathogenesis, and identify LMNB1, TK1, RACGAP1 and ZWINT as candidate biomarkers for diagnosis and 
prognosis of PCa. 
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expression network analysis (WGCNA). Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses were further conducted to assess 
potential functions of the genes within the key module. 
Four seldomly reported hub genes, LMNB1, TK1, and 
RACGAP1, and ZWINT, were selected to validate their 
diagnostic and prognostic value for PCa. In addition, 
two online tools, DiseaseMeth 2.0 and MEXPRESS, 
were used to assess the methylation status of those four 
hub genes, while Tumor Immune Estimation Resource 
(TIMER), Gene Set Enrichment Analysis (GSEA), and 
Gene Set Variation Analysis (GSVA) were utilized to 
investigate potential biological functions. 
 
RESULTS 
 
Identification of robust DEGs by the RRA method 
 
Figure 1 shows the workflow for identification, 
validation, and functional analysis of DEGs. In 
accordance with the selection criteria, 10 eligible PCa 
datasets were included and used in the subsequent RRA 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Study workflow. GEO, Gene Expression Omnibus; 
TCGA, The Cancer Genome Atlas; GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; WGCNA, Weighted 
Gene Co-expression Network Analysis; GS, gene significance; MM, 
module membership; TNM, Tumor Node Metastasis; GSEA, Gene 
Set Enrichment Analysis; GSVA, Gene Set Variation Analysis. 

analysis. Main characteristics of datasets, such as GEO 
accession ID, study country, sample information, 
platform ID, and number of genes for each platform, are 
shown in Table 1. Based on the results of RRA analysis, 
a total of 808 up-regulated and 930 down-regulated 
significant DEGs were identified (Supplementary file 
1). OR51E2 was the most significant up-regulated gene 
(P = 4.93E-23, adjusted P = 1.94E-18), followed by 
GDF15 (P = 9.01E-20, adjusted P = 3.55E-15). 
Meanwhile, KRT15 (P = 9.07E-22, adjusted P = 3.57E-
17) and CCK (P = 6.59E-20, adjusted P = 2.60E-15) 
were the most significant down-regulated genes in PCa 
samples. The top 20 up-regulated and down-regulated 
DEGs are shown in heatmap (Figure 2). 
 
Visualization of gene expression patterns and 
chromosome locations 
 
We selected the top 100 DEGs from RRA analysis to 
visualize their expression patterns across the 10 datasets 
included in this study, as well as their chromosomal 
locations (Figure 3). Chromosome 3 contained most 
DEGs. These DEGs were distributed in all chromosomes 
except for chromosome Y, which showed no alterations. 
The top 5 upregulated genes according to adjusted P, i.e. 
OR51E2, GDF15, HOXC6, GCNT1, SIM2, were 
distributed in chromosomes 11, 19, 12, 9, and 21. The top 
5 downregulated genes (KRT15, CCK, KRT14, 
SERPINB5, and CAV1) were located in chromosomes 17, 
3, 17, 18, and 7. 
 
Functional enrichment analysis of DEGs  
 
The top 300 DEGs were chosen to perform GO and 
KEGG analyses. We detected enrichment in several 
biological process GO terms such as cell junction 
organization, regulation of blood vessel diameter, 
extracellular structure organization, response to hypoxia, 
and epithelial to mesenchymal transition (Figure 4A). In 
terms of cellular component, extracellular matrix was the 
most significantly enriched GO term (Figure 4B). What’s 
more, some molecular component GO terms, such as 
glutathione binding, extracellular matrix structural 
constituent, were enriched (Figure 4C). As to KEGG 
pathway analysis, drug metabolism-cytochrome P450, 
protein digestion and absorption, glutathione metabolism, 
focal adhesion, and ECM-receptor interaction, were mostly 
associated with these genes (Figure 4D). 
 
WGCNA and identification of the key module 
 
To find the key modules most associated with PCa clinical 
traits, we performed WGCNA on the TCGA-PRAD 
dataset incorporating the DEGs derived from the RRA 
analysis (Figure 5). Clinical  PCa  sample  information 
such as age, Gleason score, biochemical recurrence, and
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Table 1. Characteristics of the included datasets. 

Dataset ID Country Number of samples GPL ID Number of rows per platform 

GSE6919 USA 65T 63N GPL8300 12625 
GSE6956 USA 69T 18N GPL571 22277 
GSE32448 USA 40T 40N GPL570 54675 
GSE32571 Germany 59T 39N GPL6947 48652 
GSE35988 USA 59T 28N GPL6480 41008 
GSE46602 Denmark 36T 14N GPL570 54675 
GSE68555 USA 64T 63N GPL8300 12558 
GSE69223 Germany 15T 15N GPL570 54675 
GSE70768 UK 113T 73N GPL10558 48107 
GSE88808 USA 49T 49N GPL22571 20261 

Note: GSE, Gene Expression Omnibus Series; GPL, Gene Expression Omnibus Platform; T, tumor samples; N, paracancerous 
normal samples. 

 
TNM grades was retrieved from TCGA (Figure 5A). By 
setting soft-thresholding power as 6 (scale free R2 = 0.85) 
and cut height as 0.25, we eventually identified 15 
modules (Figure 5B–5D; non-clustering DEGs shown in 
gray). From the heatmap of module–trait correlations, we 
identified that the pink module was the most highly 
correlated with clinical traits (Figure 5E), especially the 
Gleason score (correlation coefficient = 0.45, P = 3E-26; 
Figure 5F). The pink module contained a total of 120 
genes, shown in Figure 6A. By setting module 
membership (MM) >0.8 and gene significance (GS) >0.3, 
we selected 20 hub genes from the pink module: RRM2, 
KIFC1, TACC3, PRC1, BIRC5, CDK1, ASF1B, E2F1, 
RACGAP1, MYBL2, TPX2, CDC20, TOP2A, NUSAP1, 
UBE2T, LMNB1, CCNB1, ZWINT, STMN1, and TK1. 
These genes, as shown in Figure 6B, were also closely 
related to each other. To reveal potential biological 
functions of the genes within the pink module, we 
conducted GO and KEGG analyses. The most significant 
GO terms for biological process, cellular component, and 
molecular function, as well as KEGG pathways, were 
shown in Figure 6C–6F. This analysis indicated that genes 
within the pink module were mainly involved in DNA 
replication and nuclear division. 
 
Validation of hub genes in the TCGA-PRAD dataset 
 
Among the 20 hub genes screened above, we selected four 
(TK1, RACGAP1, LMNB1, and ZWINT), seldomly 
reported before in PCa, to validate their diagnostic and 
prognostic value and their correlations with clinical 
features. It was noted that all of them were significantly 
up-regulated (P < 0.001) in PCa samples compared with 
adjacent, normal controls (Figure 7A). Furthermore, ROC 
curves showed their high diagnostic value as biomarkers 

for PCa (Supplementary Figure 1; TK1 AUC: 0.831, 
LMNB1 AUC: 0.786, ZWINT AUC: 0.759, RACGAP1 
AUC: 0.699). In addition, LMNB1, TK1, RACGAP1, and 
ZWINT were significantly differentially expressed in PCa 
samples with different Gleason scores, T grades, and N 
grades, with higher expression levels indicating higher 
Gleason score, advanced T grades, and lymph node 
metastasis (Figure 7B–7D). Regarding prognosis, Kaplan-
Meier curves showed that higher expression of these genes 
correlated significantly with poor disease-free survival 
(Figure 7E). Notably, all 20 hub genes in the pink module 
had good prognostic values (Supplementary Figure 2). 
 
Association between methylation and expression of 
hub genes 
 
We explored the association between these four hub genes’ 
expression levels and their methylation status to elucidate 
potential mechanisms of abnormal up-regulation in PCa 
tissues. DiseaseMeth version 2.0 analysis showed that the 
mean methylation levels of LMNB1, TK1, RACGAP1, 
and ZWINT were all significantly lower in PCa compared 
with paracancerous normal tissues (Figure 8A–8D). 
Additionally, we found many methylation sites in the 
DNA sequences of LMNB1, TK1, RACGAP1, and 
ZWINT that were negatively associated with their 
expression levels using MEXPRESS (Supplementary 
Figure 3).  
 
Association of hub genes’ expression with tumor 
purity and immune infiltration 
 
The tumor microenvironment consists of tumor cells, 
stromal cells, and infiltrating immune cells. We utilized 
TIMER to explore potential associations between the 
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expression of PCa hub genes and both tumor purity and 
infiltration of immune cells. Interestingly, LMNB1, 
RACGAP1, TK1, and ZWINT were all positively 
associated with tumor purity. Conversely, no or weak 
associations were observed between these four genes 
and infiltration of B cells, CD4+ T cells, CD8+ T cells, 
neutrophils, macrophages, and dendritic cells (Figure 
9A–9D). 
 
GSEA and GSVA reveal a close relationship 
between hub genes and tumor proliferation 
 
To further investigate the potential functions of 
LMNB1, RACGAP1, TK1, and ZWINT in PCa, we 

performed GSEA and GSVA on the TCGA-PRAD 
RNA-seq data. As shown in Figure 10A–10D, genes in 
high expression groups of LMNB1, RACGAP1, TK1, 
and ZWINT were all enriched in “Homologous 
recombination” and “Mismatch repair” pathways. 
Meanwhile, the “cell cycle” gene set was enriched in 
high-expression groups of LMNB1 and RACGAP1, 
whereas “pentose and glucuronate interconversions” 
and “DNA replication” were enriched in the TK1 and 
ZWINT high-expression groups, respectively. These 
gene sets with the highest enrichment scores were all 
closely associated with tumor proliferation. Further-
more, GSVA confirmed that these gene sets were 
significantly up-regulated in the high-expression 

 

 
 

Figure 2. Identification of robust DEGs by RRA analysis. Heatmap showing the top 20 up-regulated genes and top 20 down-regulated 
genes according to P value. Each row represents one gene and each column indicates one dataset. Red indicates up-regulation and blue 
represents down-regulation. The numbers in the heatmap indicate logarithmic fold change in each dataset calculated by the “limma” R 
package. DEG, differentially expressed gene; GEO: Gene Expression Omnibus; RRA: robust rank aggregation. 
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groups of LMNB1, RACGAP1, TK1, and ZWINT, 
further suggesting their relationship with activation of 
proliferative processes (Figure 10E–10H). 
 
DISCUSSION 
 
The pathogenesis of PCa, a complex and heterogeneous 
disease, remains unclear. Although numerous invest-
tigations using microarray and RNA-seq were con-

ducted to discover novel biomarkers and therapeutic 
targets for PCa, inconsistencies were seen between the 
DEGs found in different studies [7]. To our know-
ledge, our work is the first to use RRA combined with 
WGCNA to explore novel hub genes associated with 
PCa. A recent study compared gene expression 
profiles between PCa and control samples (either para-
tumoral, normal matched tissue, or normal prostate 
tissue from donors) for each dataset, and integrated 

 

 
 

Figure 3. Circular visualization of connectivity, expression patterns, and chromosomal positions of top 100 DEGs. The 10 PCa 
microarray datasets from GEO are represented in the inner circular heatmaps. Red indicates gene up-regulation, blue represents 
downregulation, and white denotes genes not present in a given dataset. The outer circle represents chromosomes; lines coming from each 
gene point to their specific chromosomal locations. The top 5 up-regulated and down-regulated genes according to adjusted P are shown in 
red and blue and connected with red and blue lines in the center of circles. 
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Figure 4. GO and KEGG analysis of top 300 DEGs. (A) Chord plot depicting the relationship between genes and GO terms of biological 
process. (B) Chord plot depicting the relationship between genes and GO terms of cellular component. (C) Chord plot depicting the 
relationship between genes and GO terms of molecular function. (D) Chord plot indicates the relationship between genes and KEGG 
pathways. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Figure 5. Identification of key modules correlated with clinical traits in the TCGA-PRAD dataset through WGCNA. (A) Clustering 
dendrograms of genes. The clustering was based on the TCGA-PRAD RNA-seq data of robust DEGs from RRA analysis. Color intensity varies 
positively with age, Gleason score, and pathological stage. In terms of biochemical recurrence, red means recurrence and white indicates no 
recurrence. (B) Analysis of the scale-free fit index (left) and the mean connectivity (right) for various soft-thresholding powers. (C) Clustering 
of module eigengenes. The red line indicates cut height (0.25). (D) Dendrogram of all DEGs clustered based on a dissimilarity measure (1-
TOM). (E) Heatmap of the correlation between module eigengenes and clinical traits of PCa. Each cell contains the correlation coefficient and 
P value. (F) Distribution of average gene significance and errors in the modules associated with Gleason score of PCa. 
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Figure 6. Identification of hub genes and functional annotation of the WGCNA module highly correlated with clinical traits. 
(A) Scatter plot of module eigengenes in the pink module. (B) Hub genes show strong associations with each other. (C) Biological process GO 
terms for genes in the pink module. (D) Cellular component GO terms for genes in the pink module. (E) Molecular function GO terms for 
genes in the pink module. (F) KEGG analysis for genes in the pink module. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes. 
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Figure 7. Validation of hub genes in the TCGA-PRAD dataset. (A) LMNB1, TK1, RACGAP1, and ZWINT gene expression differences 
between PCa and adjacent normal tissues. (B) Expression of LMNB1, TK1, RACGAP1, and ZWINT in PCa samples with different Gleason scores. 
(C) Expression of LMNB1, TK1, RACGAP1, and ZWINT in PCa samples with different T stages. (D) Expression of LMNB1, TK1, RACGAP1, and 
ZWINT in PCa samples with different N stages. (E) Association between LMNB1, TK1, RACGAP1, and ZWINT expression and disease-free 
survival time in the TCGA-PRAD dataset. The yellow line indicates samples with highly expressed genes (above best-separation value), and 
the green line designates the samples with lowly expressed genes (below best-separation value). T, Tumor; N, Node. 
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microarray data to obtain DEGs using the RankProd 
method [9]. However, Chandran et al. discovered 
marked differences in gene expression profiles between 
normal prostate samples from donors and tumor-
adjacent normal tissues from PCa patients [12]. To 
minimize variability, we only enrolled datasets 
containing tumor and adjacent normal samples. We 
integrated 10 qualified PCa datasets from GEO into the 
RRA method and identified many robust DEGs, some 
of which, such as OR51E2 [13] and GDF15 [14], have 
been reported to be biomarkers of PCa or play a vital 
role in its pathogenesis. Chromosome mapping of the 
top 100 DEGs showed chromosomes 3 contained most 
DEGs. A study reported that the androgen-driven 
TMPRSS2-ERG fusion was associated with deletion at 
chromosome 3p14, which is specific to prostate cancer 
[15]. Moreover, 3p13 deletion defines a subgroup of 
ERG+ prostate cancers characterized by aggressive 
clinical features and tumor recurrence [16]. All 
evidence suggest chromosome 3 harbor some key genes 
capable of influencing the pathogenesis of PCa. 
 
Consistent with published data, the enrichment of these 
DEGs in several GO terms, such as cell junction 

organization, glutathione binding, extracellular matrix, 
response to hypoxia, and epithelial to mesenchymal 
transition, confirms their involvement in the develop-
ment of PCa [17–20]. In addition, enrichment of the 
identified DEGs in some KEGG pathways, such as drug 
metabolism-cytochrome P450 and glutathione 
metabolism also suggests their relevance in PCa 
pathogenesis. Cytochrome P450 17A1 catalyzes the 
biosynthesis of androgens in humans [21]. Glutathione, 
the most abundant antioxidant in humans, plays a 
pivotal role in the development of cancer and drug 
resistance [22], and many enzymes involved in 
glutathione metabolism have been reported to influence 
the proliferation and metastasis of PCa [23, 24]. Based 
on the results of GO and KEGG analyses, we suggest 
that these DEGs are closely associated with 
dysregulated androgen signaling and PCa development. 
 
Co-expression network construction and identification 
of hub genes through WGCNA showed that genes 
within the co-expression module most correlated with 
clinical traits of PCa samples in TCGA (pink module) 
were also enriched in DNA replication and nuclear 
division pathways through GO and KEGG analyses. 

 

 
 

Figure 8. Methylation analyses of PCa hub genes.  The methylation levels of (A) LMNB1, (B) ZWINT, (C) RACGAP1, and (D) TK1 in PCa 
and peri-tumoral normal tissues were examined using DiseaseMeth 2.0. 
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After filtering for GS and MM value, we eventually 
obtained 20 hub genes (RRM2, KIFC1, TACC3, PRC1, 
BIRC5, CDK1, ASF1B, E2F1, RACGAP1, MYBL2, 
TPX2, CDC20, TOP2A, NUSAP1, UBE2T, LMNB1, 
CCNB1, ZWINT, STMN1, and TK1). A majority of  

them were demonstrated to exert essential roles in the 
pathogenesis of PCa [25–27]. Among these hub genes, 
we chose four seldomly reported in PCa, namely TK1, 
RACGAP1, ZWINT, and LMNB1, to explore their 
diagnostic and prognostic value. Thymidine kinase 1

 

 
 

Figure 9. Association of hub genes’ expression with immune infiltration in PCa. (A) LMNB. (B) RACGAP1. (C) TK1. (D) ZWINT. P<0.05 
denotes significance. Each dot represents a sample in the TCGA-PRAD dataset. 
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Figure 10. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) of hub genes in the TCGA-PRAD 
dataset. (A–D) Top 3 gene sets (according to GSEA enrichment score) enriched in the high-expression group of single hub genes. (A) LMNB1; 
(B) TK1; (C) ZWINT; (D) RACGAP1. (E–H) GSVA-derived clustering heatmaps of differentially expressed pathways for single hub genes. (E) 
LMNB1; (F) TK1; (G) ZWINT; (H) RACGAP1. Only signaling pathways with log(foldchange) > 0.2 are shown. 
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(TK1), a cell cycle-dependent protein, has been 
extensively reported as a tumor biomarker [28], but its 
role in PCa remained unclear. RACGAP1 encodes a 
GTPase-activating protein (GAP) that plays a regulatory 
role in cytokinesis, cell growth, and differentiation. 
RACGAP1 has been widely reported to take part in the 
pathogenesis of various cancers, such as colorectal 
cancer [29], hepatocellular carcinoma [30], and others, 
but its role in the development of PCa was also unclear. 
Similarly, the diagnostic and prognostic roles of 
ZWINT and LMNB1 in PCa remained so far obscure. 
We determined that TK1, RACGAP1, ZWINT, and 
LMNB1 were not only significantly up-regulated in 
PCa tissues, but correlated positively as well with 
higher Gleason score and TNM stage, suggesting 
important contributions to the pathogenesis of PCa. 
Furthermore, ROC curves showed that all four genes 
could serve as biomarkers to distinguish tumors from 
normal prostate tissue sensitively and accurately. 
Indeed, all these genes appeared as promising 
candidates as therapeutic targets and prognosis 
predictors. 
 
We also referred to DiseaseMeth 2.0 and MEXPRESS 
to explore DNA methylation patterns that could account 
for the abnormal expression of the above hub genes in 
PCa. We found that TK1, RACGAP1, ZWINT, and 
LMNB1 were hypomethylated in PCa samples 
compared with adjacent normal ones, which is 
consistent with the observed up-regulation of these four 
hub genes in PCa. 
 
To further explore hub genes’ biological functions, we 
referred to TIMER and conducted GSEA and GSVA for 
each hub gene. The expression of LMNB1, TK1, 
ZWINT, and RACGAP1 was positively associated with 
tumor purity, while no or weak associations were 
observed for hub genes and infiltrating immune cells in 
PCa tissue samples. Based on the findings from 
TIMER, we proposed that LMNB1, TK1, ZWINT, and 
RACGAP1 are mainly expressed in PCa cells rather 
than immune cells, and their functions do not relate to 
immunological regulation of the tumor 
microenvironment. The results of GSEA and GSVA 
were in accordance with this speculation. Also, many 
cell cycle-related KEGG pathways, such as homologous 
recombination, mismatch repair, and DNA replication, 
were enriched in the high-expression groups of these 
hub genes, suggesting their contribution to PCa 
proliferation. 
 
In conclusion, by combining RRA, WGCNA, and other 
bioinformatics tools we identified and characterized 
several robust DEGs and significant gene modules in 
PCa. Four hub genes (RACGAP1, ZWINT, TK1, and 
LMNB1) were strongly upregulated in PCa tissues, an 

expression pattern likely associated with 
hypomethylation. GSEA and GSVA further suggested 
that these genes highly influenced the development of 
PCa. More work needs to be done to fully reveal their 
contribution to the pathogenesis of PCa, and to validate 
their usefulness as diagnostic and/or prognostic 
markers. 
 
MATERIALS AND METHODS 
 
Selection of PCa gene expression datasets 
 
All eligible microarray datasets were downloaded from 
GEO. The selection criteria were as follows: 1) 
Inclusion of gene expression data of PCa and adjacent 
normal tissue samples; normal prostate tissue samples 
from donors and benign prostatic hyperplasia tissue 
samples were excluded; 2) Arrays contained a minimum 
of 10 tumor and adjacent normal tissue samples; 3) 
Inclusion of >5,000 genes in the GEO platform. 
According to the above screening criteria, 10 datasets 
were finally included in this study: GSE6919 [31], 
GSE6956 [32], GSE32448 [33], GSE32571 [34], 
GSE35988 [35], GSE46602 [36], GSE68555 [37], 
GSE69223 [38], GSE70768 [39], and GSE88808 [40] 
(Table 1). In addition, PCa RNA-sequencing and 
clinical data were downloaded from the TCGA database 
(https://cancergenome.nih.gov/) and utilized in the 
study. 
 
Identification of robust DEGs 
 
We downloaded the series matrix files of datasets from 
GEO. The R package “limma” [41] was utilized to 
normalize the data and find DEGs. We then used RRA 
to integrate the results of those 10 datasets to find the 
most significant DEGs [11]. The P value of each gene 
indicated its ranking in the final gene list, and genes 
with adjusted P < 0.05 were considered as significant 
DEGs in the RRA analysis. 
 
Visualization of gene expression patterns and 
chromosome locations 
 
“OmicCircos” (R package) was utilized to visualize the 
expression patterns and chromosomal locations of the 
top 100 DEGs (top 50 up-regulated genes and top 50 
down-regulated genes according to adjusted P) from 
RRA analysis. 
 
Function enrichment analyses 
 
We conducted Gene Ontology (GO) enrichment and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses using the R package “clusterprofiler” 
[42]. GO terms or KEGG pathways with adjusted P < 
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0.05 were considered statistically significant and 
visualized by “GOplot” (R package) [43]. 
 
WGCNA 
 
We extracted the top 5,000 up-regulated DEGs 
(according to P) from RRA analysis to perform 
WGCNA with expression data retrieved from TCGA. 
The R package “WGCNA” was applied to find clinical 
traits-related modules and hub genes among them [44]. 
The adjacency matrix was transformed into topological 
overlap matrix (TOM). According to the TOM‐based 
dissimilarity measure, genes were divided into different 
gene modules. Here, we set soft-thresholding power as 
6 (scale free R2 = 0.85), cut height as 0.25, and minimal 
module size as 10 to identify key modules. The module 
with the highest correlation with clinical traits was 
selected to explore its biological function through GO 
and KEGG analyses and to screen hub genes. Hub 
genes were defined as those with gene significance (GS) 
> 0.3 and module membership (MM) > 0.8. 
 
Validation and survival analysis of hub genes 
 
We utilized “ggstatsplot” (R package, https://cran.r-
project.org/web/packages/ggstatsplot/) to validate the 
hub genes’ expression levels between PCa and adjacent 
normal tissue samples as well as their correlations with 
clinical features in The Cancer Genome Atlas Prostate 
Adenocarcinoma (TCGA-PRAD) dataset. Independent 
samples T test or one-way analysis of variance 
(ANOVA) was used as appropriate. To assess hub 
genes’ diagnostic values, we plotted receiver operating 
characteristic (ROC) curves and calculated area under 
the ROC curve (AUC) with “pROC” R package [45]. 
Survival analysis was also conducted for hub genes 
using “survminer” (R package, https://CRAN.R-
project.org/package=survminer) and “survival” (R 
package, https://CRAN.R-project.org/package=survival). 
Tumor samples within the TCGA-PRAD dataset were 
divided into two groups based on each hub gene’s best-
separation cut-off value to plot the Kaplan-Meier (K-M) 
survival curves.  
 
Methylation and gene expression analyses 
 
The human disease methylation database version 2.0 
(DiseaseMeth 2.0, http://bioinfo.hrbmu.edu.cn/disease 
meth/) incorporates methylome data from microarray and 
sequencing technology and annotates DNA methylation 
status in human diseases [46, 47]. We utilized this 
website to compare methylation levels of hub genes 
between the PCa and paracancerous normal tissues. 
Furthermore, we investigated the association between 
hub genes’ expression and their DNA methylation status 
using MEXPRESS (http://mexpress.be) [48], a web tool 

for integrating and visualizing clinical data from TCGA, 
gene expression, and DNA methylation. 
 
Analysis of gene expression and tumor-infiltrating 
immune cells  
 
To investigate the correlation between the expression of 
selected hub genes and tumor infiltrating immune cells 
(B cells, CD4+ T cells, CD8+ T cells, neutrophils, 
macrophages, and dendritic cells), we applied the online 
tool TIMER (https://cistrome.shinyapps.io/timer/) [49, 
50] which contains 10,897 samples from diverse cancer 
types available in the TCGA database.  
 
Gene Set Enrichment Analysis (GSEA) and Gene Set 
Variation Analysis (GSVA) 
 
We utilized the R package “clusterprofiler” [42] to 
perform GSEA analysis of hub genes with TCGA-PRAD 
RNA-seq data. In addition, the “GSVA” R package was 
used to find the pathways most associated with hub genes 
[51]. Based on the median expression of each hub gene, 
498 PCa samples were divided into two groups (high 
expression vs low expression). P < 0.01 was regarded as 
statistically significant. The gene set 
“c2.cp.kegg.v6.2.symbols.gmt”, downloaded from the 
Molecular Signature Database (MSigDB, 
http://software.broadinstitute.org/gsea/msigdb/index.jsp), 
was selected as the reference gene set.  
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SUPPLEMENTARY MATERIAL 
 

 
 

Supplementary Figure 1. ROC curves for LMNB1, TK1, RACGAP1, and ZWINT. ROC, receiver operating characteristic; AUC, area 
under the ROC curve. 
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Supplementary Figure 2. Survival analysis of all hub genes in the WGCNA pink module. Kaplan–Meier plots of disease-free 
survival in two groups divided by each hub genes’ best-separation value. 
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Supplementary Figure 3. Association of Methylation sites with expression of PCa hub genes. The methylation sites of (A) LMNB1, 
(B) RACGAP1, (C) ZWINT, and (D) TK1 DNA sequences, and their associations with gene expression, were visualized using MEXPRESS. The 
expression of query genes is illustrated by the orange line in the center of the plot. The samples are ordered by query gene expression 
(normalized RNASeqV2 values in TCGA). Pearson’s correlation coefficients and P values from Wilcoxon rank-sum test for methylation sites 
and query gene expression are shown on the right side. The blue lines stand for Infinium 450k probes and their heights represent the beta 
value for this probe. Dark yellow and green lines at the bottom left indicate the query gene and CpG islands. 


