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Abstract: The immune system in the gastrointestinal
tract plays a crucial role in the control of infection, as it
constitutes the first line of defense against mucosal
pathogens. The attractive features of oral immunization
have led to the exploration of a variety of oral delivery
systems. However, none of these oral delivery systems
have been applied to existing commercial vaccines. To
overcome this, a new generation of oral vaccine delivery
systems that target antigens to gut-associated lymphoid
tissue is required. One promising approach is to exploit
the potential of microfold (M) cells by mimicking the entry
of pathogens into these cells. Targeting specific receptors
on the apical surface of M cells might enhance the entry
of antigens, initiating the immune response and conse-
quently leading to protection against mucosal pathogens.
In this article, we briefly review the challenges associated
with current oral vaccine delivery systems and discuss
strategies that might potentially target mouse and human
intestinal M cells.

Advantages and Challenges Surrounding Mucosal
Vaccines

The mucosal immune system is a critical line of defense against

infectious diseases, as the majority of infections are initiated at

mucosal sites [1–3]. Therefore, the induction of specific immune

responses at mucosal sites may be able to control infections at their

point of entry into the body. Over the past few decades, several

candidate vaccines have been designed and tested by various

mucosal routes in pre-clinical or clinical trials. Although the

mucosal immune system comprises several anatomically remote

and functionally distinct compartments, it is firmly established that

the oral ingestion or intranasal administration of antigens induces

humoral and cellular responses not only at the site of antigen

exposure but also in other mucosal compartments [4,5]. This is

due to the dissemination of antigen-sensitized precursor B and T

lymphocytes from the inductive (e.g., intestinal Peyer’s patches) to

the effector sites such as the above mentioned glands. However,

not all inductive sites display comparable ability to induce equal

responses at all effector sites. Despite several advantages, as

compared to systemic injections, the delivery of vaccines by

mucosal routes, particularly through the genitals or rectum, has

not been shown to be very practical in human trials [6–8]. In

addition, it is hard to administer a mucosal vaccine through the

genital tract, as the immunological features of the female

reproductive tract, in particular, alter dramatically in response to

hormonal fluctuations during the menstrual cycle [9–11]. In

addition, both male and female genital tracts lack inductive

mucosal sites analogous to intestinal Peyer’s patches [12].

Furthermore, rectal vaccinations have been shown to induce only

modest and localized immune responses, and are not very effective

in larger animals and humans [13,14]. The pitfalls in quantifying

effector cells in rectal tissues, combined with the intricacies of the

inoculation route, are some other major challenges associated with

rectal immunization. Therefore, in order to advance a mucosal

vaccine for human use, the routes of administration appear to be

limited to oral and nasal administration.

Nasally delivered vaccines are easy to administer and have been

shown to be more promising for inducing both mucosal as well as

systemic immune responses [15–17]. It should be stressed that the

immune system of the upper respiratory tract (nasal cavity,

oropharynx, trachea, and large bronchi) and lower respiratory

tract (bronchioli and alveoli) display marked differences with

respect to the dominance of Ig isotypes and induction of humoral

immune responses. While the induction of dominant IgA

responses in the upper respiratory tract is of importance in the

protection at this locale, the lower respiratory tract is the domain

of antibodies, of the IgG isotype of circulatory origin. Conse-

quently, systemic immunizations with, for example, pneumococcal

polysaccharide vaccines, induce protective immune responses. A

nasal spray influenza vaccine (FluMist) containing live attenuated

influenza has been approved for human use since 2003 [18,19]. In

an HIV study, macaques that were intranasally vaccinated with

SHIV-capturing nanospheres demonstrated elevated levels of IgA

and IgG antibodies [20]. Additionally, these vaccinated macaques

showed a higher frequency of CD4 +T cells and lower viral loads

compared to control macaques after a SHIV challenge. However,

two human clinical trials involving nasal administration of HIV-1-

derived antigens were recently terminated due to safety concerns.

The potential for side effects such as Bell’s palsy and damage to the

olfactory nerves and the nasal epithelium have been cause for

concern; however, these side effects could have occurred due to

the use of highly reactogenic adjuvants and not because of the
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route of administration [21–23]. The possibility of such side

effects, and the reason that the gastrointestinal (GI) tract is the first

line of defense against mucosal pathogens, has led many scientists

to pursue oral vaccination. The advantages and disadvantages of

each route of mucosal immunization are summarized in Table 1.

In this article, the advantages, challenges, and pitfalls with this

route of vaccination are addressed. We also briefly review current

options for oral delivery systems and approaches that have been

explored to improve the uptake of potential vaccines. Oral

vaccines have the ability to induce both mucosal and systemic

immune responses and are safer, easier to administer, and do not

require sterile needles and syringes [24–27]. Therefore, oral

vaccines could more easily meet the needs of affected people in

developing countries, where access to trained medical professionals

is frequently limited. Although oral vaccines have several attractive

features, the limited numbers of approved oral vaccines attest to

the challenges associated with mucosal vaccine design. Studies

involving oral vaccine use have been limited due to several

challenges, such as difficulties in the collection and processing of

external secretions, a lack of standardized assays, the induction of

tolerance, the stability of antigens in the harsh conditions of the GI

tract, and the antigen–microbial interactions that are continuously

occurring in the large intestine [28,29]. It is for these reasons that

only a limited number of oral vaccines are currently licensed,

compared to many parenteral vaccines.

Oral Vaccine Delivery Systems

Recombinant or attenuated strains of various bacteria such as

Salmonella, Escherichia coli, Listeria, Shigella, and Lactobacilli have been

used as a vectors to deliver antigens into the gut-associated

lymphoid tissue (GALT) [30–35]. While some interesting results

have been reported for these oral delivery systems, immune

responses against the vectors eventually predominated over time

[36,37]. In addition, glycosylated antigens cannot be produced in

bacteria [38]. Furthermore, over 1014 microorganisms of .20,000

species reside in the large intestine [43]. Such a large competing

population would greatly diminish the chances of colonization and

subsequent induction of a vigorous immune response through such

vector microorganisms. Oral delivery of live attenuated recombi-

nant viruses such as adenoviruses (Ad), poxviruses, influenza,

herpes viruses, and polioviruses encoding specific antigens has

been also tested in several oral vaccine studies. While these viral

vectors showed promising results, pre-existing immunity to these

viruses may prevent their ability to deliver desired antigens.

Oral delivery of DNA vaccines encoding various antigens has

also been evaluated in various animal studies [1,2,39–41]. DNA

vaccines contain unmethylated CpG motifs with binding activity

to TLR9 receptors. This characteristic assists in activating a

variety of cells including dendritic cells (DCs), macrophages,

monocytes, and splenocytes [42]. The TLR9 signaling pathway

leads to IL-1b and INF-c secretion, polarizing the immune

response to a Th1 type. One of the pitfalls associated with DNA

vaccines is the low uptake of DNA from the intestinal tract, which

consequently limits B and T cell immune responses [43].

Over the past few years, specific T and B cell epitopes have been

characterized in tumor and viral antigens. Synthesis of peptide

epitopes for use as a vaccine requires an understanding of T and B

cell immunodominant epitopes in the protein structure, and their

interaction with major histocompatibility complexes (MHCs) or

human leukocyte antigen (HLA) complexes [44–48]. The design

and development of immunodominant multivalent epitopes

representing diverse HLA types is an attractive strategy against

hypervariable viruses such as HIV-1 and hepatitis C virus (HCV).

One of the pitfalls with this approach is that peptide vaccines are

not immunogenic alone, and thus require carriers and potent

adjuvants to enhance their immunogenicity. The use of lipidated

peptide immunogens is one of several strategies currently being

pursued for the improvement of peptide immunogenicity [49–51].

Previous studies have demonstrated that the presence of lipid

moieties on peptides prolongs the duration of antigen presentation,

enhances cytosolic uptake of peptide immunogens, activates innate

immunity due to a TLR2 agonist effect, and differentiates non-

activated B cells into immunoglobulin-secreting plasma cells [52–

55]. Although no commercialized peptide vaccine is yet available,

this approach has shown promising results in animal studies [56].

Oral delivery of peptide vaccines has been evaluated in pre-clinical

and clinical trials. In a phase I study, 33 HIV-seronegative

volunteers were primed orally three times with a V3 peptide

derived from HIV-1 isolate MN, followed by a systemic boosting

[57]. While no broad humoral or cellular immune responses were

Table 1. Advantages and Disadvantages of Each Route of Mucosal Immunization Is Summarized.

Route of Immunization Advantages Disadvantages

Genital delivery Specific systemic and mucosal IgG and IgA antibody
responses in genital secretions

Administration of antigens via male genital tract is impractical;
immunological properties of the female reproductive tract alter during
the menstrual cycle

Rectal delivery Specific antibodies and cytotoxic T lymphocyte response in
mucosal secretion of small animals

Modest levels of local IgG and IgA titers in human; difficulty in
quantifying effector cells in rectal tissues; difficulty in the route of
inoculation

Nasal delivery Enhances both humoral and cellular immune responses in
systemic and mucosal sites; easy to administer, no needles
or syringes are needed

Lack of strong adjuvants; side effects such as Bell’s palsy and damage to
olfactory nerves and the nasal epithelium

Inhalation delivery Enhances both humoral and cellular immune responses in
systemic and mucosal sites; administered in both dry
powder or liquid formulations

A device is required; risk of exacerbation of respiratory infections;
difficulty in administration to infants or congested patients; dose
delivery issues

Sublingual delivery Antigens are absorbed quickly; induction of IgG in systemic
sites; no needles or syringes are needed

Dose delivery issues; difficulty in formulation of antigens; lack of strong
adjuvants

Oral delivery Enhances immune responses in systemic and mucosal sites;
safe; easy to administer; no health care professional is
needed; easy to scale up

Induction of tolerance in some animals; requires large dose of antigens;
lack of stability of antigens against the harsh conditions of the GI

doi:10.1371/journal.ppat.1001147.t001
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detected, the results could prove helpful in the further develop-

ment of orally administered peptide vaccines.

Plant-based oral vaccines are another delivery system that has

been tested in recent years [58–61]. Seed crops such as rice, maize,

and soybean appear to be suitable expression and delivery systems

that offer several advantages, such as resistance to intestinal

enzymes, rapid scale-up of exogenous antigens, low-cost production,

and a decreased risk of contamination by human pathogens [62,63].

In a mouse study, MucoRice-expressed cholera toxin subunit B

(CTB) was administered orally to animals, and specific immune

responses and neutralizing activity in both systemic and mucosal

compartments were detected [64]. Interestingly, immunized

animals with MucoRice-CTB demonstrated protection from an

oral challenge with cholera toxin compared to control animals. In a

similar study conducted in a non-human primate model, cynomol-

gus macaques received orally administered MucoRice-CTB.

Animals were found to have CT-specific, neutralizing antibodies,

and high levels of systemic IgG and intestinal IgA antibodies [65].

Over the past few years, several oral vaccine delivery vehicles

such as liposomes, dendrimers, multiple emulsions, immune

stimulating complexes (ISCOMs), biodegradable polymers such

as poly (lactide-co-glycolide acid), and dendrimers have also been

identified [66–70]. Antigens, adjuvants, and targeting molecules

could be incorporated individually or in combination into these

microparticles. These vehicles may thus act as immunostimulants

while preventing the degradation of immunogens by enzymes in

the GI tract. These particulate formulations might also interact

with microfold (M) cells and release immunogens slowly,

consequently promoting phagocytosis. Some microparticle studies

have shown that the addition of polymers such as chitosan might

increase the interaction of antigens with the intestinal mucosal

surface [66,67]. The efficacy of these microparticles has been

tested in several animal studies and in a limited number of clinical

trials. In a human trial, five volunteers were orally immunized with

a surface Enterotoxigenic Escherichia coli (ETEC) polymeric protein

(CS6) associated with a biodegradable polymer, poly-lactide-co-

glycolide (PLG) [68]. Oral administration of these microparticles

was safe, and four out of five volunteers showed IgA responses and

a 3.5-fold increase in the levels of serum IgG antibody responses.

In a study by Frey et al. [69], oral administration of CTB was

tested as a model for enhancing antigen uptake by intestinal

epithelial cells. CTB was chosen as it promotes immune responses

when co-administered orally, and its receptor (ganglioside GM1) is

present on all intestinal epithelial cell surfaces. In vivo results in

rabbits showed that soluble CTB-FITC (diameter of 6.4 nm) was

able to bind to apical membranes of both enterocytes and M cells.

Whereas CTB coupled to colloidal gold (diameter of 28.8 nm)

bound only to M cells and not enterocytes, CTB-coated micro-

particles (diameter of 1.13 mm) failed to bind to either rabbit

enterocytes or rabbit M cells. In a study by Mann et al. [70], two

different sizes of a liposome-entrapped influenza antigen were

delivered orally in a mouse model. The group of mice that was

orally immunized with larger liposomes (60–350 nm and 400–

2,500 nm) showed a greater Th1 bias, serum IgG2a production,

and antigen-induced splenocyte IFN-c production, compared to

mice having received liposomes 10–100 nm in size. While this

study also showed that microparticle size is an important factor

associated with particle uptake, the size of the microparticles was

quite different from a previous study.

However, sizing is not the only issue with these microparticles.

A variety of additional parameters, including the ratio and

quantity of chemical components, the amount of encapsulated

antigen, hydrophobicity, the ionic surface charge, the type of

associated adjuvants, and the dose of administration are also

crucial, and should be optimized. In this context, the association of

M cell–targeting ligands on the surface of the delivery vehicles

might also enhance the binding specificity to intestinal Peyer’s

patches. In the next section, we briefly describe the M cell surface

markers that could be considered in a strategy to enhance capture

and uptake of orally administered vaccines.

Targeting the Apical Surface of M Cells

M cells are specialized epithelial cells that predominantly reside

in the follicle-associated epithelium (FAE) overlying Peyer’s

patches. M cells also reside in other sections of the intestinal tract

such as the colon and rectum [71–74]. M cells are identifiable by

their flattened apical surfaces, fewer numbers of cytoplasmic

lysosomes, greater numbers of mitochondria, and the absence of

glycocalyx covering their surfaces. It also appears that mouse M

cells express particular surface markers, compared to enterocytes,

such as b1 integrin or a-L-fucose-specific (L-fucose) lectin [75]. In

contrast to enterocytes, M cells take up antigens or microorgan-

isms from the intestinal lumen (Figure 1) by phago-, endo-, or

pinocytosis and transcytosis, and deliver them to the underlying

immune system of the mucosae. This phenomenon also occurs by

other mechanisms, for instance in intestinal DCs; however, this

will not be discussed here. M cells are not limited to the GALTs,

and are also present in other mucosal tissues such as nasopharyn-

geal-associated lymphoid tissue (NALT) and bronchus-associated

lymphoid tissues (BALT) and tonsils [76,77]. It has been shown

that M cells in NALT are a major site of virus entry as well as

vaccine delivery; however, limited studies have been reported with

regards to the roles of NALT and BALT in the uptake and

transport of vaccine-delivered antigens.

The ability of M cells in Peyer’s patches to take up and

transcytose diverse numbers of microorganisms to antigen-present-

ing cells (APCs) have made M cells an ideal target for vaccine

delivery to the mucosal immune system [78–80]. It is estimated that

only 1 out of 10 million epithelial cells in the intestinal tract is an M

cell (approximately 5% in humans and 10% in mice) [81]. Due to

these low numbers of M cells, several approaches have been

attempted to enhance M cell targeting. It has been indicated that M

cell numbers in Peyer’s patches are increased after exposure to

Streptococcus pneumonia R36a [82]. However, these increased numbers

of M cells may uptake all antigens in the intestinal epithelium and

not just the antigens of interest, consequently increasing the

probability of inducing food allergies and inflammatory diseases.

Therefore, it might be more reasonable to target the existing M cells

in Peyer’s patches than to try to amplify their numbers.

Targeting specific receptors on the apical surface of M cells may

have the ability to specifically increase the uptake and presentation

of antigens, consequently initiating the immune response and

inducing protection against infectious challenge. To date, only

limited numbers of M cell receptors and their ligands have been

identified, and most of these receptors are not only expressed in M

cells but in neighboring enterocytes as well. Some important

pathogen recognition receptors (PRRs), such as toll-like receptor-4

(TLR-4), platelet-activating factor receptor (PAFR), and a5b1

integrin, are expressed on the surface of human and mouse M cells

[83–85]. These innate immune system molecules interact with

pathogen-associated molecular patterns (PAMPs) such as lipopoly-

saccharide, lipotechoic acid, peptidoglycan, and bacterial flagellin.

This interaction is crucial for the translocation of bacteria across

the lumen. Consequently, targeting PRRs might be a suitable

strategy for enhancing the uptake of orally administered vaccines

by M cells. This interaction activates several signaling pathways

that may play important roles in M cell functions. For instance, M
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cells take up many enteropathogenic microorganisms, such as

Yersinia spp., via the a5b1 integrin, and inhibition of this adhesion

molecule significantly inhibits transcytosis of M cells [86–88].

While PRRs are also expressed on neighboring enterocytes (a

challenge in targeting only M cells), the expression patterns of

these receptors are varied. For instance, a5b1 integrin is dispersed

on the lateral and basolateral surfaces of enterocytes, while in M

cells, a5b1 is distributed only on the apical surface.

Lectin-binding studies in experimental animals have shown that

M cells express on their surface a particular glycosylation pattern

[89,90]. Several studies showed that Ulex europaeus agglutinin-1

(UEA-1), a lectin specific for a-l-fucose residues, selectively binds to

M cells in murine Peyer’s patches [91–94]. In a study by Manocha

et al. [94], the UEA-1 coated on the surface of microparticles

encoding HIV genes had the capability to bind to the apical surface

of M cells. In another study, by Chionh et al. [95], oral vaccination

in a mouse model with killed whole Helicobacter pylori and UEA-1 or

Campylobacter jejuni and UEA-1 induced protective responses against

live challenge. However, M cell glycosylation patterns are not

common to all species, and it remains to be seen whether it can be

used to effectively target human M cells [96]. Human M cells have

proven to be largely anonymous, as it has been difficult to isolate

enough of such cells for further characterization and functional

evaluation. Therefore, the specific receptor requirements for human

M cells and how to specifically target these receptors remains a

challenge. In recent years, a few in vitro human M cell models have

been established [97,98]. One of the most common M cell–like

models is comprised of co-cultures of human colon carcinoma cells

(Caco-2) along with human lymphoblastoid B cell lines (Raji B cells)

[99,100]. This in vitro model has been used to study the

morphology and expression of M cell surface markers and antigen

absorption, and to screen oral drug/vaccine delivery systems, as it

closely imitates human M cells. While these M cell–like models have

been used to attempt to further understand human M cells, one of

the concerns of this model pertains to its over-simplification of in

vivo events, as well as the lack of signaling factors from other

immune cells such as T cells that are required for the formation and

optimal function of M cells.

Microarray and three-dimensional imaging of specific molecules

associated with M cells has revealed that a surface marker called

glycoprotein 2 (GP2) is expressed on both human and mouse M cells

[101,102]. It appears that GP2 plays an important role in molecular

mechanisms responsible for antigen uptake by M cells. GP2 serves

as a transcytotic apical receptor on the surface of M cells that

specifically binds to type I pili on bacterial outer membranes (FimH)

[101]. Elimination of GP2 reduced the entry and uptake of bacteria

into Peyer’s patches and decreased T cell proliferative and antibody

responses. Altogether, these results suggest that the GP2 protein

might be a promising vaccine target for immunizing against

infectious diseases. Several studies have shown that FimH adhesion–

based vaccines are able to prevent infection by impeding

colonization, enhancing humoral immune responses, and blocking

bacterial attachment [103–105]. It would be exciting to determine if

FimH could direct other antigens to M cells as well.

Figure 1. Schematic diagram of intestinal epithelium showing M cells, Peyer’s patches, intestinal epithelial cells, and pathway of Ag
transport. DC, dendritic cells; IEC, intestinal epithelial cell (NU, nucleus); MC, M cell; IEL, intra epithelial lymphocytes; PP, Peyer’s patches; MW,
macrophages; Pv, particulate Ag in pinocytic vesicle of M cell.
doi:10.1371/journal.ppat.1001147.g001
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In an interesting study by Giannasca et al. [106], Peyer’s patches

were biopsied from volunteers with blood groups type O (two

individuals) and type A (one individual). The binding and cellular

localizations of 31 lectins and ten anticarbohydrate monoclonal

antibodies from biopsy samples were performed by histochemistry

and compared to the nearby enterocytes on Peyer’s patches. Lectin

and antibody results revealed a higher expression of carbohydrates

on enterocytes than M cells. Some lectins and antibodies such as

OPA and anti-Lewis A also reacted with both M cells and

enterocytes. Interestingly, only one (anti-sialyl Lewis A) out of the 41

tested lectins or antibodies largely reacted with human M cells

(,80%) and bound only weakly to the FAE enterocytes (,20%).

While a larger number of human tissue specimens are required to

confirm this oligosaccharide repertoire, an anti-sialyl Lewis A–

mediated vaccine delivery system might be appropriate approach to

enable M cell–targeted mucosal vaccines in humans.

In a study by Misumi et al. [107], the capability of tetragalloyl-D-

lysine dendrimer (TGDK) to target M cells was examined in an in

vitro human M–like cell culture and a rhesus macaque animal

model. The results indicated that TGDK specifically bound to a

human intestinal M–cell like model under in vitro conditions and

was delivered from the M cell surface to the basolateral area. To

examine the in vivo effect of TGDK on M cell targeting, rhesus

macaques were orally administered with enteric coated capsules

containing TGDK-conjugated multiantigens at weeks 0, 2, and 6.

ELISA from feces samples of immunized macaques indicated a high

level of IgA antibody responses. Conversely, the control macaques

did not induce specific IgA in fecal samples. Furthermore, the

immunized macaques with TGDK-conjugated multiantigens also

showed neutralizing activity against SIV infection. These results

concluded that TGDK transports from the lumen into intestinal M

cells, and can consequently be considered for use in mucosal vaccine

delivery in humans and non-human primates.

Mucosal Immune Responses and Mucosal Tolerance

Repeated oral administration of large doses of antigen in animal

models result in decreased or abrogated T cell–mediated responses

to a subsequent systemic immunization with the same antigen

[108]. This phenomenon prompts a question concerning the

possible induction of mucosal tolerance by mucosally delivered

vaccines. Importantly, for vaccine efficacy the dominant target of

oral tolerance is the T and not the B cell compartment. As a

matter of fact, initial mucosal administration of antigens by the

oral or nasal routes primes for B cell responses in parallel with

diminished T cell responses in humans as well as in animals [109].

Thus, vaccines whose protective effect is dependent on the

induction of antibodies (which is the target of all currently used

vaccines in humans) are not likely to diminish their efficacy by

mucosal administration of antigens. Furthermore, pre-existing

immune responses induced by systemic immunization cannot be

attenuated or suppressed by subsequent mucosal administration of

the same antigen [109]. However, initial mucosal immunization of

immunologically naı̈ve subjects (e.g., with HIV-1 vaccines) might

have the undesirable effect of diminishing cell-mediated responses,

including cytotoxic T cell–dependent immunity. Thus, the

temporal sequence of immunization with initial systemic priming

and mucosal boosting as well as the use of certain adjuvants is

likely to prevent the induction of mucosal tolerance.

Concluding Remarks

Over the past few decades, oral immunization has been

extensively studied due to its many attractive features. The

immunological potential, absorption, or limitation in the uptake of

antigens, as well as the characteristic distribution of functional cell

types in the GI tract, have made it a vital target in the

development of oral vaccines. The phenomenon of tolerance is a

crucial challenge to overcome in the development of effective oral

vaccines. Experimental animal studies have indicated that oral

administration of antigens targets the systemic T cell compart-

ment, diminishes cell-mediated immune responses, and induces

tolerance. This phenomenon might lead to the induction of

cytokines such as TGF-b and IL-10, and consequently enhance

antigen-specific antibody responses such as IgA and IgG. While

the humoral immune response is critical in the control of some

mucosal pathogens, its effect might be questionable on other

mucosal pathogens such as HIV and HCV where cell-mediated

immune responses may play a larger role. Opponents to this

tolerance hypothesis, including the authors of this article, believe

that tolerance is not an issue in humans, as it occurs through a

completely different mechanism. Furthermore, some clinical

studies have showed that a combination of oral priming and

systemic boosting might activate both humoral and cellular arms

of the immune system. On the other hand, we think that the

absence of a potent oral vaccine might be due to other challenges,

including antigen degradation by proteolytic enzymes, the low

dose of antigen absorbed, a lack of potent mucosal adjuvants, and

not actively directing antigens to M cells. To overcome these

issues, further work regarding oral vehicle delivery systems that

protect antigens and specifically target M cells is required.

Targeting M cells by mimicking the entry of mucosal pathogens

such as E. coli, Salmonella, and Yersinia may reflect the in vivo

binding specificity required by orally administered antigens.

Regarding this aspect, a number of studies showed that these

pathogens bind to specific lectins expressed on the apical surface of

M cells. The binding of orally administered vaccines to M cell

lectins was further studied in murine models and indicated that a-

L-fucose-lectin (UEA-1) is able to bind specifically to M cells and,

to a lesser degree, enterocytes. However, the characterization of

murine M cells by this lectin-binding pattern did not reflect the

glycosylation patterns present on human M cells. Unfortunately,

human M cell features, function, and differentiation from

neighboring enterocytes are not well understood.

Based on previous studies, by using tetragalloyl-D-lysine

dendrimers, a monoclonal antibody targeting GP2, or using a

monoclonal antibody targeting sialyl Lewis A, it might be possible

to more specifically direct oral delivery systems to human M cells.

However, as these molecules are also expressed on neighboring

enterocytes (albeit at lower levels), it will likely be difficult to devise

an ideal oral delivery system for targeting human M cells. The

understanding of human M cell function, identification of more

specific apical surface molecules, and the improvement of

intestinal M cell–like models are crucial for the design and further

development of M cell–targeted vaccines.
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