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A computational method 
for predicting nucleocapsid protein 
in retroviruses
Manyun Guo1, Yucheng Ma2*, Wanyuan Liu1 & Zuyi Yuan1

Nucleocapsid protein (NC) in the group-specific antigen (gag) of retrovirus is essential in the 
interactions of most retroviral gag proteins with RNAs. Computational method to predict NCs would 
benefit subsequent structure analysis and functional study on them. However, no computational 
method to predict the exact locations of NCs in retroviruses has been proposed yet. The wide range 
of length variation of NCs also increases the difficulties. In this paper, a computational method to 
identify NCs in retroviruses is proposed. All available retrovirus sequences with NC annotations were 
collected from NCBI. Models based on random forest (RF) and weighted support vector machine 
(WSVM) were built to predict initiation and termination sites of NCs. Factor analysis scales of 
generalized amino acid information along with position weight matrix were utilized to generate the 
feature space. Homology based gene prediction methods were also compared and integrated to 
bring out better predicting performance. Candidate initiation and termination sites predicted were 
then combined and screened according to their intervals, decision values and alignment scores. All 
available gag sequences without NC annotations were scanned with the model to detect putative NCs. 
Geometric means of sensitivity and specificity generated from prediction of initiation and termination 
sites under fivefold cross-validation are 0.9900 and 0.9548 respectively. 90.91% of all the collected 
retrovirus sequences with NC annotations could be predicted totally correct by the model combining 
WSVM, RF and simple alignment. The composite model performs better than the simplex ones. 235 
putative NCs in unannotated gags were detected by the model. Our prediction method performs well 
on NC recognition and could also be expanded to solve other gene prediction problems, especially 
those whose training samples have large length variations.

Retroviruses encompass by a large family of infectious agents which could be categorized into seven genera 
according to their morphological and biochemical features1. Group-specific antigen (gag) is the genetic material 
that codes for the core structural proteins of a retrovirus2. Gag proteins usually contain three major domains: 
matrix protein (MA) at their N-terminus; capsid protein (CA) in the middle; and nucleocapsid protein (NC) at 
or near their C-terminus3. The NC domain of gag is essential in the interactions of most retroviral gag proteins 
with RNAs4. After the releasing of NC from gag, it participates in a wide variety of protein-RNA interactions. 
Many of them involve its nucleic acid-chaperone activity. The NC domain is a key component of the assembly 
processes because it is required for the recognition and packaging of the RNA genome5 and also responsible for 
binding to the RNA scaffold6.

The indispensable role of NC attracts many researchers. Evidence that a central domain of NC is required 
for RNA packaging in murine leukemia virus were found7. Arginine methylation of the HIV-1 NC were found 
to result in its diminished function8. NAC activity of HIV-1 NC was found to play a critical role in reverse tran-
scription and its molecular mechanism was studied9. Inhibitors of HIV nucleocapsid protein zinc fingers were 
considered as candidates for the treatment of AIDS10.

However, the amount of NCs in retroviruses annotated by experimental method is still small (less than 
a hundred). Computational method could help to predict more NCs in retroviruses thus benefit subsequent 
structure analysis and functional study on them. A computational method to identify reading frames of human 
endogenous retroviruses (gags included) has been proposed11. A platform independent tool named RetroTec-
tor that could predict conserved motifs of retroviruses was developed12. However, no computational method 
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that could predict the precise locations of NCs’ initiation and termination sites has been proposed yet. Besides, 
length of NCs from different retroviridae genera varies from 48 to 126aa according to records in National Center 
for Biotechnology Information (NCBI), thus gene prediction methods for genes with conserved lengths are not 
applicable. Furthermore, classical database search tools13–15 couldn’t achieve satisfying results in prediction of 
retrovirus genes with large length variation16. Therefore, there is an urgent need to come up with a computational 
model for NC prediction.

In this paper, computational models to identify NCs from retroviruses were proposed. All available annotated 
NC sequences in retroviruses were collected for the training and testing process. Position weight matrix (PWM) 
along with all six parameters of factor analysis scales of generalized amino acid information (FASGAI)17 were 
used to generate the feature space for NC prediction. The initiation and termination sites of NCs were separately 
predicted and combined together afterwards to acquire high prediction accuracy when dealing with sequences 
that are poorly conserved in their lengths. Their performance was tested by fivefold cross validation test. A 
composite ab initio model to predict intact NCs from genetic sequences was then proposed. It performs better 
than the simplex ones. All of the 6651 available gag sequences without NC annotations were scanned with the 
composite model and 282 putative NCs in them were found.

Materials and methods
NC collection.  All available amino acid sequences of retroviruses with their NCs annotated based on experi-
mental evidences were collected from NCBI at http://​www.​ncbi.​nlm.​nih.​gov. There are 77 of such sequences in 
total. Among them, 4 of them are beta-retrovirus, 13 of them are gamma-retrovirus, 9 of them are from delta-
retrovirus, 2 of them are epsilon-retrovirus and the other 49 of them are lentivirus. All these sequences were 
used for the following training and testing process. All of them are with intact NC structures (please refer to S1 
File for details).

Separate prediction of NC boundaries.  Traditional gene predicting methods could performance well 
when predicting gene sequences with fixed lengths. However, when it comes to gene sequences with large length 
variations, such methods may lose effectiveness or even feasibility. This might be because the constant dimen-
sion of feature space used in traditional methods couldn’t represent features of such genes properly. The lengths 
of annotated NCs in retroviruses range from 48 to 126aa, so an approach to revise the traditional gene predicting 
methods to fit the NC predicting problem is needed.

Our predicting method focuses more on the border areas adjacent to the start and end of NCs instead of 
interior areas away from them, for the former contain more effective information for gene prediction and are 
usually more conservative. The fixed length flanking residues of the initiation site and termination site were 
predicted to deduce the precise locations of the start and end of NCs. Initiation site and termination site were 
predicted separately, and the sequence between them were regarded as a candidate NC sequence only when it’s 
length is reasonable. Then the most probable candidate NC was singled out among all candidate NCs to be the 
final putative NC according to the decision value and alignment score involving it. This technique brings out 
both feasibility and high accuracy.

Sample preparation.  Two sets of training samples for initiation and termination sites prediction respec-
tively were built separately. The training samples for initiation sites could be denoted as:

where i = Init(NC) , −50 ≤ osi ≤ 50& osi ∈ Z & osi �= 0.
Similarly, the training samples for termination sites could be denoted as:

where j = Term(NC) , −50 ≤ ost ≤ 50&ost ∈ Z&ost �= 0.
Here, Ip denotes a positive training sample of initiation site generated from a gag sequence, In denotes a nega-

tive training sample of initiation site. Similarly, Tp denotes a positive training sample of termination site and 
Tn denotes a negative training sample of termination site. Init(NC) and Term(NC) represent the true initiation 
site and termination site of a NC sequence. osi and ost are randomly generated offsets added to initiation and 
termination site locations respectively to generate negative samples. Lis and Lts denote the length of initiation 
samples and termination samples.

We generated the negative sample set with a size 5 times as large as the positive sample set and took the 
imbalanced sample sets problem into our consideration in the modelling process, to overcome the difficulty of 
the lack of positive training samples.

Feature selection.  A hybrid feature space construction approach was proposed by combining position 
characteristics and physicochemical properties of sequences.

(1)

{

Ip = gag(i : i + Lis − 1)

In = gag(i + osi : i + Lis − 1+ osi)
,

(2)

{

Tp = gag(j − Lts + 1 : j)
Tn = gag(j − Lts + 1+ ost : j + ost)

,

http://www.ncbi.nlm.nih.gov
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Position characteristics.  The widely recognized PWM18 was applied to extract the position characteristic 
of sequences. By aligning residues starting from initiation sites or ending at termination sites of positive NC 
sequences, PWMs are defined as follow:

Here, fkj stands for the absolute frequency of amino acid k in the jth position of N aligned sequences of length 
l  , j ∈ (1, ..., l) , k is the set of amino acids,  bk = 1/|k| (|k|=20 for amino acids, so bk = 0.05).

After generating the PWM, the position characteristic of any l-aa-long sequence V  was extracted by the fol-
lowing mapping method. Each amino acid of V  was assigned with its corresponding value in the matrix accord-
ing to its position. Then a l-dimension-vector VPos was generated to represent the position characteristic of the 
original l-aa-long sequence:

where j ∈ (1, ..., l) , k = Vj.

Physicochemical properties.  All 6 parameters of the FASGAI19 were selected to extract the physico-
chemical properties of sequences (Please refer to S2 File for details of FASGAI). FASGAI involves hydrophobic-
ity, alpha and turn propensities, bulky properties, compositional characteristics, local flexibility, and electronic 
properties derived from 335 property parameters of 20-coded amino acids. Thus when dealing with an l-aa-long 
sequence, the sequence was mapped into a 6× l matrix to represent its physicochemical properties.

After combining the position characteristics and physicochemical properties, a feature space with (1+ 6)× l 
features in total was established for the l-aa-long sequence.

Binary classifiers.  In our previous study, three binary classifiers based on different principles were applied to 
the same feature space to test and compare their predicting abilities: weighted support vector machine (WSVM), 
random forest (RF) and weighted extreme learning machine (WELM). And we found that the combination of 
the first two of them could generate the best predicting performance20. Prediction models based on WSVM and 
RF were separately built to predict the initiation and termination sites of NCs.

Finding candidate NCs.  After the probable NC start and end locations were predicted, a combination 
method to combine them is required. As there may be several possible NC start and end combination pairs in 
one unannotated gag sequence, it is necessary to dispose all the less probable putative combinations and leave 
the most probable one as the final prediction result. The details of such ruling out strategy are shown as follow:

Step 1: Keep all the putative NC boundary pairs generated from RF models which have interval distance 
within the range of NC sequence lengths as candidate NC boundary pairs. For the mth and nth amino acids in 
a gag sequence, the amino acid pair (m, n) is a candidate NC pair only when it satisfies:

where NCmin and NCmax are the minimum and maximum lengths of annotated NCs respectively, emin and emax are 
natural numbers and act as the relaxation parameters for the minimum and maximum NC lengths respectively. 
Lis and Lts denotes the length of initiation samples and termination samples.CRFI and CRFT are Boolean variables, 
their values indicate whether the mth and nth amino acids of gag sequence S are candidate initiation site and 
termination site respectively according to the prediction results from random forest models.

Step 2: Calculate the products of decision values of initiation and termination sites of all candidate NC bound-
ary pairs sorted out in step 1. Then keep the candidate boundary pair with the largest product as the putative NC 
(A decision value is generated from WSVM models according to the distance of a sample to the classification 
hyper plane. The prediction result is more likely to be positive when the decision value is larger, vice versa.). 
Consider amino acid pair (m, n) as a putative NC pair only when it also satisfies:

where DWSVMI (S,m, Lis) and DWSVMT (S, n, Lts) are decision values assigned to the mth and the nth amino acids 
of gag sequence S after computation of the WSVM models. (m, n) also satisfies the constraints in (6).

Combination with homology based method.  After the screening process, the putative NCs generated 
by WSVM & RF models are compared with putative NCs generated from homology based methods. The results 
are then combined together to enhance the prediction performance. First we introduce a simple alignment (SA). 
Thus the locations of the putative initiation site and termination site are shown as follow:

(3)MPWM
k,j = log(fkj/bk + 1) .

(4)VPos
j = MPWM

k,j ,

(5)







NCmin − emin ≤ n−m ≤ NCmax + emax,

CRFI (S,m, Lis) = 1,

CRFT (S, n, Lts) = 1

.

(6)argmax
m,n

DWSVMI (S,m, Lis) · DWSVMT (S, n, Lts),

(7)











argmax
m,n

DP , if maxDP/α ≥ maxAP

argmax
p,q

AP , if maxDP/α < maxAP
.
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Here maxDP = maxDWSVMI (S,m, Lis) · DWSVMT (S, n, Lts) ( m and n also satisfy the constraints shown in (6), 
maxAP = maxAI (S, p, Lis) · AT (S, q, Lts) , subject to

Here AI (S, p, Lis) is the maximum alignment score generated from a Lis long subsequence starting from the 
pth amino acid of gag sequence S after comparing it with all the positive training samples of initiation sites. 
Analogously, AT (S, q, Lis) is the maximum alignment score of a Lts long subsequence ending the qth amino acid 
of S . The alignment function Align calculates the total number of identical amino acids at the same locations 
in two sequences with equal length. Since the products of decision values of totally correct boundary pairs are 
close to 1 but couldn’t reach it, while the products of alignment scores have a maximum value of 1, parameter α 
is introduced to balance the two kinds of maximum products for fair comparisons ( α = 0.95 here).

Since the alignment technique here is rather simple, a revision could be done to enhance the performance of 
combination with homology based method. The widely used bioinformatics tool for sequence searching: Basic 
Local Alignment Search Tool (BLAST) is used to replace the original simple alignment. Take the unannotated 
gag sequence S as the query sequence, and take all the positive NC sequences in the training set as the subject 
sequences. Then the NC sequence that could produce the most significant alignment results indicates the area 
most likely to be an NC in S . The locations of the putative initiation site and termination site after combination 
with BLAST (blastp here since the sequences are protein sequences) are shown as follow:

subject to

Here min BE is the minimum E-value produced by blastp. The subsequence between the pth and the qth amino 
acid is the corresponding area that produces the minimum E-value. β is the threshold value that determines the 
selection of prediction results.

Performance assessment.  fivefold cross-validation was employed to assess the performance of the 
WSVM and RF models predicting the initiation sites and termination sites in this paper.

G −mean under fivefold cross-validation was selected as the major performance evaluation measure. It also 
provide the basis for parameter selection of models. Sn , Sp , ACC and MCC were also calculated as a supplemental 
reference.

where true positive ( TP ) and false negative ( FN  ) are the number of positive samples that are predicted to be 
positive and negative respectively. Analogously, true negative ( TN ) and false positive ( FP ) are used to denote 
the number of negative samples that are predicted to be negative and positive respectively.

Among these evaluation measures, G −mean and MCC are better at providing a comprehensive view of the 
prediction performance, especially with our training dataset which has quantity imbalance between positive 
and negative data.

As with the performance assessment on prediction of entire NC proteins, leave-one–out cross-validation is 
applied. Each turn we pick out one gag sequence with NC annotation as the testing sequence and leave all others 
as the source of training samples. Then the above process is repeated until all sequences have been left out for a 
time as the testing sequence. The reason for not applying fivefold cross-validation here is to rule out random fac-
tors as much as possible, since fivefold cross-validation could generate different partition of datasets which may 
cause fluctuations in prediction performance. Such fluctuations could undermine the cogency of performance 
comparison between different methods. The prediction accuracy of the initiation sites, termination sites and 
entire NCs were calculated and compared.

Detecting putative NCs in gags.  When the NC predicting models are eventually built, the models could 
be used to search for more putative NCs in unannotated gags. A fixed length sliding window is used to “scan” 
the unannotated gag sequences to find candidate NC initiation and termination sites. Lis and Lts were set to 

(8)

{

AI (S, p, Lis) = maxAlign(S(p, p+ 1, ..., p+ Lis − 1), Ip)/Lis

AT (S, q, Lis) = maxAlign(S(q− Lts + 1, q− Lts , ..., q),Tp)/Lts
.

(9)











argmax{max
m,n

DP/α, maxAp}, if PM ≥ β

argmin
p,q

BE , if PM < β
,

(10)PM = max{maxD/αP , maxAp}

(11)































































Sn =
TP

TP + FN

Sp =
TN

TN + FP

ACC = (TP + TN)/(TP + TN + FN + FP)

MCC =
(TP × TN − FP × FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

G −mean =
�

SnSp =
�

TP

TP + FN
×

TN

TN + FP

.
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equate with the length of the sliding window for convenience. The “WSVM & RF + SA” approach is adopted 
in the detecting process for speed and convenience. When PM is larger than the threshold β , its corresponding 
candidate NC boundary pair is predicted as a putative NC.

Results
Predicting Performance of the method.  Prediction models based on strategy described above were 
built. Their effectiveness was also tested and shown below. (Prediction source code is available at SourceForge, 
with the download URL: https://​sourc​eforge.​net/​proje​cts/​ncpre​dicti​on/​files/​NCpre​dicti​on.​zip/​downl​oad).

Accuracy of the prediction of NC initiation and termination sites.  The performance of the predic-
tion models aimed at recognizing NC initiation and termination sites based on WSVM and RF were tested by 
fivefold cross-validation and shown in Table 1. From Table 1, we can find that the G −mean values of initiation 
sites and termination sites are above 0.9900 and 0.9548 respectively. The MCC values of initiation sites and 
termination sites are above 0.9735 and 0.9179 respectively. It indicates that both WSVM and RF models could 
generate satisfying results.

Accuracy of the prediction of NC.  All of the 77 retrovirus sequences collected with intact NC structures 
were used to test the predicting performance of different methods. Leave-one-out cross-validation is applied 
here to rule out random factors. We tested the performance of WSVM & RF, SA, blastp and their different com-
binations (please refer to S3 File for more details). The accuracy amount and rate of the prediction of initiation 
site, termination site and entire NC are shown in Table 2. We can find that the combination of machine learning 
methods and homology based methods could bring about better performance (prediction results of blastp is 
available at SourceForge, with the download URL: https://​sourc​eforge.​net/​proje​cts/​leave​oneou​tblas​tp/​files/​Blast​
leave​oneout.​zip/​downl​oad).

It is also worth mentioning that the “WSVM & RF + SA” method performs better when there is PM ≥ β 
( β = 0.82 here), which indicates that such method is reliable in detecting NCs in unannotated gags. A self-
consistency test was also performed with the “WSVM & RF + SA” method, 90.91% of the NCs could be predicted 
totally correct, the others are predicted with only slight deviations (please refer to S4 File for more details).

Putative NCs.  All of the 6041 available unannotated gag sequences were scanned with the “WSVM & 
RF + SA” model and 235 putative NCs in them were found (please refer to S5 File for more details, the putative 
NCs are marked in red).

Discussion
Conservative property of NC boundaries.  Motifs of sequences adjacent to origins and terminals of NCs 
in ERVs were generated based on WebLogo version 2.8.2 (http://​weblo​go.​berke​ley.​edu/​logo.​cgi) and shown in 
Fig. 1. From Fig. 1, we can find that sequences adjacent to NC boundaries are quite conservative. This explains 
why satisfying predicting results could be generated from models built on starts and ends of NC.

Table 1.   Predicting performance of models applying WSVM & RF on initiation and termination sites of NCs.

NC Boundary Type Algorithm Sn Sp G-mean Accuracy MCC

NC Initiation site
WSVM 0.9869 0.9932 0.9900 0.9922 0.9735

RF 1.0000 0.9974 0.9986 0.9978 0.9923

NC Termination site
WSVM 0.9227 0.9881 0.9548 0.9771 0.9179

RF 0.9481 1.0000 0.9737 0.9913 0.9687

Table 2.   Predicting performance of different methods on NCs.

Prediction method NC sample set
Init Acc 
amount

Init Acc 
rate

Term Acc 
amount

Term Acc 
rate

NC Acc 
amount

NC Acc 
rate

blastp All 77 56 72.73% 66 85.71% 47 61.04%

SA All 77 61 79.22% 65 84.42% 51 66.23%

WSVM&RF All 77 61 79.22% 61 79.22% 53 68.83%

SA + blastp All 77 64 83.12% 65 84.42% 54 70.13%

WSVM&RF + SA All 77 65 84.42% 64 83.12% 54 70.13%

WSVM&RF + blastp All 77 66 85.71% 65 84.42% 56 72.73%

WSVM&RF + SA + blastp All 77 67 87.01% 65 84.42% 57 74.03%

WSVM&RF + SA 66 with large PM 59 89.40% 59 89.40% 52 78.79%

https://sourceforge.net/projects/ncprediction/files/NCprediction.zip/download
https://sourceforge.net/projects/leaveoneoutblastp/files/Blastleaveoneout.zip/download
https://sourceforge.net/projects/leaveoneoutblastp/files/Blastleaveoneout.zip/download
http://weblogo.berkeley.edu/logo.cgi
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Feature importances.  The random forest classifier with its associated gini feature importance, allows for 
an explicit feature elimination21. Thus random forest classifier is utilized to calculate the feature importances 
of the FASGAI amino acid information. The feature importances of the 6 factors of FASGAI is shown in Fig. 2.

Deep learning algorithm.  Along with the rapid development of deep learning these years, it is natural 
to try to use deep learning algorithms such as convolutional neural network (CNN) to solve the prediction of 
NCs. A CNN model was also built to solve the problem. The optimized model structure is shown in Fig. 3. The 
model contains only 6 convolutional layers, thus could be considered as a relatively simple CNN. However, the 
performance of the CNN model is not comparable with the“WSVM & RF + SA” approach, even though its train-
ing is much more time consuming. The detailed results were shown in Table 3, from which we could find that Sn 
rises along with the increase of fold number, while still not comparable with the Sn generated by WSVM or RF 
(shown in Table 1). The reason of this phenomenon is that deep learning algorithms contains more parameters 
to be iterated during the training process, but in this case, the sample size is not enough for the sufficient training 
of the parameters, so the“WSVM & RF + SA” approach suits better.

Optimization of model parameters.  Model parameters should be optimized until the model could 
bring out the best predicting performance. As with the WSVM & RF models, we adopted grid search to traverse 
the parameter space. The parameters that could bring out the highest value of G-mean were considered as the 
optimized combination of parameters. Since rerunning the model with one set of parameter combination for 
several times would compensate random factors with each other, another loop was added to the program to rule 
out arbitrary and capricious behaviours. As with the size of the sliding window in the putative NC detection 
process, the predicting performance of the “WSVM & RF + SA” method with different window lengths is tested 
and briefly shown in Table 4 (please refer to S6 File for more details). 16 was found to be an optimized value.

Figure 1.   Motifs of residues adjacent to boundaries of NCs in ERV sequences. It shows motifs of surrounding 
residues of (A) NC initiation sites, (B) NC termination sites.

Figure 2.   The feature importance of 6 factors of FASGAI.
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Evolutionary relationship analyses.  Evolutionary analyses were conducted in MEGA722. The evolu-
tionary history was inferred using the Neighbor-Joining method23. The evolutionary distances were computed 
using the Poisson correction method24 and are in the units of the number of amino acid substitutions per site. 
A comparison result between homology of NCs within genera and that of inter-genera is given in Fig. 4. It is 
obvious that NCs in the same genus are more homologous than that from different genera. This is identical with 

Figure 3.   The model summary of the CNN model.

Table 3.   Predicting performance of models applying CNN on initiation and termination sites of NCs.

NC Boundary Type Fold Number Sn Sp G-mean

NC Initiation site

fivefold 0.6195 0.9717 0.7759

tenfold 0.6522 0.9413 0.7835

leave-one-out 0.6957 0.9587 0.8167

NC Termination site

fivefold 0.5978 0.9348 0.7475

tenfold 0.6304 0.9370 0.7686

leave-one-out 0.6739 0.9565 0.8029
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Table 4.   Predicting performance of WSVM&RF + SA method with different window lengths.

WindowLength Init Acc amount Init Acc rate Term Acc amount Term Acc rate NC Acc amount NC Acc rate

1 0 0% 1 1.30% 0 0%

2 10 12.99% 11 14.29% 0 0%

3 39 50.65% 43 55.84% 32 41.56%

4 58 75.32% 64 83.12% 49 63.64%

5 43 55.84% 64 83.12% 35 45.45%

6 58 75.32% 64 83.12% 50 64.94%

7 58 75.32% 64 83.12% 49 63.64%

8 58 75.32% 64 83.12% 49 63.64%

9 55 71.43% 61 79.22% 42 54.55%

10 62 80.52% 61 79.22% 50 64.94%

11 63 81.82% 63 81.82% 53 68.83%

12 58 75.32% 63 81.82% 47 61.04%

13 63 81.82% 60 77.92% 51 66.23%

14 62 80.52% 63 81.82% 51 66.23%

15 61 79.22% 65 84.42% 51 66.23%

16 65 84.42% 64 83.12% 54 70.13%

17 60 77.92% 65 84.42% 50 64.94%

18 64 83.12% 64 83.12% 53 68.83%

19 61 79.22% 65 84.42% 51 66.23%

20 62 80.52% 65 84.42% 52 67.53%

Figure 4.   The evolutionary relationship of NCs in retroviruses. The leaf nodes denote annotated NCs in the 
benchmark dataset, and the edge lengths describe the phylogenic relationship between these nodes.
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expectation and implies that genus-specified NC prediction methods could be brought up in the future to fur-
ther enhance predicting performance when more annotated NCs are accumulated.

Future outlook.  The co-evolving information in the protein sequences is also verified to be useful for cap-
turing the characteristics of proteins sequences25–27. Although these attempts were generally made in the area of 
protein–protein interactions (PPIs) instead of the prediction of functional elements, their basic idea to utilize co-
evolving information do provide some enlightenment in the process of feature engineering, which might benefit 
us in our future research. Moreover, when more annotated NC sequences accumulate, the performance of deep 
learning algorithms could be improved since there would be enough information for the parameter iteration.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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