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Abstract: Viral entry into host cells is a critical step in the viral life cycle. HIV-1 entry is mediated by
the sole surface envelope glycoprotein Env and is initiated by the interaction between Env and the
host receptor CD4. This interaction, referred to as the attachment step, has long been considered an
attractive target for inhibitor discovery and development. Fostemsavir, recently approved by the
FDA, represents the first-in-class drug in the attachment inhibitor class. This review focuses on the
discovery of temsavir (the active compound of fostemsavir) and analogs, mechanistic studies that
elucidated the mode of action, and structural studies that revealed atomic details of the interaction
between HIV-1 Env and attachment inhibitors. Challenges associated with emerging resistance
mutations to the attachment inhibitors and the development of next-generation attachment inhibitors
are also highlighted.

Keywords: fostemsavir; temsavir; attachment inhibitors; HIV-1 entry; crystal structures; antiviral ac-
tivity

1. Introduction

Human immunodeficiency virus type 1 (HIV-1), a retrovirus that integrates its ge-
netic information into host cells upon infection, can lead to acquired immunodeficiency
syndrome (AIDS) if not treated [1]. Currently, there are roughly 38 million people glob-
ally living with HIV-1 (UNAIDS 2020 Fact Sheet) [2]. Seven classes of antiretroviral
drugs, including protease inhibitors [3,4], nucleoside/nucleotide reverse transcriptase
inhibitors (NRTIs) [5], non-nucleoside reverse transcriptase inhibitors (NNRTIs) [6], inte-
grase inhibitors [7,8], post-attachment inhibitors [9], CCR5 antagonists [10], and fusion
inhibitors [11] have been currently approved for the treatment of HIV-1 infection. Due to
the high genetic diversity of HIV-1, monotherapy of any of the approved HIV-1 treatments
usually leads to a selection of resistance mutations [12]. Combination antiretroviral therapy
(cART) that utilizes drugs from more than one class of HIV-1 drugs has proven to be very
effective in controlling viral loads in HIV-1+ patients, rendering HIV-1 infection a lifelong
chronic disease that is manageable for patients who have access to cART (~26 million
patients based on the UNAIDS 2020 Fact Sheet) [13,14]. However, after decade-long cART
treatment, patients can develop resistance to multiple classes of currently approved drugs
and face viral rebound and disease progression [13,14].

A newly FDA-approved antiretroviral drug, fostemsavir (brand name Rukobia), rep-
resents a new class of inhibitors referred to as attachment inhibitors. In the literature, the
term “entry inhibitor” has sometimes been used to collectively refer to the four classes
of inhibitors that target the HIV-1 entry process, including attachment inhibitors, post-
attachment inhibitors, CCR5 antagonists, and fusion inhibitors (Table 1). Fostemsavir
and other attachment inhibitors block HIV-1 entry by using a unique mechanism leading
to low cross-resistance with other antiretroviral drug classes and thus was approved for
use in highly treatment-experienced patients who develop drug resistance to currently
approved drugs and have limited treatment options. The discovery, development, mode
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of inhibition, and drug resistance of fostemsavir and related attachment inhibitors are
reviewed in this article.

Table 1. Currently approved antiretroviral drugs for HIV-1 treatment.

Drug Class Generic Name (Other Names and Acronyms) Brand Name

NRTIs

abacavir (abacavir sulfate, ABC) Ziagen
emtricitabine (FTC) Emtriva
lamivudine (3TC) Epivir

tenofovir disoproxil fumarate (tenofovir DF, TDF) Viread
zidovudine (azidothymidine, AZT, ZDV) Retrovir

NNRTIs

doravirine (DOR) Pifeltro
efavirenz (EFV) Sustiva
etravirine (ETR) Intelence

nevirapine (extended release nevirapine, NVP) Viramune/XR
rilpivirine (rilpivirine hydrochloride, RPV) Edurant

Protease Inhibitors

atazanavir (atazanavir sulfate, ATV) Reyataz
darunavir (darunavir ethanolate, DRV) Prezista

fosamprenavir (fosamprenavir calcium, FOS-APV, FPV) Lexiva
ritonavir (RTV) Norvir

saquinavir (saquinavir mesylate, SQV) Invirase
tipranavir (TPV) Aptivus

Integrase Inhibitors
cabotegravir (cabotegravir sodium, CAB) Vocabria
dolutegravir (dolutegravir sodium, DTG) Tivicay
raltegravir (raltegravir potassium, RAL) Isentress

En
tr

y
In

hi
bi

to
rs

Fusion Inhibitors enfuvirtide (T-20) Fuzeon
CCR5 Antagonists maraviroc (MVC) Selzentry

Post-attachment Inhibitors ibalizumab-uiyk
(Hu5A8, IBA, Ibalizumab, TMB-355, TNX-355) Trogarzo

Attachment Inhibitors fostemsavir (fostemsavir tromethamine, FTR) Rukobia

2. HIV-1 Entry into Host Cells

The HIV envelope protein (Env) is the only glycoprotein displayed on the surface
of the HIV virion [15–17]. Env forms a trimer, where each protomer is composed of a
heterodimer of gp120 and gp41 subunits that non-covalently associate together [18,19].
The gp120 subunit is responsible for recognizing and binding to the receptor CD4 on CD4+

T cells and macrophages [20]. The binding of CD4 leads to conformational changes and
exposure of the coreceptor binding site, which can then engage the coreceptors, CCR5
or CXCR4 [21,22]. The binding of CD4 and a coreceptor result in the shedding of gp120,
and subsequent conformational changes in gp41 lead to the fusion of viral and host cell
membrane, allowing the entry of the HIV capsid and genome into host cells [23,24]. The
entry process (Figure 1) is a critical aspect of the HIV-1 life cycle and a target of many
therapeutic strategies, including but not limited to small molecule inhibitors and antibody
modalities [25,26].

FDA-Approved Drugs Targeting HIV-1 Entry

Two antiretroviral drugs, maraviroc and enfuvirtide, target different steps of the HIV
entry process. Maraviroc, which is a CCR5 antagonist, binds to the coreceptor CCR5 and
prevents CCR5 from binding to the CD4-bound Env [27]; enfuvirtide binds to gp41 and
prevents the conformational changes of gp41 that are required for membrane fusion to
occur [28]. Significant limitations are associated with the use of maraviroc and enfuvirtide—
maraviroc is only effective against CCR5-tropic HIV-1 viruses, and enfuvirtide requires
twice-daily intravenous injection due to its nature as a peptide drug.

An antibody inhibitor, ibalizumab, was approved by the US FDA in 2018 for the
treatment of HIV-1 infection in patients who developed multi-drug resistance. Ibalizumab
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binds to domain 2 of the CD4 receptor and thus is classified as a post-attachment inhibitor
which allows HIV-1 Env to bind to domain 1 of CD4 but prevents the downstream steps
required for the entry to occur [29]. Due to its unique mode of action compared to other
entry inhibitors, ibalizumab has been designated a first-in-class medication by the US FDA.

Figure 1. The HIV-1 entry process and FDA-approved drugs inhibiting this process. The HIV-1 entry is a complex process
involving many steps. Four FDA-approved drugs targeting different steps of the HIV-1 entry are shown. These include
fostemsavir that blocks CD4 binding (attachment inhibitor class), ibalizumab targeting the domain II of CD4 receptor
(post-attachment inhibitor class), maraviroc binding to CCR5 coreceptor (CCR5 antagonist class), and enfuvirtide binding to
gp41 (fusion inhibitor class). Figure was prepared in BioRender.

3. Discovery, Clinical Trials, and FDA Approval of Fostemsavir

Fostemsavir was approved by the FDA in 2020 for the treatment of HIV-1 infection
in heavily treatment-experienced patients who developed resistance to multiple existing
antiretroviral drugs. Temsavir (previously BMS-626529), the active compound of the
prodrug fostemsavir (previously BMS-663068/GSK-3684934), was discovered by a research
group in Bristol Myers Squibb in 2003 [30,31]. A phenotypic inhibition assay was set up to
screen libraries of compounds that can prevent a pseudotyped reporter virus, which has
an HIV-1 LAI-∆env-luc backbone supplemented with a JRFL (an M-tropic HIV-1 strain)
Env protein in trans, leading to virions that were only capable of one round of replication,
from infecting HELA cells expressing a CD4 receptor and a CCR5 coreceptor. An indole
glyoxamide compound was identified to have strong inhibition of luciferase expression in
this phenotypic assay.

Due to the nature of the phenotypic inhibition assay, the identified inhibitor could
inhibit the pseudotyped virus at various stages, including the entry and capsid uncoating
processes, the reverse transcription of viral mRNA to complementary DNA, integration
of the complementary DNA into the host genome, and the transcription and translation
of the luciferase reporter protein. In addition, because the target HELA cells expressed
CCR5 coreceptor, the inhibitors identified could specifically target the interactions between
CCR5 and HIV-1 Env and thus be dependent on the tropism of specific HIV-1 viruses.
Extensive studies were carried out to elucidate the mode of action of the indole glyoxamide.
Several lines of evidence suggested that the indole glyoxamide inhibits the HIV-1 envelope
protein: (1) the compound inhibits infection of HELA cells expressing CD4 and CXCR4 by
pseudotyped viruses derived by T-tropic HIV-1 LAI strain; (2) in biochemical assays, the
compound showed no inhibition to HIV-1 reverse transcriptase, protease, and integrase;
(3) the time-of-addition in a single-cycle infection assay showed that the indole glyoxamide
had reduced activity if added >30 min after infection, suggesting the compound inhibits
HIV-1 at an early stage of the life cycle; (4) the compound is capable of inhibiting a virus-
free cell-based fusion assay where the fusion of cells expressing HIV-1 envelope protein
and those expressing CD4 and CXCR4 is inhibited in the presence of the compound. It was
concluded that the target of the indole glyoxamide is the HIV-1 envelope protein [30].



Viruses 2021, 13, 843 4 of 12

Clinical Development of Indole Glyoxamide Inhibitors

The initially identified indole glyoxamide was systematically optimized by structure-
activity relationship (SAR) studies, leading to a series of derivatives and analogs that had
significantly improved antiviral activities and pharmaceutical profile [31]. Three compounds
derived from the indole glyoxamide, including BMS-378806, BMS-488043, and BMS-626529,
had entered clinical trials for safety and efficacy studies. Although only the three indole
glyoxamide-derived compounds that entered clinical trials are reviewed here, it is noted
that a tremendous amount of efforts were devoted to optimizing the medicinal chemistry of
temsavir. A comprehensive review of the SAR studies that were carried out to obtain the
potent temsavir from the initially identified indole glyoxamide can be found in [32].

The first clinical candidate derived from the indole glyoxamide, BMS-378806, has a
4-methoxy 7-azaindole linked to 2-(R)-methylpiperazine through the oxoacetyl functional
group identified in the original indole glyoxamide (see Figure 2 for structures). BMS-378806
exhibits no tropism specificity and significantly improved potency across a panel of clinical
isolates compared to the original indole glyoxamide in vitro; however, virus passage under
the presence of a high concentration of BMS-378806 showed that the virus can establish
resistance with mutations M426L, M434I/V, and M475I [33,34]. Furthermore, there is a
30-fold variability in potency across the HIV-1 strains tested [33]. Phase I dose-escalation
studies in healthy adults showed generally good tolerability of BMS-378806, but the plasma
concentration of the drug was below that targeted for efficacy studies [35], and thus further
development of BMS-378806 was halted.Figure 2

Figure 2. Chemical structures of temsavir and analogues. 2D chemical structures are shown for each compound. 3D structures of 
BMS-378806, BMS-626529 (temsavir), BMS-818251 and compound 484 in complex with HIV-1 envelope protein have been 
determined (see Figure 3). Compounds 87 and 88 were based on the numbering from reference [22]. Computational model of 
compounds 87 and 88 in complex with HIV-1 Env are also available in reference [22].

BMS-378806 BMS-488043 BMS-626529
(temsavir)

BMS-663068
(fostemsavir)

BMS-818251 compound 484 compound 87 compound 88

Figure 2. Chemical structures of temsavir and analogues. Two-dimensional chemical structures are shown for each
compound. Three-dimensional structures of BMS-378806, BMS-626529 (temsavir), BMS-818251, and compound 484 in
complex with HIV-1 envelope protein have been determined (see Figure 3). Compounds 87 and 88 were based on the
numbering from reference [32]. Computational models of compounds 87 and 88 in complex with HIV-1 Env are also
available in reference [32].
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Further medicinal chemistry optimization led to the discovery of BMS-488043, a 4,7-
dimethoxy-azaindole with a nitrogen at the C6 position of the azaindole and the remainder
of the compound identical to the original indole glyoxamide (Figure 2). BMS-488043
exhibited a moderate improvement in antiviral potency and a significant improvement in
pharmaceutical profile [36], including increased in vitro metabolic stability and membrane
permeability and a better pharmacokinetic profile when compared to BMS-378806. In a
Phase I clinical trial, it was determined that dosing BMS-488043 with a high-fat meal led
to a linear dose-response of plasma drug concentration. Thus, in a following clinical trial
testing the efficacy of BMS-488043 in HIV-1-infected patients, doses of 800 and 1800 mg of
BMS-488043 with a high-fat meal following a twice-daily schedule were selected to provide
proof of concept of an attachment inhibitor as monotherapy in an 8-day period [37]. On day
8, the mean decline of plasma viral load was 0.72 and 0.96 log10 copies/mL for the 800 mg
and 1800 mg dose groups, respectively, representing a significant decrease when compared
to the placebo group (a decrease of 0.02 log10 copies/mL). Thus, the attachment inhibitor
was approved to be effective in reducing viral load as a monotherapy. However, the
emergence of viral resistance was observed in four out of thirty subjects, evidenced by the
more than 10-fold reduction of viral susceptibility by the end of the dosing period. Similar
to what was observed in the in vitro passage experiment in the presence of BMS-378806
(see above), the M426L of HIV-1 Env was identified as one of the emerging resistance
mutations in HIV-1 infected patients treated with BMS-488043. In addition, V68A, L116I,
and S375I/N were also identified to correlate with resistance based on population-based
sequencing of the HIV-1 Env gene [38].

Despite the efficacy of BMS-488043 in reducing viral loads in a monotherapy clinical
trial, the needs to dose the drug with a high-fat meal to increase the solubility of BMS-
488043 in plasma and the high dose level (800–1800 mg twice daily) required to achieve
the target plasma concentration were significant challenges for further development. A
solution to the solubility issue was found in the phosphonooxymethyl-based prodrug ap-
proach [36], which was previously utilized in antifungal drug candidates [39]. The prodrug
has increased solubility in the gastrointestinal tract due to the polar phosphonooxymethyl
functional group and was designed to be cleaved by an alkaline phosphatase present on the
brush border membrane to release the parent drug before absorption by intestine endothe-
lial cells. Indeed, the BMS-488043 prodrug showed a 300-fold improvement in solubility
(12 mg/mL at pH = 5.4 versus 0.04 mg/mL at a pH range from 4 to 8) compared to the
parent drug BMS-488043. A clinical pharmacokinetic study showed that the BMS-488043
prodrug led to the dose-proportional exposure of BMS-488043 in the plasma for doses rang-
ing from 25 to 800 mg. At the equivalent dose of 800 mg, the BMS-488043 prodrug showed
a 6-fold higher Cmax (maximum concentration) in plasma than the parent drug dosed with
a high-fat meal and a 3-fold higher AUC (area-under-curve). However, the tmax of the
BMS-488043 prodrug is much earlier, between 0.5 and 1 h, with a half-life of 1.5 ± 0.2 h,
much shorter than the parent drug dosed in a capsule formulation (~10 h), indicating that
an extended-release formulation of the BMS-488043 prodrug will be beneficial for a longer
protection window [36].

While BMS-488043 and its prodrug were tested in clinical trials, a more potent com-
pound, BMS-626529 (temsavir), was discovered through thoughtful SAR campaigns [40].
BMS-626529 differs from BMS-448043 in that BMS-626529 has a 3-methyl-1,2,4 triazole
linked to the C7 position of the C6 substituted azaindole, where the C7 position on the
azaindole of BMS-448043 was linked to a methoxy functional group (Figure 2). It has been
concluded from extensive SAR studies that derivatives possess higher antiviral potency
when the functional group linked to the C7 position maintains a coplanar arrangement
with the indole heterocycle [41]. BMS-626529 has an overall ~10-fold improvement in
antiviral potency when tested in vitro against a panel of laboratory-adapted and clinical
HIV-1 isolates. Notably, HIV-1 clade AE viruses are resistant to BMS-626529, as well as its
predecessors, including BMS-488043 and BMS-378806 [42].
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The significantly improved antiviral potency and well-behaved pharmaceutical pro-
file of BMS-626529 rendered this compound a favorable clinical candidate over BMS-
488043 [43]. The phosphonooxymethyl prodrug approach initially developed for BMS-
488043 was applied to BMS-626529, leading to the BMS-663068 prodrug as a phospho-
nooxymethyl tris(hydroxymethyl)-aminomethane salt. The conversion of BMS-663068
prodrug (fostemsavir) to the parent drug BMS-626529 was efficient after oral adminis-
tration with virtually no prodrug detectable in the plasma. However, the half-life of
BMS-626529, delivered as BMS-663068, was only 1.5 h, necessitating administering the
drug at least every 8 h in order to achieve the target plasma concentration. Hence, an
extended-release formulation was developed to overcome this obstacle (for details of the
extended-release formulation development for BMS-663068, see reference [44]).

The extended-release formulation of prodrug BMS-663068 was first evaluated in an 8-
day monotherapy Phase 1b clinical trial where good overall efficacy was demonstrated [45].
Subjects with baseline susceptibility (IC50 < 100 nM toward the parent drug BMS-626529
by using the PhenoSense HIV-1 Entry Assay) responded well, leading to a maximum
median decline between 1.21 and 1.73 log10 copies/mL. The successful proof-of-concept
Phase 1b clinical trial enabled the initiation of a Phase 2b clinical trial where BMS-663068
in combination with TDF and RAL (see Table 1 for drug name abbreviation) was compared
to ritonavir-boosted ATV in combination with TDF and RAL in treatment-experienced
HIV-1 patients. At week 24, it was observed that the two arms of the Phase 2b study had
comparable efficacy at achieving a viral load of <50 copies/mL, leading to a conclusion
that BMS-663068 has the desired properties of safety and efficacy to proceed into late-stage
clinical studies [46]. In a pivotal Phase 3 clinical trial (BRIGHTE; NCT02362503), highly
treatment-experienced patients with multidrug resistance were recruited to test the efficacy
of BMS-668063 [47]. Success was achieved at the primary endpoint where patients treated
with BMS-663068 in combination with failing regimen exhibited statistical superiority in
viral reduction over placebo added to failing regimen over an 8-day treatment window
(0.79 log10 copies/mL versus 0.17 log10 copies/mL; p < 0.0001).

4. Mode of Action and Structural Basis of Inhibition for Temsavir and Analogues

Early studies following the identification of inhibitors of the temsavir family demon-
strated the target of these inhibitors to be the HIV-1 envelope protein (see above). However,
because the HIV-1 Env can undergo a series of conformational changes during viral entry,
it was not immediately clear what was the mode of action for the temsavir family of com-
pounds to achieve inhibition. Detailed biochemical studies showed that temsavir and its
analogs bind to gp120 and stabilize gp120 in a conformation that is incapable of binding to
the CD4 receptor [33,48]. It has also been suggested that under certain conditions, CD4 can
bind to temsavir bound to gp120 [49]. However, in one way or another, temsavir binding
prevents the conformational changes required for the eventual exposure of gp41 for fusion.

Based on biochemical data, SAR insights, and resistance mutations observed in vitro
and in vivo, computational models of temsavir related inhibitors in complex with HIV-1
gp120 have been proposed to provide a structural basis of the inhibition [50,51]. In these
models, the temsavir inhibitor was predicted to bind adjacent to the CD4 binding loop and
β20-β21 hairpin (site 2 in Figure 3b), providing a plausible mechanism where temsavir and
related compounds stabilize the gp120 by preventing the rearrangement of the β20-β21
hairpin from forming the bridging sheet which is critical for CD4 receptor binding.
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Figure 3. Binding sites of temsavir and related compounds on HIV-1 Env. (a) One protomer of the Env trimer is shown
as ribbon with transparent surface, while the other two protomers are shown as solid surfaces in green and blue. CD4
binding site is shown as yellow surface patch. A temsavir analog BMS-818251 is represented as orange spheres. (b) Two
partially overlapping but distinct inhibitor binding sites are present in the vicinity of CD4 binding site. Inhibitors with
available complex structures are shown superimposed. Inhibitors binding to site 1 are colored in orange/brown shades and
include BMS-626529 (temsavir; PDB: 5U7O), BMS-378806 (PDB:6MTJ), BMS-818251 (PDB:6MU7), BMS-814508 (PDB:6MU6),
BMS-386150 (PDB:6MU8) and compound 484 (PDB:6MTN). Inhibitors binding to site 2 are colored in blue/purple shades
and include NBD-556 (PDB:3TGS), NBD-10007 (PDB: 4DKV), and DMJ-II-121 (PDB: 4I53). Detailed interactions between
HIV-1 Env and BMS-378806, BMS-626529 (temsavir), and BMS-818251 are shown in panels (c–e), respectively. b20-b21
hairpin (residues 423–436) is shown as green ribbon. The C-terminus of a1 helix (residues 107–117) is shown as cyan ribbon,
and part of CD4-binding loop (residues 369–385) is shown as magenta ribbon. The b20-b21 hairpin is removed in the lower
panels of (c–e) for clarity. HIV-1 Env residues that interact directly with inhibitors are shown as sticks with residue type and
number labeled. Figure 3e was originally published in Nat Commun 10, 47 (2019) [52].

Cocrystal structures of the HIV-1 Env trimer ectodomain gp140 in complex with BMS-
378806 and BMS-626529 (Figure 3c,d) were later determined to provide high-resolution
structural details of inhibitor binding. Utilizing a prefusion stabilized HIV-1 Env ectodomain
construct gp140 SOSIP, which was liganded with two neutralizing antibody fragments
35O22 and PGT122, complex structures were determined to a resolution of ~3.0–3.5 Å [53].
The cocrystal structures are consistent with the previous prediction that the inhibitor bind-
ing site is close to the CD4 binding loop and β20-β21 hairpin; however, several unexpected
structural features were uncovered in the crystal structures. First, the inhibitors were
mostly covered by the β20-β21 hairpin leaving only small solvent-accessible surfaces on
the inhibitors in the complex structures (site 1 in Figure 3b). This binding mode suggests
that the inhibitors might dock into the binding pocket when the β20-β21 hairpin transiently
opens to sample a conformation compatible with CD4 binding. Once an inhibitor enters the
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binding pocket, it forms interactions with the β20–β21 hairpin, preventing (or reducing the
frequency of) β20–β21 hairpin conformational changes. Secondly, as a consequence of the
observed binding mode, the inhibitors prevent the formation of the water channel observed
in the CD4-bound gp120 structure. Concurrently, due to the presence of the inhibitor, the
sidechain of W427 was pushed into a position that was occupied by the sidechain of F43
in the CD4-bound gp120 structure, eliminating a site that accommodates the F43 of CD4.
Thirdly, the azaindole heterocycle points toward the alpha-helix 2, making the inhibitor
pose significantly different from the previously proposed computational models. In this
orientation, the azaindole NH forms a hydrogen bond with the side chain of D113 on the α1
helix. Overall, the cocrystal structures, consistent with previously generated biochemical
data and resistance mutations observed in vitro and in vivo, provided mechanistic insights
into the HIV-1 inhibition by temsavir and related compounds.

5. Next Generation Inhibitors: Potent Temsavir Analogues

Temsavir (administered as prodrug fostemsavir) is the first-in-class attachment in-
hibitor, acting through an inhibition mechanism distinct from other FDA-approved an-
tiretroviral drugs. More potent derivatives or analogs of temsavir will provide added
benefits of broader coverage and prevention of emergent resistance mutations by in-
creasing genetic barrier, as demonstrated by temsavir (BMS-626529) when compared to
early-generation clinical candidates, such as BMS-488043.

BMS-818251 is a temsavir analog with >10-fold improved in vitro antiviral potency
compared to temsavir, as demonstrated in a pseudotyped virus panel composed of 208
clinical HIV-1 strains [52]. With a cyano alkene replacing an amide in the benzoyl functional
group of temsavir, and a thiazole substituent replacing the triazole in the 6-azaindole core,
a prominent feature of BMS-818251 is a long extension from the thiazole (Figure 2). In a
cocrystal structure of BMS-818251 in complex with gp160 SOSIP, this long extension forms
productive interactions with D113, R429, and Q432 of Env from the BG505 strain, while
preserving other interactions observed in the temsavir cocrystal structure, providing a
structural basis of improved potency (Figure 3e). Notably, temsavir is very ineffective in
inhibiting clade AE viruses, while BMS-818251 showed at least a 40-fold improvement in
inhibiting clade AE viruses in the pseudotyped virus neutralization assay. Two additional
compounds designated 87 and 88 have been proposed to be able to engage and interact with
D113 or K117 through a long extension from the 6-azaindole core based on computation
modeling [32]. Interestingly, the functional groups in compounds 87 and 88 extending
from the 6-azaindole core were rather rigid in contrast to the more flexible functional
group in BMS-818251. Initially, antiviral assays showed that these two compounds had
a 10-fold more potent antiviral activity than temsavir in a small panel of pseudotyped
viruses composed of clade B, C, and D HIV-1 strains.

The N,N’-difunctionalized piperazine building block in the temsavir family of in-
hibitors has been used to construct a library of chemical probes to study the dynamic
properties of the β20-β21 hairpin as a regulatory switch in controlling Env structural
rearrangement during entry [54]. Compound 484 (Figure 2) in this library has been de-
termined to possess low micromolar activity toward a panel of 14 HIV-1 strains of clades
A, B, C and D. Interestingly, despite the moderate inhibition activity, a cocrystal structure
of compound 484 in complex with BG505.SOSIP showed that the piperazine ring of 484
occupied the same site within the binding pocket (site 1 in Figure 3b) as the piperazine
ring in the BMS-818251 cocrystal structure [52], suggesting that the piperazine ring is a
common building block for inhibitors that bind to this pocket beneath the β20-β21 hairpin.

A separate binding pocket in close proximity to the temsavir binding pocket has been
identified as the binding site for several entry inhibitors, including CD4 mimicking small
molecule inhibitors (site 1 in Figure 3b). The cocrystal structures of NBD-556 and DMJ-II-
121 in complex with gp120 showed that these inhibitors bound to a cavity in between the
β20-β21 hairpin and the CD4 binding loop [55–57]. This cavity would accommodate the
Phe43 residue of the CD4 receptor in the gp120-CD4 complex structure and thus provides
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evidence that inhibitors directly related to NBD-556 and DMJ-II-121 inhibit HIV-1 by
directly competing with CD4 binding. However, in general, NBD-556 and DMJ-II-121 have
micromolar range antiviral activity while temsavir has nanomolar range potency. Overall,
these structures highlight that two distinct binding pockets close to the β20-β21 hairpin
are present for attachment inhibitor binding and can serve as a basis for the development
of next-generation attachment inhibitors. Attachment inhibitors that exploit the features
of both binding pockets might have superior antiviral activity than current attachment
inhibitors.

6. Conclusions

The newly FDA-approved fostemsavir represents the first-in-class drug in the at-
tachment inhibitor class for HIV-1 treatment. Due to the relatively high dose and the
requirement for an extended-release formulation, it poses significant challenges to develop
fostemsavir as part of combination antiretroviral therapy for early line treatment. However,
the novel mode of inhibition with no cross-resistance to currently available antiretroviral
classes and favorable drug-drug interaction profile has made the approval of fostemsavir an
important advancement to address the unmet need in highly treatment-experienced HIV-1
patients who have limited treatment options due to multidrug resistance. Mechanistic
studies elucidated that temsavir binds to a pocket close to the CD4 binding site, providing
a structural basis of how inhibition of attachment is achieved. Further development of
inhibitors in the temsavir family will need to address the low antiviral potency against
clade AE viruses. A broad spectrum temsavir derivative or analog with improved overall
antiviral potency will further increase the genetic barrier for emerging resistance mutations,
leading to superior next-generation attachment inhibitors.

In this review, we focused the discussion on small molecule inhibitors that interfere
with the CD4 attachment step; however, protein-based inhibitors are also being actively
developed to achieve the same outcome—namely, the inhibition of HIV-1 entry by in-
terfering with the interaction between HIV-1 Env and the CD4 receptor. CD4-binding
site broadly neutralizing antibodies, such as VRC01 [58–60], N6 [61] (ClinicalTrials.gov
Identifier: NCT03538626), and 3BNC117 [62–64], are currently at different stages of clinical
trials for HIV-1 infection treatment and/or prevention. In addition, it has been shown that
soluble CD4 ectodomains can prevent the interaction between HIV-1 Env and the genuine
CD4 receptors located on the target cell surface. An engineered fusion protein composed
of human immunoglobulin constant regions and CD4 domains 1 and 2, designated CD4-Ig
(and the improved version eCD4-Ig), have shown extraordinary breadth and potency
against HIV-1 isolates [65–67]. A related strategy of utilizing CD4 decoys displayed on
nanoparticle surfaces has been recently reported [68]. Protein-based attachment inhibitors,
together with the small-molecule attachment inhibitors reviewed here, illustrate the attach-
ment step of HIV-1 entry to be a valuable target in developing an armory to address the
ever-increasing need against HIV-1 infection.
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