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Deep learning for necrosis 
detection using canine perivascular 
wall tumour whole slide images
Taranpreet Rai1*, Ambra Morisi2, Barbara Bacci5, Nicholas J. Bacon6, Michael J. Dark7, 
Tawfik Aboellail8, Spencer Angus Thomas4,9, Miroslaw Bober1, Roberto La Ragione2,3 & 
Kevin Wells1

Necrosis seen in histopathology Whole Slide Images is a major criterion that contributes towards 
scoring tumour grade which then determines treatment options. However conventional manual 
assessment suffers from inter-operator reproducibility impacting grading precision. To address this, 
automatic necrosis detection using AI may be used to assess necrosis for final scoring that contributes 
towards the final clinical grade. Using deep learning AI, we describe a novel approach for automating 
necrosis detection in Whole Slide Images, tested on a canine Soft Tissue Sarcoma (cSTS) data set 
consisting of canine Perivascular Wall Tumours (cPWTs). A patch-based deep learning approach was 
developed where different variations of training a DenseNet-161 Convolutional Neural Network 
architecture were investigated as well as a stacking ensemble. An optimised DenseNet-161 with post-
processing produced a hold-out test F1-score of 0.708 demonstrating state-of-the-art performance. 
This represents a novel first-time automated necrosis detection method in the cSTS domain as well 
specifically in detecting necrosis in cPWTs demonstrating a significant step forward in reproducible 
and reliable necrosis assessment for improving the precision of tumour grading.

Canine Soft Tissue Sarcoma (cSTS) are a heterogeneous group of mesenchymal neoplasms that derive from tis-
sues of mesenchymal origin1–6. The anatomical site of cSTS varies significantly, but mostly involve the cutaneous 
and subcutaneous tissues7. Canine Soft Tissue Sarcoma (cSTS) are a large group that can be broken down into 
several subtypes, but are grouped together nonetheless, due to the similarities of microscopic and clinical features 
for each subtype. The general treatment of choice for cSTS is to surgically remove cutaneous and subcutaneous 
sarcomas, where they have a low re-occurrence rate after surgical excision. However, it is higher-grade tumours 
that can prove to be problematic leading to poorer prognosis and outcomes. Histological grade is the most impor-
tant prognostic factor in human Soft Tissue Sarcoma (STS), and is likely one of the most validated criteria to 
predict outcome following surgery in canine patients8–11. It is widely accepted that the histological grading system 
for cSTS is applied to all cSTS subtypes to adopt simplicity. However, there can also be an inconsistent naming of 
subtypes which can lead to a poor correlation between classification of tumours and their histogenesis (tissue of 
origin). This sometimes results in confusion for pathologists, therefore, highlighting a need for standardisation7. 
Due to poor agreement when identifying sarcoma subtypes, we are focusing on one common subtype found 
in canines: canine Perivascular Wall Tumours (cPWT). Canine Perivascular Wall Tumours (cPWT) arise from 
vascular mural cells and can be recognisable from their vascular growth patterns which include staghorn, pla-
centoid, perivascular whorling, and bundles from tunica media12,13.

The scoring for cSTS grading is broken down into three major criteria: differentiation, mitotic index and 
necrosis7. For the purposes of this paper, the study is focused on necrosis detection which is an important indi-
cator of disease progression and its severity.

A sub-field of machine learning known as deep learning is used for necrosis detection in this work. Such 
deep learning algorithms are abundant in the medical imaging field and especially digital pathology, assisting in 
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computer-aided diagnosis to classify images or automatically detect diseases. Deep learning has become increas-
ingly ubiquitous and has proven to be very successful in recent image classification tasks in digital pathology14–19. 
The digitisation of histological slides into Whole Slide Images (WSI) has created the field of digital pathology. The 
field of digital pathology has allowed cellular pathology labs to move into digital workflows20. This has resulted in 
a change in working practices as clinical pathologists are no longer required to be present at the same location as 
pathology equipment. Potential benefits of this innovation includes remote working across borders, collaborative 
reporting, and the curation of large teaching databases. Nevertheless, several pathology tasks remain exposed 
to inter-observer variability, where two or more pathologists will differ in their assessment of a histological 
slide16. As a result, there is much interest in improving and automating pathology workflows whilst promoting 
standardisation for scoring certain criteria within grading, with greater reproducibility. Automatic necrosis detec-
tion in cSTS could decrease viewing times for the pathologists and reduce inter- and intra-observer variability, 
positively impacting accuracy in the tumour’s diagnosis and prognosis.

The study presented here aimed to classify regions demonstrating necrosis against regions that do not, in 
canine Perivascular Wall Tumour (cPWT) Whole Slide Images (WSIs), by using deep learning models such 
as pretrained Convolutional Neural Networks (DenseNet-161). In the literature, relatively few authors have 
investigated necrosis detection using machine learning methods. As necrosis detection is typically an image 
classification task, depending on the image resolution and ”field of view” (size of image), necrosis detection 
can be considered a texture detection problem. Earlier work in necrosis detection applied machine learning 
methods where texture features were used for Support-Vector Machine (SVM) classification21. The same authors 
later published literature where deep learning was compared with traditional computer vision machine learn-
ing methods in digital pathology. For necrosis detection, their proposed deep learning Convolutional Neural 
Network (CNN) architecture performed best with an average test accuracy of 81.44%22. Another set of authors 
investigated necrosis detection comparing both an SVM machine learning model and deep learning for viable 
and necrotic tumour assessment in human osteosarcoma WSIs23. The aim was to label the regions of WSI into 
viable tumor, necrotic tumor, and non-tumor. For evaluation the Volume Under the Surface score (VUS) was 
computed for non-tumour versus viable tumour versus necrotic. Their models produced 0.922 and 0.959 VUS 
scores for SVM and deep learning models respectively. Nevertheless, these works do not investigate canine Soft 
Tissue Sarcoma (cSTS) and so this paper addresses whether such deep learning models can also positively impact 
necrosis detection in cSTS.

Several methods of training deep learning models were investigated in this work, such as a pretrained 
DenseNet-161 (with and without augmentations), an extension of training this model via hard negative mining, 
to reduce false positive (FP) predictions and a stacking ensemble model. To the best of our knowledge this is the 
first work in automated detection of necrosis in cPWTs, as well as in cSTS and thus this methodology could be 
used for the necrosis scoring in an automated detection and grading system for cSTSs. To our best of knowledge, 
these results represent the highest F1-scores in regard to cPWT necrosis detection to date.

Methods
Data description and patch extraction process.  A set of canine Soft Tissue Sarcoma (cSTS) histology 
slides obtained from the Department of Microbiology, Immunology and Pathology, Colorado State University 
were diagnosed by a veterinary pathologist. A senior pathologist at the University of Surrey confirmed the grade 
of each case (patient) and chose a representative histological slide for each patient. These slides were then digit-
ised using a Hamamatsu NDP slide scanner (Hamamatsu Nanozoomer 2.0 HT) and viewed with the NDP.viewer 
platform. These slides were scanned at 40x magnification (0.23 m/pixel) with a scanning speed of approximately 
150 s at 40x mode (15 mm × 15 mm) to create a digital Whole Slide Image (WSI).

Two pathologists independently annotated the WSIs for necrosis using the open-source Automated Slide 
Analysis Platform (ASAP) software, as contours around the necrotic regions24. The pathologists used different 
magnifications (ranging from 5x to 40x) to analyse the necrotic regions before drawing contours. As a result, two 
class labels were created from these annotations: positive (necrosis) and negative, for subsequent analysis as a 
binary patch-based classification problem. In order to categorise a region as containing necrosis, both pathologist 
annotators needed to form an ”agreement”. Therefore, the intersection of the necrosis annotations were labelled 
as necrosis. Similarly, areas that are agreed to have no necrosis are labelled as negative. We used these annota-
tions to create image masks for the patch extraction process and applied Otsu thresholding to remove non-tissue 
background from both classes creating tissue masks. A patch-based approach was applied due to the large nature 
of Whole Slide Images, which typically produce gigapixel images in the higher resolution layers of the pyramid 
format. Such large images cannot be directly fed into machine learning models and so patches of a smaller size 
are extracted from WSIs for further analysis. Using the aforementioned intersection of the annotator’s necrosis 
binary maps, non-overlapping patches of size 256 x 256 pixels were extracted from both necrosis and negative 
regions (2 classes). A demonstration of the patch extraction process can be visualised in Fig. 1.

The study investigated 10x magnification resolutions for necrosis detection as suggested by the on-board 
pathologists. The pathologists chose 10x magnification over 5x, 20x and 40x as the ideal resolution for necrosis 
detection. Non-overlapping patches of 256 by 256 pixels were extracted from regions of both classes using a 
minimum decision threshold for percentage of necrosis present in a patch. For a magnification of 10x, 30% of 
the patch must have contained necrosis pixels (determined from the expert defined labels) in order for it to be 
labelled as necrosis. A threshold of 30% for necrosis pixels was chosen as it was needed to take into account 
boundary effects of the necrosis clusters in the images. Patches extracted from boundaries of the necrosis cluster 
would almost certainly contain non-necrotic tissue. However, a suitable amount (in this case 30%) of necrosis 
tissue is required to sufficiently label a patch as necrosis for the effective training of deep learning models. A 
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higher number would risk dismissing useful necrotic patches, whereas a lower number (thus more negative tissue 
in a patch) would likely cause confusion during the training of deep learning models.

Deep learning model and experimental set‑up.  In order to evaluate the robustness and the veracity 
of our approach, we performed 3-fold cross validation, where a hold-out test set created to compare the models 
trained on the three different folds. In total we extracted patches from 32 patients (WSIs) to create our train, 
validation and test sets.

There were a total of 5784 necrosis patches from 20 slides for training/validation and 1151 necrosis patches 
from 12 slides for testing. Additionally, there were a total of 50,975 negative patches for training/validation and 
31,351 negative patches for testing.

Class imbalance is apparent throughout the different folds of the datasets. To address the large variation of 
the negative class with a relatively small presence of the necrosis class, we reduced class imbalance by randomly 
extracting 800 negative patches per WSI and used these with all necrosis patches per WSI. This reduces the class 
imbalance to 1:4 for necrosis to negative, respectively, although not excessively. Weighted cross entropy loss 
was applied to mitigate class imbalance. It was found that the models trained with this level of class imbalance 
performed marginally better. Therefore, we opt to train with this mild imbalance ratio, as balancing the dataset 
to 50/50 may risk throwing away useful (vital) information from the negative class.

The deep learning model implemented transfer learning bottleneck feature extraction. Previous investigations 
of several pretrained networks including VGG and ResNet architectures have been shown to have a positive 
impact in digital pathology25,26. However, DenseNet-161 was chosen due to its leading performance in previ-
ous works27. According to one study, DenseNet-161 can be used for fast and accurate classification of digital 
pathology images to assist pathologists in daily clinical tasks28. Thus, bottleneck features were extracted from 
DenseNet-161, producing an output of 2208 features. These features were then fed into a classification layer, to 
classify ”necrosis” or the ”negative” class per patch. As DenseNet has been pretrained on ImageNet, its standard 
output is for 1000 classes. However, as necrosis detection is considered a binary problem, a binary classification 
layer has been used that replaces the original multiclass classification layer. See part a Fig. 2.

Comparative experiments were implemented comparing the pretrained DenseNet-161 to Sharma et al’s 
proposed CNN model and an AlexNet22. At the initial 50% decision threshold, these models produce higher 
f1-scores. However, it should be noted that the sensitivities of the AlexNet and proposed CNN models were 
lower than our previously implemented DenseNet-161 models. Our DenseNet-161 model also provided a higher 
AUC value prior to thresholding and post-processing (See Supplementary Table S1). Therefore, the pretrained 

Figure 1.   In (a), Annotations by ”Annotator 1” and ”Annotator 2” applied to the same canine Perivascular 
Wall Tumour (cPWT) Whole Slide Image (WSI). For the patch extraction process, binary masks (or maps) 
are generated, (shown in (b). A necrosis mask is created, highlighting the intersection agreement between 
both annotators, when considering a region as necrotic. Any disagreement is dismissed from the necrosis and 
negative binary masks. From applying Otsu thresholding we dismissed any non-tissue related regions and by 
using the intersection agreement for both annotators, we created a ”negative mask”, highlighting in white regions 
that do not contain necrosis. We used these masks to extract patches, as shown in (c). In this case we extract 10x 
magnification necrosis and negative patches of 256 × 256 pixels.
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Figure 2.   (a) Bottleneck feature extraction using DenseNet-161. A patch size of 256 x 256 pixels is fed into 
a DenseNet-161 feature extractor, where bottleneck features are obtained. These features are then fed into a 
classification layer for further training and validation, classifying necrosis or negative patches. (b) Hard negative 
mining approach to train the model with additional ”difficult” examples presented to the network. (c) Stacking 
ensemble. The input X is fed into M base-level member models: DenseNet-161 model, the DenseNet-161 
model with augmentations and the hard negative mining model. The prediction outputs of these models ŷM are 
combined and fed into a logistic regression meta-model as new feature inputs. New coefficients are learnt in this 
logistic regression model, before final predictions are output ŷfinal.
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DenseNet-161 was the primary baseline choice of model for this paper, as it had a greater capacity for further perfor-
mance improvement via thresholding and post-processing.

A grid search was previously implemented in preliminary experiments to determine optimal hyperparameters. 
The range of hyperparameters investigated were batch sizes of 16, 32 and 48, learning rates of 0.00001, 0.0001, 0.001 
and 0.01 and different variations of scheduler steps. As a result, for all experiments a batch size of 32 was inputted into 
each model and the loss function used was cross entropy loss. The Adam optimiser initialised with a learning rate of 
0.0001 was used, with a scheduler step of 20 and a scheduler gamma of 0.5 as optimal values29. This optimised set of 
hyperparameters resulted in a smooth, stable training behaviour. We calculated the RGB mean and standard deviation 
values per fold for patch image normalisation. For every fold, each model was trained for 100 epochs, where the model 
from the epoch with the lowest validation loss was automatically chosen as the best performing model. This selected 
model was then applied to both the validation and test sets for evaluation during training and final testing, respectively.

The models were implemented in Python, using the PyTorch deep learning framework. Other notable Python 
packages used for pre-processing and post-processing tasks included OpenSlide, NumPy, Pandas, OpenCV and Math. 
Both training and testing of the deep learning models were performed using GPU programming. The hardware and 
resources available for implementation used a Dell T630 system, which included 2 Intel Xeon E5 v4 series 8-Core CPUs 
at 3.2 GHz, 128 GB of RAM, 4 nVidia Titan X (Pascal, Compute 6.1, Single Precision) GPUs.

Other types of models investigated.  In this section we describe the different type of deep learning and ensem-
ble models investigated for necrosis detection. Apart from the ensembles, all deep learning models used the same hyper-
parameters and training scheme as described in the previous section.

DenseNet‑161 with augmentations.  Adding augmented patch images to a training set is a common strategy to mitigate 
the lack of variation and size of limited datasets30. Modifications were thus applied to an existing image to produce new 
images, using random horizontal/ vertical flips and colour jitter (random changes to the brightness, contrast, saturation 
and hue of a patch image). A change of upto/minus 40% is randomly applied for brightness, contrast and saturation.

Hard negative mining model.  Hard negative mining was performed in order to reduce the number of false positives. 
This is an approach that allowed us to train the model with additional ”difficult” examples presented to the network31. 
Firstly, a ”full” training set was created, where we extracted every single negative class patch from the training set. Sec-
ondly, we then applied the best model on the full training set to infer a new set of predictions. The model with the lowest 
validation loss was selected as the best model. Any prediction on a patch that was a false positive (and did not exist in the 
original dataset) was added to the sub-sampled dataset; thus creating a new dataset known as the ”hard negative training 
set”. Lastly, we then trained the DenseNet-161 model using this new dataset and evaluated as before. A flow diagram of 
the implementation of the hard negative experiments can be visualised in part b of Fig. 2.

Ensemble model.  A common approach to boost the performance of machine learning models is via the employ-
ment of ensemble models where the ensemble process is depicted in part c of Fig. 2. The basic concept of ensembles is 
to train multiple models (or base-member models) and combine their predictions into one single output32. Ensemble 
models typically outperform single models (individual base-member models) on their respective target datasets. 
This can be seen in recent machine learning based competitions such as on the Kaggle platform and MICCAI33–35.

The ensemble model was trained on the sub-sampled training dataset. To make use of all the data from the 
training WSIs, we made inferences on the full training set patches (including the original training set patches). 
There are various methods and combinations to create ensemble models, however, preliminary experiments 
demonstrated that an ideal combination consisted of base-member models was the DenseNet-161 model, the 
DenseNet-161 model with augmentations and the hard negative mining model.

Preliminary experiments investigated combining ensemble predictions and training a logistic regression 
model (as a meta-model) on the full training set of patches to produce prediction probability outputs. We then 
tested this trained logistic regression model on validation and hold-out test sets. Pseudocode for the stacking 
ensemble is also represented in Algorithm 1. 
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Figure 3.   Histograms of the initial classification results based on a standard 0.5 (50%) probability decision 
threshold. Depicted are true negatives (TN), false positives (FP), false negatives (FN) and true positives (TP) for the 
DenseNet-161 model. On the left side depicts histogram plots of TN and FP for each validation fold, whereas on the 
right side depicts histogram plots of FN and TP. These combinations were chosen for the plots as they complement 
each other. It can be seen that all three folds are characteristically similar in distribution. TN and TP predictions 
typically produce high probabilities, as can be seen by the frequency of such predicted probabilities. Increasing the 
probability threshold would increase the number of true negatives and reduce the number of false positives. However, 
this would subsequently increase the number of false negatives and reduce the number of true positives.
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Post‑processing.  It is important to note that although sensitivity is a vital measure in the medical domain, 
the number of false positives greatly influences the score for necrosis, thus impacting overall grading. For 
our problem, both the precision and sensitivity were considered to be equally as important and therefore the 
F1-score was used to determine the optimal thresholds for each folds validation. These thresholds were then 
applied to our hold-out test set for each fold. Additionally, for comparison, the mean optimal threshold for the 
three folds was computed and applied this to our hold-out test set. The F1-score is the harmonic mean between 
the precision and sensitivity. It takes into account both the sensitivity and precision producing a weighted aver-
age of the two metrics. Both precision (formula 2) and sensitivity (formula 3) contribute equally to the F1 score 
(formula 5):

Figure 4.   Line graphs that depict the sensitivity, specificity and weighted F1-score calculated for each 
probability threshold, for the three validation folds from the DenseNet-161 and ensemble models. To determine 
the optimal probability threshold, we choose the threshold with the highest F1-score. In the above plots, these 
are denoted as ”Best threshold”. For example, for the ensemble model, in validation fold 1, this threshold was 
0.86, for fold 2 it was 0.65 and for fold 3 it was 0.97.
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where TP, FP and FN are true positives, false positives and false negatives, respectively.
Figure 3 depicts histograms showing true positives, true negatives, false positives and false negatives for the 

DenseNet-161 model. The y-axis is log-normalised to compress and better visualise the frequency of predictions 
as the number of true negatives significantly outweigh the number of true positives. The x-axis (probabilities) 
is split into 100 bins. The left side of this figure shows true negatives (TN) and false positive (FP) histograms 
for each validation fold, whereas on the right depicts histogram plots of false negatives (FN) and true positives 
(TP). The validation set was used to choose optimal thresholds. The hold-out test set was used as a data set purely 
for evaluation and not contribute towards any change in strategy (i.e. to prevent data/information leaks). These 
classification output combinations were chosen as they complement one other. For example, increasing the prob-
ability decision threshold would increase the number of TNs and reduce the number of FPs. However, this would 
subsequently increase the number of FNs thus reducing the number of TPs. For all folds, the TN and FP plots 
shows a wide range of prediction probabilities, with a heavy skew towards the lower probabilities. The FN and TP 
plot for fold 3 (validation) appears to shows slight sparsity among FN predictions in comparison to other folds.

The sensitivity, specificity and F1-scores were calculated for several probability thresholds for each validation 
fold, as shown in Fig. 4. For both the DenseNet-161 model and the ensemble model, it was apparent that high 
probability thresholds had an adverse effect on sensitivity. The F1-score was used as the metric to determine 
optimal thresholds.

(1)Accuracy =
TP + TN

TP + TN + FN + FP

(2)Precision =
TP

TP + FP

(3)Sensitivity =
TP

TP + FN

(4)Specificity =
TN

TN + FP

(5)F1 = 2 ∗
Sensitivity ∗ Precision

Sensitivity + Precision

Figure 5.   The post-processing step to remove predicted single necrosis tiles is depicted. The necrosis 
predictions are applied to a binary mask which is a downsized binary map of the original WSI, by a factor of 
32x, for computational efficiency. Connected components analysis is subsequently performed, where if a tile of 
a fixed size (in this case an area of 32 pixels squared) is not connected to other tiles, horizontally, vertically, or 
diagonally, it is removed from the mask. Final predictions are updated based on using these binary masks.
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The probability thresholds t ranged from 0.01 to 1 and so choosing the optimal validation threshold T for the 
F1-score F1 can be represented formally as:

In general, the DenseNet-161 model followed a similar trend for all 3 folds where the optimal threshold was high 
(between 0.88 and 0.93). The ensemble model demonstrated similar results apart from fold 2 where the optimal 
probability decision threshold was found to be 0.65.

Necrosis detection in WSIs often displays sporadic false positive predictions. From domain knowledge and 
discussions with the on-board pathologists, it was determined that single tile (patch) necrosis predictions in a 
WSI would typically not be considered necrotic in most circumstances, if surrounded by non necrotic tissue. This 
is due to the size of the isolated region playing a part in quantifying on whether a region should be considered 
necrosis and scored. Of course, single patches could be necrotic, however, this would be analogues to outlier 
detection or statistical noise and fluctuations. As a result, a post-processing step was applied to remove these 
single tile necrosis predictions. The necrosis predictions are applied to a binary mask, which is has dimensions 
downsized by 32x compared with the original WSI. Connected components analysis is then performed36. In this 
case, if a tile of a fixed size (32 × 32 pixels) is not connected to any other neighbouring tiles (or necrotic regions), 
horizontally, vertically, or diagonally, it is automatically removed from the mask. As a result, the final predictions 
are updated based using these binary masks. This process is depicted in Fig. 5.

Results
Individual base‑member model results.  Results for the DenseNet-161 model, DenseNet-161 with aug-
mentations model and the hard negative mining model are presented in Table 1. It must be denoted that these 
results are patch-based and not WSI (or patient) based. Therefore, classification results are based on whether a 
sampled patch is considered necrotic or not. Furthermore, these results are based on a default ”decision thresh-
old” or simply ”threshold” of 50%. This means that if a patch is predicted to have a probability confidence of more 
than 50%, then it is considered necrosis. Anything less than 50% is considered negative (not necrotic).

The addition of augmentations appeared to show a marginal improvement in sensitivity as shown with the 
validation (italicised) and hold-out test sets. The hard negative mining model demonstrated an improvement on 
the F1-score and specificity scores across the 3 folds, compared to the DenseNet-161 model for both the valida-
tion and test sets. However, sensitivity was adversely affected across the average of the validation and test sets.

Nevertheless, across all models, sensitivity scores were higher in the test set than validation. This is most likely 
due to the models finding unencountered tissue types to be suspicious during test, a consequence of training 
with limited datasets.

The highest validation and test specificity was produced by the ensemble model; the model trained on the 
combined probability outputs of the DenseNet-161 model, DenseNet-161 with augmentations model and the 
hard negative mining model. Consequently, the highest validation and test F1-scores are also from the ensemble 
model. As the F1-score is used as a basis for choosing the best performing model, we continued with the ensemble 
model and used the DenseNet-161 model as a comparison for further post-processing.

(6)T = arg max
t

F1(t)

Table 1.   3-fold averaged results for the DenseNet-161 model, the hard negative mining model and the 
DenseNet-161 with augmentations model, with reported mean sensitivity, specificity and F1-scores averaged 
across all three folds. The highest score for a metric is highlighted in bold for the test set, whereas this is 
italicised for the validation set. Plus/minus values shows the mean subtracted from the highest and lowest 
results from the 3-fold experiments, for each model.

Model Set Sensitivity Specificity F1 score

DenseNet-161

Validation 0.928
+ 0.029

0.928
+ 0.024

0.724
+ 0.060

− 0.004 − 0.032 − 0.096

Test 0.939
+ 0.003

0.907
0.020

0.404
+ 0.053

− 0.004 − 0.019 − 0.049

Hard negative model

Validation 0.906
+ 0.033

0.943
+ 0.021

0.753
+ 0.060

− 0.040 − 0.030 − 0.096

Test 0.917
+ 0.013

0.926
+ 0.011

0.449
+ 0.053

− 0.010 − 0.016 − 0.049

DenseNet-161 with augmentations

Validation 0.930
+ 0.029

0.922
+ 0.018

0.710
+ 0.041

− 0.052 − 0.022 − 0.075

Test 0.944
+ 0.014

0.900
+ 0.020

0.389
+ 0.046

− 0.008 − 0.017 − 0.041

Ensemble

Validation 0.910
+ 0.051

0.955
+ 0.029

0.793
+ 0.011

− 0.037 − 0.038 − 0.009

Test 0.924
+ 0.022

0.943
+ 0.031

0.535
+ 0.028

− 0.039 − 0.031 − 0.025
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After applying optimal thresholds and post‑processing.  The post-processing was applied to the 
results after obtaining optimal thresholds for each fold. In this case, the DenseNet-161 model and the ensemble 
model. Results are presented in Table 2. From this table it is clear that post-processing has a significant impact, 
especially on specificity and F1-scores. The best sensitivities for both validation and test sets were found in the 
DenseNet-161 model results. However, the best performing specificity result was from DenseNet-161 (threshold 
per fold + post-processed), with 0.992 and 0.984 for validation and test, respectively. As a result, the highest 
performing test F1-score also came from this model (0.708).

From Table 1, it can be seen that the models on the test data produced sub-optimal F1 scores, suggesting that 
the models based on a 50% probability decision threshold, did not generalise at an optimal standard. However, 
Table 2 demonstrates after thresholding and post-processing, the F1 scores significantly improve, suggesting 
that higher decision thresholds may be required when applied to unseen data. This could be due to textures and 
different colours presented from the staining process residing in the test data. As a result, these unseen artefacts 
could lead to an increase in low confidence necrosis predictions, thus producing false positives. This also suggests 
that structures related to necrosis are learnt well using the training data as true positive necrosis predictions tend 
to produce high confidence predictions. Table 3 depicts the confusion matrix value results after applying opti-
mal thresholds and the single tile removal post-processing. It can be seen that after applying optimal thresholds 
and post-processing, the number of false positives (FPs) significantly decrease for both the DenseNet-161 and 
ensemble models, with a slight reduction in the number of true positives (TPs).

Additionally, accuracy and an average of the sensitivity and specificity (denoted as Sensitivity/Specificity 
Average) are also introduced into the Table 2. The Sensitivity/Specificity Average can be directly compared to 
the results from Sharma et al.22 where the authors averaged their necrosis and non-necrotic classification results 

Table 2.   3-fold averaged results after applying optimal thresholds and the single tile removal post-processing 
to the DenseNet-161, Sharma et al’s22 proposed CNN and ensemble models, for the validation and test sets. 
Presented in this table are the mean sensitivity, specificity and f1-scores averaged across all three folds. 
”Threshold per fold + post-processed” is where optimal thresholds derived from three-way cross-validation 
followed by single tile removal were applied to all validation folds and the hold-out test set. ”Mean threshold 
+ post-processed” is where the optimal thresholds for each fold have been averaged and then applied to each 
folds validation and hold-out test set. The highest score for a certain metric is highlighted in bold for the test 
set, whereas it is italic for the validation set. Plus/minus values shows the mean subtracted from the highest 
and lowest results from the 3-fold experiments, for each model.

Model Set Sensitivity Specificity F1 score Accuracy Sens./ Spec. Avg.

DenseNet-161

Validation 0.928
+ 0.029

0.928
+ 0.024

0.724
+ 0.060

0.927
+ 0.017

0.928
+ 0.010

− 0.004 − 0.032 − 0.096 − 0.026 − 0.009

Test 0.939
+ 0.003

0.907
+ 0.020

0.404
+ 0.053

0.908
+ 0.019

0.923
+ 0.011

− 0.004 − 0.019 − 0.049 − 0.019 − 0.012

Sharma et al. Proposed CNN

Validation 0.794
+ 0.078

0.954
+ 0.029

0.727
+ 0.031

0.938
+ 0.015

0.874
+ 0.023

− 0.097 − 0.031 − 0.020 − 0.021 − 0.034

Test 0.719
+ 0.046

0.951
+ 0.004

0.455
+ 0.025

0.944
+ 0.002

0.835
+ 0.023

− 0.060 − 0.005 − 0.014 − 0.004 − 0.028

DenseNet-161 (threshold per fold + post-processed)

Validation 0.808
+ 0.022

0.992
+ 0.001

0.860
+ 0.015

0.973
+ 0.003

0.900
+ 0.011

− 0.032 − 0.001 − 0.011 − 0.005 − 0.015

Test 0.807
+ 0.028

0.984
+ 0.001

0.708
+ 0.010

0.978
+ 0.000

0.896
+ 0.013

− 0.032 − 0.001 − 0.011 − 0.000 − 0.016

DenseNet-161 (mean 3-fold threshold + post-processed)

Validation 0.813
+ 0.042

0.991
+ 0.006

0.855
+ 0.020

0.972
+ 0.003

0.902
+ 0.018

− 0.069 − 0.005 − 0.016 − 0.005 − 0.032

Test 0.807
+ 0.010

0.983
+ 0.004

0.702
+ 0.033

0.977
+ 0.004

0.895
+ 0.005

− 0.011 − 0.004 − 0.033 − 0.004 − 0.003

Ensemble

Validation 0.910
+ 0.051

0.955
+ 0.029

0.793
+ 0.078

0.950
+ 0.022

0.933
+ 0.006

− 0.037 − 0.038 − 0.112 − 0.029 − 0.004

Test 0.924
+ 0.022

0.943
+ 0.031

0.535
+ 0.133

0.943
+ 0.029

0.934
+ 0.011

− 0.039 − 0.031 − 0.120 − 0.029 − 0.007

Ensemble (threshold per fold + post-processed)

Validation 0.853
+ 0.009

0.990
+ 0.001

0.878
+ 0.011

0.976
+ 0.002

0.922
+ 0.004

− 0.015 − 0.001 − 0.006 − 0.004 − 0.008

Test 0.846
+ 0.050

0.981
+ 0.031

0.704
+ 0.026

0.977
+ 0.003

0.914
+ 0.022

− 0.060 − 0.051 − 0.019 − 0.004 − 0.028

Ensemble (mean 3-fold threshold + post-processed)

Validation 0.868
+ 0.070

0.982
+ 0.012

0.851
+ 0.022

0.969
+ 0.006

0.925
+ 0.015

− 0.048 − 0.018 − 0.043 − 0.008 − 0.022

Test 0.871
+ 0.032

0.974
+ 0.015

0.673
+ 0.089

0.971
+ 0.012

0.923
+ 0.026

− 0.059 − 0.014 − 0.085 − 0.012 − 0.018
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producing 81.44%.When using our dataset, their proposed CNN model produced 83.5% for the Sensitivity/
Specificity Average.

Comparatively, our 3-fold scores range from 89.5 to 93.4%, thus producing the highest accuracies for this 
metric for necrosis versus non necrotic (negative) classification.

A set of exemplar spatial confusion maps are shown in Fig. 5 where we present the results of the tile-based 
classification overlaid onto the original WSIs created from the hold-out test set are shown in Fig. 6. In this figure, 
we depict results from the DenseNet-161 model and the ensemble model. The left side shows results with the 
standard 50% probability threshold applied, whereas the right shows optimal validation threshold applied to the 
fold 3 test set results, with single tile removal. It is apparent that there are far fewer FPs after the post-processing 
for both the DenseNet-161 and ensemble models.

The post-processing improved the DenseNet-161 results becoming the top performing model. This is attrib-
uted to spatially sparse FP predictions in slides. All models experienced a slight reduction in sensitivity after 
applying the optimal thresholds and post-processing. There is a slight increase in false negatives, especially 
around the borders of the necrosis clusters (TPs) in the images. However, the ensemble model spatial confusion 
matrices depict less FN predictions in the middle of the cluster, in comparison to DenseNet-161. This is important 
and allows us to understand the limitations of patch-based approaches and may in fact highlight disagreement 
between annotators. We are aware that boundary cases may exist around the borders of these clusters due to the 
annotation and patch extraction process. The deep learning models may reflect these uncertainties by producing 
less confident predictions in these areas. The ensemble model also demonstrates the power of combining multiple 
different models, mimicking the combination of different ”teachers” or ”experts”, as there are fewer FNs in the 
middle of the necrosis clusters compared to the DenseNet-161 model.

Discussion
A necrosis detection method was created after investigating a pretrained DenseNet-161 model, hard negative 
mining and ensemble models. We further investigated the application of optimal thresholds and further post-
processing. This is the first known necrosis detection model for cPWTs and in general cSTS. As a result, we also 
produce state-of-the-art performance metrics, especially regarding accuracy and sensitivity/ specificity averages 
for necrosis detection in cPWTs.

The post-processing alongside applying optimal thresholds allowed the DenseNet-161 model to produce the 
best F1-scores: the key metric for evaluation for this work. This is most likely due to the DenseNet-161 model 
generating more ”sparse” FP predictions in than the ensemble model, where there are more clustered FP predic-
tions. Nevertheless, although producing the highest F1-scores, this difference was marginally higher than the 
ensemble model with post-processing.

However, upon inspection of the spatial confusion matrix heatmaps, it was observed that both optimised 
models differed slightly especially in regards to false negative (FN) predictions, with slightly fewer FNs inside 
the true positive clusters for the ensemble model. This further demonstrates the difference in learning between 
alternative types of machine learning models such as deep learning models and ensembles with logistic regression 
as their backbone. This paper demonstrates that deep learning models can be successfully used as a diagnostic 
support tool for grading cPWT in cSTS. Necrosis detection should also be investigated with other cSTS subtypes.

The study presented here has the potential to improve the veterinary anatomic pathology workflow. The 
application of deep learning based-methods to diagnostic veterinary pathology will improve the accuracy of 
diagnosis and allow pathologist laboratories to handle larger clinical caseloads. These methods could also be 

Table 3.   3-fold averaged confusion matrix value results after applying optimal thresholds and the single tile 
removal post-processing to the DenseNet-161 and ensemble models, for the hold-out test sets. Presented 
in this table are the true negative (TN), true positive (TP), false negative (FN) and false positive (FP) values 
averaged across all three folds, rounded to the nearest whole figure. Plus/minus values shows the mean 
subtracted from the highest and lowest results from the 3-fold experiments, for each model.

Model TN TP FN FP

DenseNet-161 30880
+ 672

1081
+ 3

70
+ 5

3171
+ 651

− 651 − 5 − 3 − 672

DenseNet-161 (threshold per fold + post-processed) 33505
+ 27

929
+ 32

222
+ 37

546
+ 19

− 19 − 37 − 32 − 27

DenseNet-161 (mean 3-fold threshold + post-processed) 33479
+ 143

929
+ 12

222
+ 12

572
+ 126

− 126 − 12 − 12 − 143

Ensemble 32119
+ 1053

1063
+ 26

88
+ 44

1932
+ 1048

− 1048 − 44 − 26 − 1053

Ensemble (threshold per fold + post-processed) 33221
+ 101

983
+ 57

168
+ 69

830
+ 184

− 184 − 69 − 57 − 101

Ensemble (mean 3-fold threshold + post-processed) 33180
+ 504

1002
+ 37

149
+ 68

871
+ 460

− 460 − 68 − 37 − 504
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Figure 6.   Sample Whole Slide Image (WSI) spatial confusion maps before and after applying optimal threshold 
(determined from the fold 3 validation set) and post-processing; removing single tile predictions. The left side 
images shows predictions from the DenseNet-161 and ensemble models with the standard 50% probability 
decision thresholds. The right side shows predictions after applying the optimal threshold and post-processing. 
True positives (TP) are displayed in red, false negatives (FN) in green, false positives (FP) in yellow and true 
negatives (TN) in clear.
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applied to other imaging modalities in veterinary health, including clinical veterinary pathology such as cytology 
and diagnostic imaging such as MRI or radiography.

Future work
Future work should include exploring further alternative convolutional neural networks that have not been 
previously and thoroughly investigated for use in digital pathology. Although this necrosis model has been 
developed and trained using cPWT, it would also be of interest to apply these necrosis detection models to other 
closely related cSTS subtypes.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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