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Mycobacterium tuberculosis is an acid-fast bacterium that causes tuberculosis worldwide.
The role of epistatic interactions among different loci of theM. tuberculosis genome under
selective pressure may be crucial for understanding the disease and the molecular basis of
antibiotic resistance acquisition. Here, we analyzed polymorphic loci interactions by
applying a model-free method for epistasis detection, SpydrPick, on a pan–genome-
wide alignment created from a set of 254 complete reference genomes. By means of the
analysis of an epistatic network created with the detected epistatic interactions, we found
that glgB (α-1,4-glucan branching enzyme) and oppA (oligopeptide-binding protein) are
putative targets of co-selection in M. tuberculosis as they were associated in the network
with M. tuberculosis genes related to virulence, pathogenesis, transport system
modulators of the immune response, and antibiotic resistance. In addition, our work
unveiled potential pharmacological applications for genotypic antibiotic resistance inherent
to the mutations of glgB and oppA as they epistatically interact with fprA and embC, two
genes recently included as antibiotic-resistant genes in the catalog of the World Health
Organization. Our findings showed that this approach allows the identification of relevant
epistatic interactions that may lead to a better understanding of M. tuberculosis by
deciphering the complex interactions of molecules involved in its metabolism, virulence,
and pathogenesis and that may be applied to different bacterial populations.
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1 INTRODUCTION

In humans, tuberculosis (TB) is a chronic and highly contagious disease that causes more than 10
million human infections and 1.8 million deaths worldwide every year. The constant arrival of drug-
resistant strains complicates its control and eradication (Gupta et al., 2018). This disease is mainly
caused by members of the Mycobacterium tuberculosis complex (MTBC) (Coscolla and Gagneux,
2014) via aerosolized bacteria released by patients with TB (Lerner et al., 2015).

Mycobacterium tuberculosis (Mtb) lineages L1–L4 and L7 form a large group of human-adapted
strains responsible for the vast majority of global human TB cases, whereas Mycobacterium
africanum lineages (L5 and L6), which are restricted to humans from West Africa, are
phylogenetically linked with the eighth lineage, which comprises various animal-adapted strains
(Gonzalo-Asensio et al., 2014).
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The first complete genome sequence of Mtb was described in
1998 (Cole et al., 1998). Since then, whole-genome sequencing
(WGS) has been applied to a wide range of clinical scenarios, with
the potential to revolutionize TB diagnosis, outbreak
investigation, development of drugs and vaccines, and to assist
in understanding the evolution and pathogenicity of MTBC
(Satta et al., 2018). The increase in genomic data in this new
era of big data can be considered a great opportunity to continue
with the epidemiological surveillance of Mtb associated with the
evaluation of genotypic antibiotic resistance. Moreover, it may
allow us to unveil new genes with characteristics that lead us to a
better understanding of TB.

Recent advances in the scale and diversity of population genomic
data for Mtb provide the potential for revealing whole-genome
genetic patterns. Statistical methods combined with recent
advances in computational structural biology have identified the
polymorphic loci (positions inside a genome) under the strongest
co-evolutionary pressures or epistatic interactions (Skwark et al.,
2017). Such epistatic interactions describe a functional relationship
between genes or polymorphic loci (Sackton andHartl, 2016). Studies
of interactions between mutations in Mtb that result in resistance to
diverse drugs have suggested that epistasis may be related to
multidrug resistance (Trauner et al., 2014; Kavvas et al., 2018).
However, the role of epistatic interactions among many regions of
the genome under selection in Mtb remains unknown, and further
study will contribute to improving our knowledge of TB.

In this study, we analyzed polymorphic loci interactions for
epistatic detection in a set of 254 complete reference genomes
from Mtb by the use of the model-free method, SpydrPick
(Pensar et al., 2019). SpydrPick is based on calculating the
mutual information between two polymorphic loci. This well-
annotated reference collection integrates genome annotation,
gene characterization, and a sequence variation report with a
high certainty of genomic location. First, a pan-genome was
created using Roary (Page et al., 2015). Then, using AMAS, a
pan–genome-wide alignment was obtained by concatenating
individual gene alignments. This pan–genome-wide alignment
was the input for SpydrPick.

The application of the method to this data set allowed us to
reconstruct an epistatic network. The analysis of this network
revealed two putative targets of co-selection (glgB and oppA)
associated with Mtb genes related to virulence, pathogenesis,
transport system modulators of the immune response, and
antibiotic resistance. This work may have relevant applications
in the characterization of new genes involved in the worldwide
problem of Mtb drug resistance (WHO, 2021).

2 MATERIALS AND METHODS

An overview of our approach is depicted in Figure 1. The steps
are described in the following subsections.

FIGURE 1 | Pipeline for the study of epistatic interactions in Mtb.
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2.1 Data Set
We gathered 254 reference strains of Mtb from the NCBI Refseq
database that was available as of 4 November 2020. The list of
strains is provided as Supplementary Data S1.

2.2 Creating Pan–Genome-Wide Alignment
Following the strategy of Pensar et al. (2019), we created a
pan–genome-wide alignment of the 254 strains. First, we
employed Prokka (Seemann, 2014) to annotate genes and
features of interest in the set of strains. This genome
annotation (GFF3 format) was the input to create a pan-
genome of the strains with Roary (Page et al., 2015).

This tool extracts the gene sequences from the input and then
identifies clusters to obtain gene alignments. Roary considers two
categories of genes: core and accessory. A gene is considered
“core” if it is in at least a certain percentage of strains (isolates)
defined by the user. In our study, we followed the approach of
Pensar et al. (2019), who set this percentage on 95% strains. The
output of Roary is a set of files with individual gene alignments,
with one file per gene. These files are concatenated in a matrix
using the Alignment Manipulation and Summary (AMAS) tool
(Borowiec, 2016). This matrix is formed by gene 1 joined on the
right with gene 2 and so on with the rest of the genes [see the
example “A: concatenation” from Figure 1 in Borowiec (2016)].
Thus, the columns of the output matrix are the genes, and the
number of rows is the number of strains used to generate the
pan–genome-wide alignment (254 in this case).

2.3 Global Diversity Evaluation
The pan–genome-wide alignment was evaluated for global
diversity by estimating a phylogeny using RAxML Next
Generation (Kozlov et al., 2019). A standard nonparametric
bootstrap of 1,000 replicates was performed. Phylogenies were
visualized using iTOL v. 6.4.1 (Letunic and Bork, 2021).

2.4 Genetic Prediction of Antibiotic
Resistance
We predicted a resistome for the 254 strains using the Resistance
Gene Identifier (RGI) tool v. 5.1.1 (Alcock et al., 2020). RGI uses
the Comprehensive Antibiotic Resistance Database (CARD) as
reference data. Using the output of RGI, we annotated strains for
two genotypic characterizations of antibiotic resistance:
multidrug-resistant (MDR) strains for those strains with genes
resistant to isoniazid and rifampicin and extensively drug-
resistant (XDR) strains if they have genes resistant to
isoniazid, rifampicin, fluoroquinolone, and at least one of the
following three antibiotics: kanamycin, amikacin, or
capreomycin. These annotations were incorporated for
visualization into the phylogeny displayed by iTOL.

2.5 Computational Detection of Epistatic
Interactions
2.5.1 Epistatic Interaction Detection
We utilized SpydrPick (Pensar et al., 2019) to detect the epistatic
interactions in the pan–genome-wide alignment. SpydrPick is a

model-free method whose computational efficiency enables
analysis at the scale of pan-genomes of bacteria. This method
facilitates the detection of targets of co-selection related to
virulence and antibiotic resistance. The potential of this
method is the detection of epistatic interactions in the absence
of phenotypic data.

The approach of SpydrPick is based on calculating the mutual
information (MI) between two polymorphic loci. MI is an
information-theoretic measure of the amount of information
that one random variable, X, contains about another random
variable, Y. MI is also defined as the reduction in uncertainty in X
after observing Y; in other words, MI manifests the reduction in
uncertainty of X due to the knowledge of Y (Cover and Thomas,
2006). MI gives a measure of association or correlation between X
and Y (Chanda et al., 2020); if the two variables, X and Y, are
independent, then the MI is zero. MI is formally defined as
follows:

MI X,Y( ) � ∑
x∈ X( )

∑
y∈ Y( )

p x, y( )log p x, y( )
p x( )p y( )( ), (1)

where p (x, y) is the joint probability and p(x) and p(y) are the
marginal probabilities of X and Y. MI has been successfully used
for detecting co-selection in bacterial population genomics at a
genome-wide scale. Another relevant feature introduced by
SpydrPick’s approach is the correction for the population
structure. This is applied by a sequence reweighting strategy
based on how different are the sequences in the pan–genome-
wide alignment (Pensar et al., 2019).

SpydrPick detects direct and indirect interactions between
loci. A direct interaction occurs between two positions (P1 →
P2), whereas an indirect interaction occurs when the two
positions (P1 and P2) are also linked through a third position
(P1 → P3 → P2). In the case of indirect interactions (P1 → P2),
SpydrPick removes the interaction if the MI is not larger than the
other two interactions (P1 → P3 and P3 → P2).

In addition, SpydrPick performs an analysis to detect outlier
interactions. A first criterion to filter outliers is that the distance
(bp) between the positions of polymorphic loci must be greater
than a linkage disequilibrium (LD) parameter. In this case, a
strong LD refers to a close genetic distance between two
nucleotide positions. Due to a strong LD hiding a prospective
signal of shared co-evolutionary selection pressure, SpydrPick
filters out pairs of positions with strong LD to select outlier
interactions. According to the SpydrPick’s documentation
(https://github.com/santeripuranen/SpydrPick), for bacterial
genomes, the typical values of the LD are in the
500–20,000 bp range, and the default approach to filtering out
strong LD pairs is using a simple distance-based cut-off (20,000 in
our case). The second criterion is that theMImust be greater than
a threshold obtained from Tukey’s outlier test Q3 + 1.5 × (Q3 −
Q1) (Tukey, 1977).

The output of SpydrPick is a table of epistatic interactions that
includes the pair of positions of two interacting polymorphic loci
in the pan–genome-wide alignment, the genome distance
between the two positions, the type of interaction (direct/
indirect), and the MI score. When SpydrPick detects outliers,
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they are reported in another table, including three additional
fields: the MI score without gaps, the gap effect, and if the outlier
is considered an extreme outlier (MI > Q3 + 3 × (Q3—Q1)). From
the input alignment, SpydPick categorizes any character different
from A, C, G, and T as a gap. Gaps are considered in the default
MI calculation, so X and Y have an outcome space of five
categories. As the gaps may not be informative, SpydrPick
calculates for each pair of positions in the outliers another MI
score considering only those strains without gaps in either of the
two positions. This MI score is named mutual information
without gaps (MI_wo_gaps). Using the MI score without gaps,
the gap effect is calculated as (1—MI_wo_gaps/MI) × 100 to
quantify the positive or negative effect on the MI by discarding
strains with gaps in the two positions.

Comparing MI scores without gaps in a meaningful way is
difficult due to the fact that the set of strains without gaps in the
two positions varies between pairs of positions (Pensar et al.,
2019). However, a high value of the gap effect for a given pair of
positions may indicate a gap-driven interaction, and a manual
analysis of the pair should be required. Thus, following the
analysis performed by Pensar et al. (2019), we used the default
MI, leaving the analysis of the MI_wo_gaps for a future in-
depth study.

The loci of epistatic interaction were annotated with gene id
and gene name. Gene names were obtained from the partitions
generated by AMAS using an R script. Afterward, using another R
script (https://github.com/biotb/epitb-net) and the R Biomartr
library (Drost and Paszkowski, 2017), we retrieved the ENTREZ
gene id by searching the gene name in the GFF file of the Mtb
H37Rv reference genome (GCF_000195955.2).

If there is no gene name detected by Roary during the pan-
genome creation, then Roary gives a unique generic name formed
by the prefix group and a consecutive number. These generic
names also appear in partitions of AMAS; however, no ENTREZ
id could be associated with these generic names as these names
did not exist in the reference genome GFF file.

On the other hand, Prokka was indicated by a numeric suffix
different annotation for the same gene, such as carB_1 and
carB_2 (carbamoyl-phosphate synthase large chain). These
names were also not found in the reference genome GFF file.
In these cases, we eliminated the numeric suffix to find the gene
name in the reference genome file. For example, we were able to
find the gene id 886,253 for carB.

2.5.2 Functional Enrichment Analysis
We used the database for annotation, visualization, and
integrated discovery (DAVID) v6.8 (Huang et al., 2009) to
obtain a functional annotation of Gene Ontology (GO) terms
and KEGG pathways of the genes participating in the epistatic
interactions. Specifically, we used the DAVID Web Service
Python Script (Jiao et al., 2012) to generate a chart report.

2.5.3 Network of Epistatic Interactions
The set of epistatic interactions can be seen as a model of complex
epistatic relations that may be analyzed and displayed as a
network. Here, we used Cytoscape (Kohl et al., 2011) to study
our set of epistatic interactions. This tool has been utilized for

studying diverse types of genetic networks. Cytoscape includes an
Analyze Network Tool that calculates several network
parameters, such as node degree and betweenness centrality.
Another useful tool of Cytoscape is the set of layout
algorithms based on the yFile Layout Algorithm App. These
algorithms visually organized a network by aligning and rotating
groups of nodes.

2.5.4 Highly Connected Nodes Analysis and
Visualization
We focused on the most highly connected genes (the highest
degree) for analyzing our epistatic network. Functional
characterization of these genes was performed by literature
curation and showing enriched GO terms for genes interacting
with them. In addition, we used the R package SeqinR (Gouy
et al., 1985) to upload the pan–genome-wide alignment and
extract the allele distribution at loci involved in their epistatic
interactions. We used the interactive web tool Phandango, which
is used to visualize phylogenetic trees and associated genomic
information (Hadfield et al., 2017), to show the estimated
phylogeny and allele distribution of loci.

3 RESULTS AND DISCUSSION

3.1 Pan–Genome-Wide Alignment
A total of 6,205 individual genes were aligned by Roary, including
3,659 core genes. After concatenating all individual genes with
AMAS, a pan–genome-wide alignment of 6,751,593 bp was
obtained.

3.2 Estimated Phylogeny and Antibiotic
Resistance Prediction
Based on Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC), which are theoretical information
criteria to penalize complex models, we selected the estimated
phylogeny using a GTRmodel with four free rates (GTR-R4-FO).
The comparison of models is provided in Supplementary Table
S1. Convergence using the extended majority rule (MRE)
criterion (Pattengale et al., 2010) with a 3% cutoff for the
bootstrapping was reached after 400 trees.

The prediction of antibiotic resistance by RGI reported that 100%
of the 254 strains were MDR (Figure 2) and, within this, 15% were
XDR. This result indicates that bacterial strains, perhaps currently
circulating, present a high level of resistance to first-line treatments,
hindering the successful response to treatment and facilitating the
dissemination of strains with drug resistance mutations. Thus,
detecting epistatic interactions to elucidate polymorphic loci under
the strongest co-evolutionary pressure is of utmost importance for
molecular surveillance with bioinformatic tools that help us
characterize them promptly. Currently, it is reported that 3.4% of
the newTBpatients and 20%of the patientswith a history of previous
treatment for TB were diagnosed with MDR TB worldwide (WHO,
2021).

The phylogenetic tree (Figure 2) shows the nucleotide
diversity of Mtb (254 strain collection). In this study, there is
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heterogeneity of submitters, 100% of the strains present genes
linked to antibiotic resistance and with respect to the H37Rv
strain (reference), and most of the strains present greater genetic
diversity.

3.3 Detected Epistatic Interactions
SpydrPick detected 10,573 outlier epistatic interactions (5,484
directed and 5,089 indirect). These interactions describe
polymorphic loci under the strongest co-evolutionary pressure.
A table with the complete list of outliers is provided as
Supplementary Data S2. This table includes the fields
described in subsection 2.5.1, that is, the pair of positions of
the two interacting polymorphic loci in the pan–genome-wide
alignment, genome distance between the two positions, type of
interaction (direct/indirect), MI score, MI score without gaps, gap
effect, and whether the outlier interaction is considered an
extreme outlier.

After gene annotation, we generated a new table of epistatic
interactions that excluded the generic gene names given by Roary.

The new table of outliers included 1,940 epistatic interactions
among 107 unique genes. From this set of genes, we only found 70
in the reference genome GFF file, and they were associated with
their ENTREZ id. Filtering only those interactions, including
these 70 genes, we obtained a final table with 890 outlier
interactions. The remaining interactions that were not
considered in our study will be included in a future analysis.

The final table of outlier interactions includes the two
positions of the two interacting polymorphic loci in the
pan–genome-wide alignment, gene ENTREZ id and gene
name for each position, distance between the two positions
(bp), type of interaction (direct = 1, indirect = 0), MI score of
the interaction, and if the interaction outlier is an extreme outlier
(yes = 1, no = 0). This final table of outliers (Supplementary Data
S3) was used for enrichment analysis, network reconstruction,
and analyses.

SpydrPick was able to find long-distance interactions
surpassing the two million bp (Table 1). This fact confirms
that our study has a whole-genome scale. However, because

FIGURE 2 | Phylogenetic tree pan-genomeMtb is an iTOL circular visualization with the branch length and the bootstrap values displayed. The tree is based on the
Maximum Likelihood topology of 254 strains representative of Mtb diversity and shows that length is proportional to nucleotide topology. Bootstrap values for clades
corresponding to the main Mtb clades are shown. The colors correspond to the different genotypic characterizations of antibiotic resistance (MDR =Multidrug Resistant;
XDR = Extensively Drug-Resistant).
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we identified epistatic interactions from a pan–genome-wide
alignment constructed by concatenating individual gene
alignments, the positions are not straightforward whole-
genome loci. The minimum distance (bp) between the
positions of the two interacting polymorphic loci nearly
surpassed the LD criterion of 20,000 bp. The mean of the
distance between polymorphic loci in the outlier interactions
was 846,454 bp; considering that it is greater than the median
(721,980 bp), there may be a slight skewness to distances lower
than the mean. On the other hand, the range of MI scores was
short, from 0.4130 to 0.5020 (Table 1). TheMI scores might show
a skewness to low values as the mean (0.4509) was higher than the
median (0.4202).

All loci in the 890 interactions were found in the described
single-nucleotide polymorphisms (SNPs) when we used the
pan–genome-wide alignment with the tool SNP-sites v. 2.5.1,
which can rapidly identify SNPs from a multi-FASTA alignment
(Page et al., 2016). This additional step was developed to identify
polymorphisms involved in the detected epistatic interactions.

3.4 Epistatic Network Analysis
3.4.1 glgB and oppA as Putative Targets of
Co-selection
The network of epistatic interactions was analyzed to figure out
those genes with a high node degree (the number of edges), that
is, a high level of connectivity of the gene with other genes. The
most highly connected genes were glgB (ENTREZ:886,893,
degree = 56), a α-1,4-glucan branching enzyme (GlgB), and
oppA (ENTREZ:886,985, degree = 37), an oligopeptide-binding
protein (OppA) (Figure 3).

These two genes also have the highest value of betweenness
centrality (glgB = 0.493, oppA = 0.219). Betweenness centrality is
higher for those nodes that join subnets (communities) than
those located inside the subnets. Here, we observed three subnets
connected by these two genes. An interesting pattern is that each
subnet has a different distribution of values of MI (see gradient
color of edges in Figure 3). The subnet at the bottom has higher
MI values (medianMI = 0.502) than the other two, the top subnet
has a median MI of 0.463, and the subnet at the middle has lower
values (median MI = 0.420). A further study is required to
elucidate the cause of this pattern. In addition, future analysis
will be required to identify the patterns associated with the
isolated subnets (mmpL1-mmpS4 and lipR-ponA1).

Thus, we consider these two genes as relevant putative targets
of co-selection because they may be associated with several genes
related to potential pharmacological applications. The GlgB
enzyme (encoded by Rv1326c) is the key enzyme involved in
the biosynthesis of α-glucan, which plays a significant role in the
virulence and pathogenesis of Mtb. Recently, enzymes that
participate in the biosynthesis of trehalose have gained major
attention as drug targets, especially in Mtb (Dkhar et al., 2015), as
capsular polysaccharides of bacteria have been found to modulate
the host immune response. The importance of the metabolism of
GlgB has been described (De Smet et al., 2000), but the epistatic
interactions with other genes remain unknown.

On the other hand, the gene oppA (oligopeptide-binding
protein) works as a substrate-binding protein for the
oligopeptide transport system (Opp), which is responsible for
peptide importation. The Opp system is an ATP-binding cassette
transporter. This helps in peptide absorption, giving pathogens
the essential nutrients as a source of carbon, nitrogen, and amino
acids. The Opp system affects many cellular processes, including
internalization of quorum-sensing peptides, biofilm production,
cell surface modification, and antibiotic resistance (Hopfe et al.,
2011). The relevance of the characterization of the peptide
transporter system has been described by Dasgupta et al.
(2010). Previous studies uncovered the novel observation that
this peptide transporter modulates the innate immune response
of macrophages infected (Cassio Barreto de Oliveira and Balan,

TABLE 1 | Statistics of the distance between positions of the two interacting
polymorphic loci and statistics of the MI scores, both for the final outlier
interactions.

Statistic of the final outlier interactions Values

Minimum distance (bp) 20,870
Maximum distance (bp) 2,328,291
Median distance (bp) 721,980
Mean distance (bp) 846,454
Minimum MI score 0.4130
Maximum MI score 0.5020
Median MI score 0.4202
Mean MI score 0.4509

FIGURE 3 | Network of outlier epistatic interactions. The gradient color
of nodes depicts the node degree. The gradient color of edges depicts values
of MI.
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2020) with Mtb, but the epistatic interactions of oppA with other
loci remain unknown.

A bacterium is able to adapt its response to host conditions,
such as intracellular residence in phagocytic cells, oxidative stress,
hypoxia, and carbon and nitrogen source. For this reason,
evaluating interactions by bioinformatics experiments is
necessary for the identification of new epistatic interactions in
genes that have been previously reported in databases, such as the
catalog of the WHO, or for the understanding of the epistatic
interactions in Mtb before the development of new therapies.

3.4.2 Enriched GO Terms for the Epistatic Network
The list of ENTREZ ids of the genes of the network was used to
perform a functional enrichment analysis with DAVID. From the
DAVID chart report, we only considered those terms as relevant
with p-value < 0.05 (see Supplementary Data S4 for details of
the functional enrichment analysis). Biological processes of
pathogenesis (GO:0009405) and cell wall organization (GO:
0071555) were enriched in a subset of genes (Figure 4). The
cell wall (GO:0005618), plasma membrane (GO:0005886),
cytosol (GO:0005829), and integral components of the plasma
membrane (GO:0005887) were the more abundant cellular
components; in this case, 63% of the genes are in the plasma
membrane. Regarding molecular functions, we obtained
enrichment for ATP binding (GO:0005524) and
phosphoprotein phosphatase activity (GO:0004721) for
some genes.

Recently, the biomarkers of Mtb that regulate immune
response have been identified to potentially develop drugs for
TB. It has been previously described that the functionality of
cellular components was associated with infection and verified
the regulation of these cellular components as relevant regulators
of the immune response in the host (Li et al., 2020). Thus,
describing the genes involved in cellular components is crucial

for understanding the interactions of bacteria with host molecules
that regulate immune response.

In recent studies, the relevance of the structure and biogenesis-
related genes of Mtb encoding glycoconjugates has been
confirmed, with particular emphasis on the molecules across
the different layers of the cell envelope (Angala et al., 2014).
In addition, it has been previously stressed that ATP production
is crucial for antibiotic resistance in bacteria (Black et al., 2014).

We show the enriched GO terms of genes interacting with glgB
(Figure 5B) and oppA (Figure 5F) using circular layouts. In
addition, Supplementary Data S5 also contains in table format
the genes interacting with glgB, their product, and enriched GO
terms; the same information is provided for oppA in
Supplementary Data S6. The layouts were generated using the
start and end positions of genes reported in partitions generated
by AMAS, so the arrangement and size of genes in the layout and
positions of interactions reflect the pan–genome-wide alignment.
We have highlighted the interactions of glgB and oppA in red to
distinguish them from the interaction of other genes (shown in
gray).

Both glgB and oppA epistatically interact with genes enriched
with the biological processes of pathogenesis and cell wall
organization (Figures 5D,H). One of these genes is embC,
which codifies for an arabinosyltransferase involved in the
biosynthesis of a major component of the mycobacterial cell
wall lipoarabinomannan (LAM). The characteristic manosse-
capped LAM of Mtb acts as a pathogen-associated molecular
pattern (PAMP), modulating the activation of phagocytic cells to
control the strength of the host inflammatory immune response,
while representing one of the main components in the cell wall
organization. In addition, it has been described that embC is
expressed as part of a polycistronic mRNA controlled by a
promoting region differentially expressed depending on the
stationary or hypoxia-induced persistence phase of the bacilli,

FIGURE 4 | Enriched GO terms for outliers. The p-value is indicated for each term. BP = Biological process; CC = Cellular Component; MF = Molecular function.
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highlighting the important role of this protein in the biological
functions of Mtb and the complex interaction involved in cell wall
regulation. Whether or not a direct interaction of embC with glgB
and/or oppA exists remains an exciting question to be addressed
(Goude et al., 2008).

About molecular functions, oppA and glgB interact with
several genes enriched with ATP binding and with three genes
enriched with phosphoprotein phosphatase activity (Figures 5E,
I). From these genes, bacA is another gene found to be interacting
at the highest scores with both glgB and oppA in the network, and
bacA encodes for a protein of the type IV family of ABC
transporter–type exporters; despite the structure, their function
as an importer of multi-solute hydrophilic compounds, such as
vitamin B12, bleomycin, and aminoglycosides, has been
demonstrated due to a large occluded water-filled cavity that
spans across the whole lipid membrane. In addition, it has also
been demonstrated that this transporter is implicated in the
maintenance of chronic infection in murine models by
mediating the transport of a molecule that can directly or
indirectly modulate the proinflammatory host response.
Despite having different structures, BacA and OppA shared
their ability to transport a wide range of substrates; in
particular, the shared capacity of import peptides related to
the innate immune response suggests a complex regulation
and interaction of these transporters, guaranteeing the need to
carry out studies at the level of gene regulation and function in the
near future (Domenech et al., 2009; Cassio Barreto de Oliveira
and Balan, 2020; Rempel et al., 2020).

The enriched GO terms that may be related to those associated
with ATP synthase in mycobacteria are of particular interest
because they contribute to efficient ATP production, and this
enzyme has been validated as a target for potential
pharmacological applications. In addition, mycobacterial ATP
synthase and its characteristics may provide information on
adaptations of bacterial energy metabolism. Mtb can survive in
human macrophages for an extended time. For Mtb and other
pathogenic mycobacteria strains, the blocking of ATP hydrolysis
is relevant as it may represent an adaptation to its internal and
external human phagosomes, where ATP, once produced, must
not be used (Lu et al., 2014). Thus, the importance of epistatic
interactions associated with ATP production in pathogenic
bacteria may face exceptional challenges as a variety of
pathogens need to deal with low energy conditions, such as
low oxygen tensions or nutrient limitation inside the host.

Regarding gene interactions enriched with phosphoprotein
phosphatase activity, both oppA and glgB established epistatic
interaction with the pstP gene, which encodes the Serine/
Threonine Protein Phosphatase PstP of Mtb. Signal sensing
and transduction via phosphorylation and dephosphorylation
of specific target proteins are essential for the survival of both
eukaryotic and prokaryotic organisms. In the case of Mtb, 11
serine/threonine protein kinases have been described, but only
the serine/threonine phosphatase, PstP, has been identified,
highlighting the central role of this protein in the control of
vital processes as a negative regulator of kinase activity and global
serine and threonine phosphorylation (Iswahyudi et al., 2019).

FIGURE 5 | Enriched GO terms of genes that interact with glgB and oppA. The arrangement and size of genes and positions of interactions reflect the
pan–genome-wide alignment. Red lines indicate interactions of glgB and oppA, whereas gray indicates the interaction of other genes. (A) Epistatic network. (B) glgB
interactions (subnet). (C) Enriched cellular components of genes interacting with glgB. (D) Enriched biological processes of genes interacting with glgB. (E) Enriched
molecular functions of genes interacting with glgB. (F) oppA interactions (subnet). (G) Enriched cellular components of genes interacting with oppA. (H) Enriched
biological processes of genes interacting with oppA. (I) Enriched molecular functions of genes interacting with oppA.
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Recently, other functions of PstP as a regulator of cell wall
synthesis and cell division by dephosphorylation of key substrates
implicated in both pathways have been described (Sharma et al.,
2016). PstP is co-transcribed in an operon with genes involved in
peptidoglycan synthesis, with protein kinases PknA and PknB
that regulate cell growth and cell division and with fhaA and fhaB,
which encode phosphothreonine recognition proteins that also
regulate cell growth and cell division. The involvement of pstP
with elements necessary for cell wall biosynthesis and their strict
dependence on Mn2+ for function suggests that the interaction

encountered by the computational approach could serve as a
starting point for initiating investigations into the molecular
interactions that regulate these common processes.

PstP is present as a transmembrane phosphatase and contains
a 240–amino acid intracellular catalytic domain, tethered via a
single transmembrane helix to the 196-amino acid-long
extracellular domain (Boitel et al., 2003); it remains to be
elucidated if during infection and activation of the innate
immune responses (e.g., respiratory burst activation), the
degraded bacteria retain the phosphatase activity in the

FIGURE 6 | Allele distribution at the loci of genes interacting with glgB. Labels of the column indicate gene name and locus. Estimated phylogeny is included on the
left. Interacting loci are organized in sections with borders. The border color corresponds to the color of the sections in Supplementary Data S7. GAR = Genotypic
Antibiotic Resistance.

FIGURE 7 | Allele distribution at the loci of genes interacting with oppA. Labels of the column indicate gene name and locus. Estimated phylogeny is included on the
left. Interacting loci are organized in sections with borders. The border color corresponds to the color of the sections in Supplementary Data S8. GAR = Genotypic
Antibiotic Resistance.
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membrane fragments, and these could contribute to the
dephosphorylation of the signaling pathways of the innate
system, contributing to the evasion of the immune response.

Four cellular components were enriched for genes interacting
with glgB (Figure 5C) and oppA (Figure 5G). The majority of
genes encode proteins in the plasma membrane. For example,
four genes of the group of mycobacterial membrane protein large
(MmpL), mmpL2, mmpL3, mmpL5, and mmpL8 have epistatic
interactions with glgB and oppA. MmpL proteins export cell
envelop components (such as virulence-associated lipids and
siderophores) to the periplasmic space, contributing at a high
level to the persistence of Mtb in the host (Melly and Purdy,
2019). A further study will be required to investigate the fine
regulation between the import and export systems of genes
identified under epistatic interaction by our approach in order
to establish their relevance and biological implications.

3.4.3 Allele Distribution at Loci of Genes Interacting
With glgB and oppA
To observe the patterns of alleles of the interacting polymorphic
loci, we show the allele distribution at interacting loci with the loci
of glgB and oppA using Phandango (Hadfield et al., 2017).
SpydrPick detected that three loci of glgB (837,764, 839,047,
and 839,053) interact with 57 polymorphic loci of 56 genes.
For oppA, two polymorphic loci (5,934,914 and 5,936,231) were
found interacting with 38 loci of 37 genes. Tables with loci and
genes are available in the Supplementary Datas S7, S8.

Interacting loci and gene names are displayed as labels of
columns in Figure 6 for glgB and in Figure 7 for oppA. Interacting
loci are organized in sections with borders. Each section includes
the interactions for each interacting locus. The border color for
each section corresponds to the color of the sections in
Supplementary Data S7, S8. In Figure 6, the first section
starts with the loci 837,764 and 839,047 of glgB (glgB_837764
and glgB_839047) followed by the 29 polymorphic loci that
interact with them, that is, these two loci epistatically interact
with each one of the 29 loci.

By observing the allele distribution of pairs of loci, we confirm
that SpydrPick is able to detect, using the MI score, predictable
patterns of alleles at the two loci. See, for example, the second
section in Figure 6, which only depicts the allele distribution of
the locus 839,047 of glgB (glgB_839047) and the interacting locus
818,177 of gcvH (gcvH_818177). It can be noticed that when there

is a C in the locus glgB_839047, there is an A in the locus
gcvH_818,177, and when there is a T in the locus glgB_839047,
there is a C in the locus gcvH_818,177. This predictability is
quantitatively depicted by the value of MI = 0.4201. The third
section in Figure 6 exposes the allele distribution of interactions
between the locus 839,053 of glgB (glgB_839053) and 27 loci of 26
genes (two loci of the gene mmpL3 interact with the locus
glgB_839053). In this section, we observe gaps (-) in the allele
distribution of the interacting locus 5,762,846 of mprB (two
component histidine-protein kinase/phosphatase MprB, MI =
0.4743), locus 5,711,087 of mmpL5 (transmembrane transport
protein MmpL5 MI = 0.4670) and locus 5,715,652 of mmpL8
(integral membrane transport protein MmpL8 MI = 0.4435).

In Figure 7, we present the allele distribution of loci
interacting with loci 5,934,914 and 5,936,231 of the gene oppA.
The first section contains the interactions with the locus
oppA_5,934,914. We notice the presence of gaps in the
positions ctpV_375337 (MI = 0.4516) and
eccB3_562,698 (MI = 0.417). Figure 7 also presents well-
defined patterns of allele distribution between interacting loci.

The first column in both figures indicates the submitter
institution (we included institutions with less than six submitted
strains in the category other), and the second column points to
genotypic antibiotic resistance (GAR) predicted with RGI. Estimated
phylogeny is included on the left to show the diversity of the strain
collection that we analyzed. For example, a clade at the bottom of the
tree stands out due to its change of nucleotide in relation to the rest
of the strains.

The application of this methodology also allowed the
identification within the network of various loci in genes
associated with resistance. Recently, the WHO published the first
catalog of resistance-associated genetic variants for predicting
relevant resistance phenotypes based on more than 38,000 WGS
phenotyped isolates (WHO, 2021). This has allowed the
identification of multiple positions associated with resistance and
their classification into five groups.We use this recent classification to
find antibiotic-resistant genes in the epistatic network (Table 2).

In our network, an interaction was found between glgB and
katG; mutations conferring monoresistance to isoniazid (INH)
are common due to INH having been in clinical use since the
1950s. Nevertheless, INH resistance testing is only recently
included in some specialized cartridges (e.g., Xpert MTB/XDR)
and is not routinely available in such a way that if INH resistance

FIGURE 8 | Epistatic interactions between the antibiotic-resistant genes
fprA and embC, and the putative targets of co-selection genes glgB and
oppA.

TABLE 2 | Antibiotic-resistant genes reported by the WHO catalogue are found in
the epistatic network.

Gene Antibiotic-resistant gene (drug)

glgB and oppA fprA (AMI)
glgB and oppA fprA (CAP)
glgB and oppA embC (EMB)
glgB katG (INH)
glgB fgd1 (DLM)
glgB mmpL5 (BDQ)
glgB mmpL5 (CFZ)

aAMI = amikacin; BDQ = bedaquiline; CAP = capreomycin; CFZ = clofazimine; DLM =
delamanid; EMB = ethambutol; INH = isoniazid WHO (2021).
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is not detected, patients are treated as pan-suceptible, which
represents a high risk of treatment failure and a greater
propensity to acquire further resistance (Sulis and Pai, 2020).

From the antibiotic-resistance genes that we found in the
WHO catalog, we observed that fprA (resistant to amikacin and
capreomycin) and embC (resistant to ethambutol) interact with
both genes glgB and oppA (Table 2). Moreover, they interact
between them, forming a clique of four genes (Figure 8). A clique
depicts a network where all nodes are fully connected to each
other, creating a strong interaction mechanism. This kind of
epistatic interactions motivated us to visualize future studies to
test new experimental hypotheses to elucidate their biological and
pharmacological explanations, and the MI score seems to be a
very successful approach to drive so.

4 CONCLUSION

Here, we have presented the reconstruction and analysis of an
epistatic network for Mtb from a pan–genome-wide alignment by
using the model-free method SpydrPick. Our approach allowed us
identifying new epistatic interactions with implications in virulence,
pathogenesis, transport system modulators of the immune response,
and genotypic antibiotic resistance. By the analysis of the epistatic
network, we identified glgB and oppA as putative targets of co-
selection. These two genes epistatically interact with fprA and embC,
two antibiotic-resistant genes reported in the catalog of theWHO, as
resistant to ethambutol (embC) and amikacin and capreomycin
(fprA). Our results highlight the importance of implementing
computational approaches to elucidate new genes associated to
putative epistatic interactions in Mtb.
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