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Abstract

Motivation: Recent years have witnessed that the inter-residue contact/distance in proteins could be accurately pre-
dicted by deep neural networks, which significantly improve the accuracy of predicted protein structure models. In
contrast, fewer studies have been done for the prediction of RNA inter-nucleotide 3D closeness.

Results: We proposed a new algorithm named RNAcontact for the prediction of RNA inter-nucleotide 3D closeness.
RNAcontact was built based on the deep residual neural networks. The covariance information from multiple se-
quence alignments and the predicted secondary structure were used as the input features of the networks.
Experiments show that RNAcontact achieves the respective precisions of 0.8 and 0.6 for the top L/10 and L (where L
is the length of an RNA) predictions on an independent test set, significantly higher than other evolutionary coupling
methods. Analysis shows that about 1/3 of the correctly predicted 3D closenesses are not base pairings of secondary
structure, which are critical to the determination of RNA structure. In addition, we demonstrated that the predicted
3D closeness could be used as distance restraints to guide RNA structure folding by the 3dRNA package. More ac-
curate models could be built by using the predicted 3D closeness than the models without using 3D closeness.

Availability and implementation: The webserver and a standalone package are available at: http://yanglab.nankai.
edu.cn/RNAcontact/.

Contact: yangjy@nankai.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

It is well accepted that the 3D structure of RNA determines its bio-
logical function. As revealed in the RNA-Puzzles experiment (Miao
et al., 2017), it is urgent to develop computational algorithms to
predict RNA 3D structures. Most de novo modeling methods use a
coarse-grained representation and simplify various aspects of RNA
structures, while simulating RNA structures with some restraints,
such as secondary structure and atomic distance (Boniecki et al.,
2016; Jonikas et al., 2009; Krokhotin et al., 2015). While homology
modeling and fragment assembly approaches build the RNA struc-
ture using the atomic coordinates of known structures in the Protein
Data Bank (PDB) (Berman, 2000), some recent fragment assembly
methods also add secondary structure, inter-nucleotide interaction
as restraints during structure optimization (Antczak et al., 2017;
Wang et al., 2017a). It was shown that inter-nucleotide interaction
could be predicted with direct coupling (also called co-evolution)
analysis, which can also be used as restraints to improve the accur-
acy of RNA structure modeling (De Leonardis et al., 2015; Wang
et al., 2017a; Weinreb et al., 2016).

In recent years, deep learning was proved to be very powerful for

improving the accuracy of inter-residue contact/distance prediction

and protein structure prediction (Abriata et al., 2019; Xu, 2019;

Yang, 2020). The precision of inter-residue contact prediction in

proteins was almost doubled by replacing direct coupling methods

with deep residual neural networks (Kandathil et al., 2019; Li et al.,
2019; Wang et al., 2017b; Wu et al., 2020). However, to the best of

our knowledge, deep learning has not been explored for improving

RNA inter-nucleotide interaction prediction. Note that the word

‘contact’ from the RNA community is usually used to describe vari-

ous base-pairing geometries (Leontis and Westhof, 2001; Leontis

and Zirbel, 2012), which is different with protein’s inter-residue

contact. Thus rather than using the word ‘contact’ (Weinreb et al.,
2016), we use ‘3D closeness’ to describe the tertiary inter-nucleotide

interactions to avoid confusion.
In this work, we developed RNAcontact, a deep learning-based

algorithm for the prediction of RNA inter-nucleotide 3D closeness.
Benchmark tests revealed that the predicted 3D closeness were more
accurate than those predicted by the direct coupling methods.
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The predicted 3D closeness were used as restraints to guide RNA
structure prediction, generating significantly more accurate models
than the models without restraints.

2 Materials and methods

2.1 Overview of the proposed method
Figure 1 gives an overview of the proposed method RNAcontact.
The only input to our method is the nucleotide sequence, which is
submitted to Infernal (Nawrocki and Eddy, 2013) and PETfold
(Seemann et al., 2008) to collect the homologous sequences and pre-
dict the secondary structure, respectively. The homologous sequen-
ces are used to construct a multiple sequence alignment (MSA),
from which covariance features are extracted. The feature channels
are then fed into a deep residual neural network to predict the 3D
closeness for all nucleotide pairs.

2.2 Benchmark datasets
Our benchmark datasets were constructed based on a set of non-
redundant RNA 3D structures from Leontis and Zirbel (2012)
(Version 3.99, 2019-11-06), which is updated weekly. First, a repre-
sentative dataset containing 1786 entries with resolution < 4 Å was
downloaded. Then RNA chains with length < 32 nt or >1000 nt
were removed and 511 RNA chains remained. In addition, to reduce
the similarity between these RNA chains, cd-hit-est (Li and Godzik,
2006) and BLASTclust (Altschul, 1997) were used together to re-
move redundant sequences at 30% sequence identity cutoff, yielding
336 RNA chains. 70% of these chains were randomly selected for
training and the rest for test. The length distribution of RNAs in the
training and test sets are available in the Supplementary Figure S1,
which suggests that most RNAs have less than 100 nucleotides. In
addition, the datasets from the work of Weinreb et al. (2016) and
Jian et al. (2019), consisting of 22 RNAs and 6 RNAs, respectively,
were used as additional test sets.

According to the work of Weinreb et al. (2016), for each two
nucleotides in the whole RNA, they have tertiary interaction (i.e. posi-
tive sample) if their minimal atomic distance is less than 8 Å.
Otherwise, they do not have tertiary interaction (i.e. negative sample).
RNA chains with too few positive samples (the number of positive
samples <5) were removed from the above datasets. So the remaining
number of RNAs are: 221 in the training set (denoted by TR221), 80
in the test set (denoted by TE80), 19 from Weinreb et al. (2016)
(denoted by W19) and 6 from Jian et al. (2019) (denoted by J6).

According to Jian et al. (2019), the 3D closeness in RNA can be
classified into two classes based on sequence separation: short range
(5<ji - jj<24) and long range (ji - jj� 24), where i and j are the ith
and jth nucleotides in the sequence.

Note that the 3D closeness defined above is based on pairwise
distance, borrowed from previous studies (Jian et al., 2019; Weinreb
et al., 2016). On the other hand, the RNA 3D Structures Atlas
(Leontis and Zirbel, 2012) has a different definition about inter-
nucleotide interaction by considering hydrogen bonds between
nucleotides, including base-pair, base-phosphate, base-ribose and
base-stacking. We did not re-train our method based on this new
definition to reduce computational cost. Instead, the impact of this
definition is discussed in Section 3.5, through the illustration of
RNA folding.

2.3 Input features
The features we tried, included covariance, predicted secondary
structure, predicted relative solvent accessible surface area and sin-
gle sequence, as detailed below.

Covariance (Cov). For a query sequence, the RNA sequence
alignment program Infernal (Nawrocki and Eddy, 2013) was used
to search through the NCBI’s non-redundant nucleotide sequence
database to construct an MSA. Then, the MSA was filtered by
removing redundant sequences at sequence identity cutoff 90% and
sequences with more than 50% gaps. Finally, covariance features
were computed from the filtered MSA with Eq. (1).

covðix; jyÞ ¼ pðixjyÞ � pðixÞpðjyÞ (1)

where i and j are the ith and jth columns in the MSA, respectively; ix
(jy) is one of the four nucleotide types or a gap at the ith (jth) col-
umn; p() is the frequency of observing the corresponding nucleotide
or nucleotide pair in the MSA. Thus, each MSA was transferred into
a feature map of three dimensional matrix of L�L�25 (25¼5�5,
where 5 represents four types of nucleotides and gap; L is the length
of a sequence).

Secondary structure (SS). According to the systematic compari-
son in the work of CompaRNA (Puton et al., 2014), PETfold
(Seemann et al., 2008) is one of the best RNA secondary structure
(SS) prediction algorithms. Thus PETfold was used here to predict
the RNA SS. The predicted SS by PETfold was converted into a 2D
feature map (L�L�1, L is the length of a sequence), with elements
being 1 (paired) or 0 (un-paired).

Relative solvent accessible surface area (RSA). Predicted relative
solvent accessible surface area was also transferred into an input fea-
ture. RSA was predicted by RNAsol (Sun et al., 2019), where the
value is between 0 and 1 representing the exposure level of a nucleo-
tide. This 1D feature was tiled horizontally and vertically to yield
two 2D feature maps (L�L�2, L is the length of a sequence).

Single sequence (Seq). Each nucleotide in a query sequence was
transferred into a one-hot vector (with dimension 4). Similar to the
RSA conversion, this 1D feature was tiled horizontally and vertically
to yield eight 2D feature maps (L�L�8, L is the length of a
sequence).

2.4 Neural network architecture
In this work, we used the residual neural network (ResNet) to con-
struct our network. The network architecture is shown in Figure 1,
it mixed three 2D convolution layers with five residual blocks, each
containing two convolution layers. It adds a shortcut connection in
each residual block. The output layer is a 2D convolution layer,
which outputs a 2D probability matrix of 3D closeness. We built
our network using the deep learning library Keras (https://keras.io/)
with Tensorflow (Abadi et al., 2016) as a backend. We optimized
the following parameters based on the training set: learning rate,
dropout rate, kernel size, filter size and the number of layers.

2.5 Training parameters
We selected the ReLU function as the activation function, the binary
cross-entropy as the loss function and the Adamax as the optimizer
function. To avoid over-fitting, we added dropout in each layer and
used early-stopping. Due to the different lengths of RNA chains, the
batch size was set to 1 instead of using padding. All other parame-
ters in the residual neural network, including the kernel size, filter

Fig. 1. The flowchart of RNAcontact. From an input RNA sequence of length L, 26

2D feature maps (L�L�26) are calculated based on the secondary structure (SS)

predicted by PETfold and the covariance signal inferred from an MSA by Infernal

(shown on the left). The feature maps are fed into the deep residual network (shown

in the middle) with five residual blocks (shown on the right) to predict the 3D close-

ness map
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size, number of layers, learning rate and dropout rate, were tuned to
maximize the precision on a validation set randomly selected from
the training set. Parameters were tuned based on grid search. The
ranges of the parameters are listed in Supplementary Table S1. After
optimization, the values of the parameters are as follows: kernel
size: 9; filter size: 32; number of layers: 13; learning rate: 0.0005;
and dropout rate: 0.15. Due to the random effects of the training
procedure, 100 models were trained. For each nucleotide pair, the
average of the probabilities predicted from all these models was
used as the final prediction.

2.6 Performance evaluation
Similar to the assessment in protein inter-residue contact prediction,
the performance of RNA inter-nucleotide 3D closeness prediction is
measured by precision (the number of true positives divided by the
number of predicted positives). A predicted 3D closeness is regarded
as a true positive (TP) if the two nucleotides are close in the native
structure. In general, the top L/n (n¼1, 2, 5 or 10) of the ranked
predictions are used to evaluate the performance.

3 Results and discussion

3.1 Impact of feature sets
We compared the performance of our method built with different
sets of features. The results on the independent test set TE80 are
listed in Table 1 (long range) and Supplementary Table S2 (short
range). As we can see, the precision is the lowest when only the se-
quence information was used. The precision from predicted RSA
features is about 10% higher than from sequence information. The
predictions using the covariance and predicted secondary structure
features have similar precisions, both outperforming the predicted
RSA features. When combining these two features, the highest preci-
sions are achieved, i.e. 0.89, 0.88, 0.81 and 0.66 for the top L/10, L/
5, L/2 and L predicted long-range 3D closeness, respectively. This
suggests that the secondary structure and covariance features are
largely complementary. We also tried to combine them with other
features but did not see an improvement, which might be due to
much redundant or wrong predicted information in features.

3.2 Impact of secondary structure prediction algorithms
As shown above, the secondary structure plays an important role for
improving 3D closeness prediction. Thus, we investigated more
about the impact of the predicted SS to the 3D closeness prediction.
Besides the PETfold, we tried the single-sequence-based RNAfold
and the MSA-based RNAalifold programs (Gruber et al., 2015).
Both minimum free energy (MFE) and probability matrix versions
from RNAfold and RNAalifold were tried here. We re-trained our
network after replacing the SS prediction method PETfold by
RNAfold and RNAalifold.

The results of the predicted long-range 3D closeness with differ-
ent SS predictions on the test set TE80 are listed in Supplementary
Table S3. It suggests that compared with other SS prediction, the SS
predicted by PETfold yields 3D closeness prediction with the highest
precision. The precision by the MFE version of RNAfold is slightly

lower than PETfold. It is unanticipated that the RNAalifold leads to
the lowest precision, probably because the MSA we provided is not
optimal for it. For both RNAfold and RNAalifold, the MFE version
outperforms the probability version. In order to understand the above
data, we further computed the accuracy of the predicted SS, measured
by the average Matthews Correlation Coefficient (MCC). The MCCs
for the SS predictions by the above programs are listed in
Supplementary Table S3. The average MCC for the PETfold predic-
tion is indeed higher than others, consistent to the corresponding 3D
closeness predictions. When the native SS is used, the highest preci-
sion was achieved, suggesting that one of the possible way to improve
our method is to include more accurate SS prediction in future.

3.3 Comparison with other methods
We compared our method with Weinreb’s method (denoted by
PLMC) on two test sets (TE80 and W19) and Jian’s method (called
DIRECT) on the dataset J6. Both PLMC and DIRECT used evolution-
ary coupling for 3D closeness prediction. The precisions for PLMC
were calculated by running its standalone packages with MSA input.
While for DIRECT, the precisions were obtained by running its stand-
alone package with the input features provided at its website https://
zhaolab.com.cn/DIRECT/, which is available for the dataset J6 only.

Table 2 suggests that RNAcontact has the highest long-range pre-
cision on all test sets, outperforming other compared methods. The
precision for each RNA in the test sets is listed in Supplementary
Tables S4–S6. The precisions of the short-range prediction are listed
in Supplementary Table S7. Moreover, the standard deviations of the
precisions are provided in Supplementary Tables S8 (long range) and
S9 (short range). On the test set TE80, RNAcontact achieves preci-
sions 0.89—0.66 for the top L/10—the top L long-range predictions,
about 15% higher than PLMC. On the test set W19, the precisions
of the top L/10 are similar for RNAcontact and PLMC. While from
the top L/5 to the top L prediction, our method outperforms PLMC
significantly. On the test set J6, which contains 6 RNAs only,
RNAcontact has significant improvement over DIRECT for all the
assessed top predictions. Detailed head-to-head comparisons be-
tween RNAcontact and PLMC on the top L long-range predictions
of the test sets W19 and TE80 are presented in Figure 2. It shows
that on the W19 dataset, RNAcontact outperforms PLMC for 16 out
of 19 RNAs. While on the TE80 dataset, RNAcontact has higher pre-
cision for 75 out of 80 RNAs.

Moreover, we compared the set of correctly predicted long-range
3D closeness (i.e. true positives, TPs) out of the top L predicted 3D
closeness for RNAcontact and PLMC with a Venn diagram in
Supplementary Figure S2. As we can see, the numbers of TPs of
RNAcontact are 3-4 times higher than that of PLMC on both data-
sets. Interestingly, the overlap between both methods is small. For
example, there are only 446/259 3D closeness in common on the
TE80/W19 dataset. This is possibly because different methodologies
are adopted by RNAcontact and PLMC.

The native and predicted 3D closeness maps from RNAcontact
and PLMC on three example RNAs (PDB ID: 4r4v_A, 6ol3_C and
6fyy_1) are presented in Figure 3, which shows RNAcontact predicts
most 3D closeness correctly. For these examples, the precisions of the

Table 1. Precision of the long-range 3D closeness prediction with

different features on the independent test set TE80

Features L/10 L/5 L/2 L

Seq 0.48 0.45 0.40 0.33

RSA 0.57 0.54 0.46 0.36

Cov 0.81 0.80 0.73 0.59

SS 0.79 0.78 0.71 0.58

Cov þ SS 0.89 0.88 0.81 0.66

Cov þ SS þ RSA 0.68 0.66 0.55 0.41

Cov þ SS þ RSA þ Seq 0.48 0.46 0.40 0.34

Note: The highest value on each column is highlighted in bold type.

Table 2. Precision of the long-range 3D closeness prediction on dif-

ferent test sets

Dataset Method L/10 L/5 L/2 L

TE80 RNAcontact 0.89 0.88 0.81 0.66

PLMC 0.78 0.75 0.65 0.28

W19 RNAcontact 0.97 0.95 0.88 0.72

PLMC 0.96 0.87 0.65 0.48

J6 RNAcontact 0.98 0.90 0.84 0.77

DIRECT 0.67 0.61 0.44 0.31

Note: The highest value on each dataset is highlighted in bold type. The

P-values for the statistical tests on the differences between RNAcontact and

other methods are listed in Supplementary Table S10.
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top L predictions by RNAcontact are 0.62, 0.91 and 0.93, respective-
ly. In comparison, the precisions for PLMC are 0.04, 0.04 and 0.38,
respectively. Especially, RNAcontact predicts some key 3D close-
nesses playing critical roles for RNA structure folding. These regions
are highlighted in red circles in the 3D closeness maps, which map to
the red cartoons in the structures. Meanwhile, RNAcontact correctly
detected some long-range 3D closenesses, which are shown in blue
circles in 3D closeness maps mapping to the blue cartoons in the
structures. In comparison, PLMC only provided partial segment pre-
diction and most of them are located near the diagonal line, which
means PLMC mainly predicted some short-range 3D closenesses.

3.4 Secondary structure versus 3D closeness
We divided the 3D closeness defined in Section 2.2 into two catego-
ries: SS pairs and non-SS pairs. The SS pairs were generated by the
software RNAview (Yang, 2003) from the native structures, which

Fig. 2. Head-to-head comparisons between RNAcontact and PLMC on the test sets

W19 and TE80. The x- and y-axis are the precisions of the top L 3D closeness pre-

dictions by the corresponding methods

RNAcontact PLMC

4r
4v

_A
6o

l3
_C

6f
yy

_1

Native structure

Fig. 3. Comparison of the predictions by RNAcontact and PLMC for three example RNAs. The upper/lower triangle is for the predicted/native 3D closeness maps. The red

circles are some key 3D closeness playing critical roles in RNA structure folding predicted by RNAcontact, which correspond to the red regions in the structures. The blue

circles highlight some correctly predicted long-range 3D closeness by RNAcontact, which correspond to the blue regions in the structures
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included both canonical (e.g. Watson-Crick and Wobble pairs) and
non-canonical base pairings. The non-canonical base pairings are
SSs with tertiary interactions. Other nucleotide pairs with tertiary
interactions but do not form SSs are defined as non-SS pairs.

We compared the proportions of SS and non-SS pairs in the native
structures and the correctly predicted 3D closeness from the top L
predictions on the dataset TE80. Table 3 shows that 52% native 3D
closeness are SS pairs, which means that the remaining 48% non-SS
pairs are out of the object of SS prediction, though these nucleotides
are close in the structure. Therefore, it is necessary to predict other
3D closeness that are not covered by the SS predictions, to provide
more distance information for the subsequent 3D folding. Table 3

aslo suggests that 73% predicted 3D closeness are SS pairs, probably
because SS-based features were used in RNAcontact. However, a sig-
nificant proportion (27%) of prediction is non-SS pairs, which is com-

pared with the 14% of PETfold’s prediction. This higher proportion
of non-SS pairs may be attributed to the contribution from the

covariance-based features in the model training.

3.5 Application of predicted 3D closeness in RNA

folding
The predicted 3D closeness were used to guide RNA 3D structure
modeling to demonstrate the usefulness of predicted 3D closeness.

Here, we tested on three RNAs listed in Figure 3 (4r4v_A and
6ol3_C are RNA-Puzzles targets). The 3D modeling package
3dRNA (Wang et al., 2019) was used for RNA structure folding.

For a given RNA, we first predicted its 3D closeness by RNAcontact
and SS by PETfold. The top L of the predicted long-range 3D close-

ness were then converted into distance restraints. Details of running
3dRNA was given in the Supplementary Material. The top L/5 3D
closeness were also tried, which resulted to models with similar or

lower accuracy (Supplementary Fig. S3). The distance restraints and
the predicted SS were used to guide 3dRNA to generate 10 structure

models. The one with the lowest energy was selected as the final
structure model. The modeling by 3dRNA takes about 0.5 h for an
RNA with <100 nucleotides.

Table 3. The division of 3D closeness into SS and non-SS pairs

3D closeness SS pairs (%) Non-SS pairs (%)

Native 52 48

RNAcontact 73 27

PETfold 86 14

Note: ‘Native’ means 3D closeness calculated from the native structures.

‘RNAcontact’ means the correctly predicted 3D closeness from the top L pre-

diction by RNAcontact. ‘PETfold’ means the correctly predicted 3D closeness

by PETfold.

RMSD 17.2=        Å RMSD 11.7= Å RMSD 16.7=        Å RMSD 24.3=        Å

Nat. Atlas Nat. 3D Pred. 3D W/o 3D

4r
4v

_A

RMSD 14.2=        Å RMSD 9.1=      Å RMSD 13.5=        Å RMSD 16.8=        Å

6o
l3

_C

RMSD 4.9=      Å RMSD 3.2=      Å RMSD 4.6=      Å RMSD 5.9=      Å

6f
yy

_1

Fig. 4. Three examples of native structures (in gray cartoon) and predicted models (in rainbow cartoon) from the test set TE80. Every column shows structures with different

restraints, in which ‘Nat. Atlas’ means models predicted with 3D closeness defined by RNA Structures Atlas, ‘Nat. 3D’ means models with native 3D closeness defined based

on distance, ‘Pred. 3D’ means models with predicted 3D closeness and ‘W/o 3D’ means models predicted without 3D closeness
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We compared the effectiveness of restraints from the contact
defined by the RNA 3D Structures Atlas (Leontis and Zirbel, 2012)
and the 3D closeness defined in Section 2.2. Figure 4 suggests that
for these RNAs, the models predicted with native 3D closeness
defined in Section 2.2 (the second column) achieve the lower
RMSDs than the contact defined by RNA 3D Structures Atlas (the
first column). In addition, our analysis suggests the 3D closeness be-
tween the nucleotides in red in Figure 3 are not covered in the defin-
ition by RNA 3D Structures Atlas. However, these 3D closeness are
important to determine the shape of the RNA structure. That is the
reason why we defined 3D closeness based on atomic distances ra-
ther than RNA 3D Structures Atlas.

The last two columns of Figure 4 shows that models built with pre-
dicted 3D closeness are much more accurate than models without 3D
closeness. The target 4r4v_A (the first row) is a varkud satellite ribozyme
with 168 nucleotides, which is a RNA-Puzzles target. Its structure consists
of several helical segments with interactions between them. The structure
generated with predicted 3D closeness has a similar topology to the native
structure with 16.7 Å RMSD, which is more accurate than the best model
(20.4 Å RMSD) in the RNA-Puzzles experiment. The target 6ol3_C (the
second row) is also from RNA-Puzzles, which is an adenovirus virus-
associated RNA with 111 nucleotides and two helical segments. The
model predicted using 3D closeness has 13.5 Å RMSD, more accurate
than the model without 3D closeness (16.8 Å RMSD). 3dRNA also par-
ticipated to the RNA-Puzzles experiment and predicted structure for the
target 6ol3_C with 15.4 Å RMSD. However, the most accurate model
from the RNA-Puzzles experiment has 4.8 Å RMSD, suggesting that
there are still much room to improve for 3D structure modeling with pre-
dicted 3D closeness. The non-RNA-Puzzles target 6fyy_1 (the last row) is
from the yeast 48S ribosome with 75 nucleotides. This target was pre-
dicted with relatively higher accuracy, probably because it is smaller than
the other two targets. For this target, the predicted 3D closeness improve
the model from 5.9 Å to 4.6 Å in RMSD.

The preliminary tests above shows that the predicted 3D close-
ness are very helpful to improve RNA 3D structure modeling.
However, the way of using predicted 3D closeness in 3D folding has
not been systematically optimized and other 3D modeling software
such as Rosetta may be tried [such as we demonstrated in the recent
work of protein structure prediction (Yang., 2020)], which will be
investigated in future.

4 Conclusions

Predicted inter-nucleotide 3D closeness can assist in solving the diffi-
cult problem of RNA tertiary structure determination. With covari-
ance features derived from MSAs, we developed a deep learning-
based algorithm for predicting the inter-nucleotide 3D closeness.
Experiments show that our method outperforms the coevolution-
based methods by a large margin. Based on 3D modeling with the
3dRNA package, we demonstrated that by using the predicted 3D
closeness as restraints, more accurate RNA structure models can be
built than without restraints. However, the best way of applying the
predicted 3D closeness in 3D structure folding remains unknown,
which will be investigated in future.
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