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Abstract: A highly water and thermally stable metal-organic framework (MOF) Zn,(Pydc)(Ata),
(1, HyPydc = 3,5-pyridinedicarboxylic acid; HAta = 3-amino-1,2,4-triazole) was synthesized on a large
scale using inexpensive commercially available ligands for efficient separation of CoHj, from CHy and
CO,. Compound 1 could take up 47.2 mL/g of CoH, under ambient conditions but only 33.0 mL/g
of CO, and 19.1 mL/g of CHy. The calculated ideal absorbed solution theory (IAST) selectivities for
equimolar CoHy/CO, and CoH, /CHy were 5.1 and 21.5, respectively, comparable to those many
popular MOFs. The Qs values for CoH;, CO,, and CHy at a near-zero loading in 1 were 43.1, 32.1,
and 22.5 k] mol 1, respectively. The practical separation performance for C;H, /CO, mixtures was
further confirmed by column breakthrough experiments.

Keywords: metal-organic frameworks; gas adsorption; C;H; /CO; separation; CoH, /CHjy separa-
tion; gram-scale synthesis

1. Introduction

Acetylene (CoHy) is one of most important fundamental chemicals in the petrochem-
ical and electronic industries and is mainly produced by the cracking of petroleum or
oxidative coupling of methane [1]. During such processes, some impurities like carbon
dioxide (CO,) and methane (CHy) are cogenerated with C,H; and must be removed to
improve the quality of the C;Hj [2—4]. The traditional approaches for the separation of
CyH,/CO;, and CyH, /CHy based on cryogenic distillation or solvent extraction are ei-
ther of high cost-/energy consumption or associated with pollution [5]. In this context,
physisorptive separation using porous solid adsorbents has attracted particular interest
due to the lower cost and energy penalty [6]. Among the diverse porous solid materials,
metal-organic frameworks (MOFs) are of particular interest for such demands.

In the past decades, a large number of MOFs have been synthesized for various appli-
cations including but not limited to gas separation [7-17], carbon capture [18-22], pollutant
removal [23,24], catalysis [25,26], sensing [27,28], energy devices [29,30], and water harvest-
ing [31]. While many MOFs have shown remarkable separation selectivity for relatively
distinct CoHy and CHy, it is still very challenging to separate CoHy and CO; due to their
similar polarity, molecular shape and geometrical dimensions (3.32 x 3.34 x 5.70 A3 for
C,oH, vs. 3.18 x 3.33 x 5.36 A3 for CO,) [32-35]. Furthermore, most MOFs are sensitive to
moisture, which renders them difficult to use under practical conditions where they are
exposed to humidity [36]. Therefore, it is urgent to develop water and thermally stable
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MOFs to facilitate the application of MOFs in gas separation. Besides, another important
question that most chemists have neglected is that whether the MOFs can be synthesized
on a large scale while maintaining the separation performance [37]. While a few hun-
dred milligram samples are enough for characterization and property measurement in the
laboratory, one-pot gram scale synthesis is necessary for practical use.

Herein, we would like to report a highly water and thermal stable MOF Zn;(Pydc)(Ata);
(1, HyPydc = 3,5-pyridinedicarboxylic acid; HAta = 3-amino-1,2,4-triazole) that is con-
structed by inexpensive commercially available ligands and zinc ions for efficient separa-
tion of C;H; from CHy4 and CO,. In our work, 1 was synthesized in a one-pot reaction in
a flask with production of 8.6 g. PXRD patterns confirmed its pure phase with identical
structures to that of small-scale synthesis in a autoclave. Static single component gas
adsorption isotherms showed that 1 could take up 54.9 cm?/g of C;H, under 278 K and
1 bar, but only 43.1 cm3®/g of CO, and 27.8 cm3/g of CH, under the same conditions.
The selectivities calculated by ideal absorbed solution theory (IAST) were 5.1 and 21.5 for
equimolar CoH; /CO, and CyH, /CH, mixtures, respectively. To confirm the practical sepa-
ration performance of CoH,/CO,, column breakthrough experiments were carried out for
a CoH,/CO; (50/50) mixture. CO;, broke out from the bed packed with 1 at 79 min while
C,H; was retained in the column for 116 min, indicating the good dynamic separation
performance of 1 for CoH, /COs.

2. Results and Discussion

The synthesis and crystal structure of Zn,(Pydc)(Ata); (1) was first reported by Sun
et al. [38]. Compound 1 features uncoordinated pyridyl and amino groups on the pore
surface that can serve as recognition sites for interactions with guest molecules and is
highly stable up to 400 °C and tolerant of acidic (pH > 2) and basic (pH < 14) aqueous
solution conditions, which attracted our interest for the investigation of its application for
selective gas separation. In the literature, 1 was synthesized on a very small scale (0.5 mmol)
and the yield was specified. Although the stoichiometric ratio of Zn?*:Pydc®~:Ata~ in 1
is 2:1:2, the authors used a substrate ratio of 1:1:1 for the reaction. During the scale-up
synthesis (34 mmol) of 1, we found that the reported 1:1:1 substrate ratio was not reliable,
as it led to a large amount of residual H,Pydc and a huge reduction of yield. Once we
used a Zn(NOj3),-6H,O:HyPydc:HAta = 2:1:2 ratio, no HyPydc residue was observed and
the yield was increased to 89% (Scheme 1A). The purity was confirmed by comparing
the PXRD patterns of the as-synthesized powder and the one simulated from the single
crystal structure (Figure S2). The single crystal structure of 1 revealed that it belongs to the
tetragonal space group 14/m, exhibiting a 3D microporous framework. Two carboxylate
groups from Pydc?~ are paired with two different Zn?* ions, leaving the N sites free
(Scheme 1B). For Ata~, all three N atoms of the triazole ring are coordinated to three
different Zn?* ions while the —NH, group is free (Scheme 1C). Looking at the coordination
environment of the Zn?* ion, one can find that a single Zn?* ion is coordinated to two
oxygen atoms and three nitrogen atoms (Scheme 1D).

Along the c axis, 1 features two different 1D channels characterized by Zn. - - Zn
distances of 6.135 and 5.914 A (Figure 1A). However, the small channels are not accessible
by guest molecules if the flexibility of the ligands is not considered, as indicated by
the Connolly surface analysis which gives a Connolly radius of 1.2 A (Figure 1B). The
average diameter of the large channels decorated with electronegative nitrogen sites is 3.6 A
(Figure 1B,C), which is slightly larger than the kinetic diameter of CoH, (3.3 A),CO, (3.3 A)
but slightly smaller than that of CHy (3.8 A), thus suggesting its use a as a potential material
for selective C2H2 /C02 and C2H2 /CH4



Molecules 2021, 26, 5121 3of11

HO'

(B)

Scheme 1.

0 o) \""-.;‘. .{ -"’-.#
L2 e
HNw 100°C 72h s %ﬁi" L e
L L0

Gt

%%".‘ 4 864
. P
Zn,(Pydc)(Ata),

(A) Synthetic route towards Zn,(Pydc)(Ata),. (B) Pydcz_ coordination mode. (C) Ata™ coordination mode.

(D) Zn?* coordination environment.

Figure 1. (A) Structure of 1 showing the 1D channel with two different dimensions. (B,C) Connolly
isosurface mapping on 1.

To explore the separation performance of 1, N, adsorption and desorption isotherms
were first collected at 77 K after activation of 1 under vacuum at 200 °C for 12 h. Figure 2A
shows that 1 could take up 153 mL/g of N; at P/Py = 0.95 and the adsorption isotherm
belonged to typical type I. The pore volume and Brunauer-Emmett-Teller (BET) surface
area were calculated to be 0.24 cm®/g and 636 m? /g, respectively, close to reported values
for crystals [38]. Then, C;H;, CO,, and CHy4 adsorption/desorption isotherms in 1 at
278 K, 288 K, and 298 K were collected, which all exhibited type I isotherms with negligible
hysteresis (Figure 2B-D). The capacities of CoHj, CO,, and CHy in 1 at 278 K were 54.9,
43.1, and 27.8 mL/g, respectively, which decreased to 52.6, 35.3, and 23.7 mL/g at 288
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Kand 47.2, 33.0, and 19.1 mL/g at 298 K. The isotherms were fitted using the dual-site
Langmuir-Freundlich equation (Tables S1-S3), and the IAST (ideal absorbed solution
theory) selectivities for equimolar C,H; /CO, and C,H, /CH4 mixtures were calculated
and shown in Figure 3A-C. For the C,H,/CO; mixture, the IAST selectivities were 5.1,
5.3, and 3.9 under 278, 288, and 298 K at 100 kPa, which are comparable to those of many
popular MOFs such as BSF-1 (3.3, 298 K) [39], Z]NU-109 (3.6, 288 K) [40], BSF-2 (5.1,
298 K) [41], UTSA-68 (3.4, 298 K) [42] as well as many others shown in Table 1. The IAST
selectivities for the C,H, /CHy4 mixture were much higher and the values were 21.5, 19.6,
and 15.9 under 278, 288, and 298 K at 100 kPa, respectively. These good selectivities of
CyH; over CO, and CHy originate from the higher affinity of 1 towards C,H; by N- - - H-C
hydrogen bonding. The IAST selectivities for CoH, /CO; and C,H,/CH4 mixtures in 1
under 100 kPa with different C,H, ratios were also calculated, which indicated that the
composition had a larger influence on the C;H, /CHy mixture, but whether the influence
was positive or negative depended on the temperature. At 298 and 278 K, the increasing
C,Hj; ratio led to decreased selectivity while it decreased first and increased afterwards
with the increase of the C,Hj ratio at 288 K. The isosteric heats of adsorption (Qst) were
calculated using the Clausius—Clapeyron equation.

The Qs values for C;Hp, CO,, and CHy4 at a near-zero loading in 1 were calculated
to be 43.1, 32.1, and 22.5 k] mol !, respectively (Figure 4A). These values were consistent
with the adsorption isotherms showing that 1 accommodated C,H, more favorably than
C02 and CH4.

To investigate its recyclability as well as regeneration conditions, cycling C,H, adsorption-
desorption experiments were conducted on 1. Figure 4B shows that 1 could be easily
regenerated under vacuum at a mild temperature for 30 min. In detail, complete capacity
could be realized under exposure to vacuum at temperatures above 50 °C for 30 min while
>98% uptake was achieved under vacuum regeneration conditions at 25 °C for 30 min.
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Figure 2. (A) N, adsorption/desorption isotherms in 1 at 77 K. (B-D) C;H,, CO,, and CH, adsorp-
tion/desorption isotherms in 1 at 278 K, 288 K, and 298 K.
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Figure 3. (A-C) IAST selectivities for equimolar C;H, /CO, and C,H;/CH, mixture in 1 at 278, 288,

and 298 K. (D) IAST selectivities for Co,H, /CO, and C,H, /CH,4 mixtures in 1 under 100 kPa with

different CoH, ratio at 278, 288, and 298 K.

Table 1. Comparison of the gas adsorption performance of 1 and other MOFs.

Uptake (cm® g—1) IAST Selectivity Ref
(298 K, 100 kPa) (298K, 100 kPa)
CyH, CO, CH,4 C,H,/CO, C,H,/CHy
FJI-C3 43.6 - 116 - 146 [43]
ZJNU-27 93.7 79.3 26.0 - 16.6 [44]
USTA-36 58.6 2 - 13.24 - 13.82 [45]
[Cos(L)(OH)y(H,0)-2DMF-2H,0 1073 62.0 177 - 13 [46]
QMOE-1 41.5 24.6 39 - 13.5 [47]
FJI-H21 92.4 - 7.10 - 16.3 [48]
JNU-1 63 51 - 3 - [49]
JXNU-5a 55.9 34.8 - 5 - [50]
UTSA-68 70.12 39.62 - 42 - [42]
FJU-36a 5222 3552 10.54 282 17.7 4 [51]
BSF-1 52.5 39.7 10.5 33 46.9 [39]
BSF-2 41.5 29.7 5.4 5.1 324 [41]
BSF-3 81.8 47.3 13.4 16.3 205 [6]
ZNU-1 (BSF-9) 763 38.1 - 56.6 - (52]
SNNU-63 91.1 43.7 10.3 3.3 12.9 [53]
ZJNU-109 104.6 60.0 14.3 3.8 21.6 [40]
This
Zny(Pydc)(Ata), 52.6 35.3 23.6 3.9 159 work

2 at296 K.
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respectively, for 30 min.

To further evaluate the dynamic separation of Co;H,/CO; gas mixture, breakthrough
experiments were conducted in which an equimolar C;H;/CO, mixture was flowed
over a packed bed of 1 with a total flow of 2 mL/min at 298 K. Figure 5A shows the
breakthrough curves of 1 for C;H, /CO,. Compared with CoHj, CO; eluted first, which
could be explained by the favorable affinity of 1 for C;Hj, in agreement with the single-
component adsorption isotherms in Figure 2D. The typical roll-up of the CO, curves also
revealed the weaker affinity of 1 for CO;. The regeneration of 1 with Ar purge was also
studied. At 100 °C and with a Ar flowrate of 3 mL/min, nearly all of the adsorbed C,H;
and CO; can be blown out within 3 h. These experiments confirmed the excellent potential
of 1 for practical separation of C;H,/CO, mixtures as well as the facile regeneration

conditions of the material for consecutive use.
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Figure 5. (A) Column breakthrough experiments of C;H, /CO; separation in 1 with a total flowrate of 2 mL/min at 25 °C.
(B) Regeneration of 1 using an Ar purge of at 100 °C with a flow rate of 3 mL/min.

3. Materials and Methods
3.1. Materials

All the materials were used as received without further purification. Zinc nitrate
hexahydrate [Zn(NOs3),-6H,0], (98% purity) was purchased from Sinopharm (Shanghai,
China). 3,5-Pyridinedicarboxylic acid [HpPydc] (98% purity) and 3-amino-1,2,4-triazole
[HAta] (99% purity) were purchased from Energy Chemical (Shanghai, China). N,N-
Dimethylformamide [HCON(CH3),] (99.5% purity) was purchased from Chinasun Special-

ity Products Co. (Jinhua, China).
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3.2. Synthesis of Zny(Pydc)(Ata), 1

The method for the small scale synthesis of 1 in a autoclave can be found in refer-
ence [38] and is summarized here. To a 25 mL autoclave were added 148.7 mg (0.5 mmol) of
Zn(NO3),-6H0, 42.0 mg (0.5 mmol) of HAta, 83.6 mg (0.5 mmol) of HyPydc, followed by a
stir bar. Then 12 mL of DMF and 1 mL of H,O were added. The mixture was stirred under
room temperature for 10 min whereupon almost all of the solid was dissolved. Then the
stir bar was removed and the autoclave was heated to 100 °C and kept at this temperature
for 72 h. When cooled to room temperature, slightly yellow crystals were obtained. Then
the crystals were collected by filtration, washed with DMF (3 mL x 2) and dried under
vacuum at 60 °C for 24 h. According to [38], the obtained solid product has a composition
of Zny(Pydc)(Ata);-DMF-2H,O. Only by heating at 200 °C under high vacuum can the
solvent guest molecules in the pores be removed.

For the 1 g synthesis of Zn,(Pydc)(Ata), the following procedure was performed: A
250 mL round-bottomed flask was charged with Zn(NOs),-6H,O (1.785 g, 6 mmol), HAta
(504.5 mg, 6 mmol) and H,Pydc (1.003 g, 6 mmol) and a stir bar. Then 144 mL of DMF
and 12 mL of H,O were added and the mixture was stirred at 25 °C for about 10 min.
Then, the flask bottle was equipped with a condenser, the stirring bar was taken out and
the temperature of the oil bath was raised to 100 °C and the heating continued for 72 h.
After that, the oil bath was removed, and the round-bottomed flask was allowed to cool to
ambient temperature. The resulting powder was collected by filtration, washed with DMF
(30 mL), and dried under vacuum at 60 °C for 24 h. The weight after workup was 1.0 g
with a yield of 29% based on Zn(NOs),-6H,0O.

For the 10 g synthesis of Zn;(Pydc)(Ata), without increasing the solvent amount a
250 mL round-bottom flask was charged with Zn(NOj3),-6H,O (10.11 g, 34 mmol), HAta
(2.86 g, 34 mmol) and H,Pydc (5.68 g, 34 mmol) and a stir bar. 144 mL of DMF and 12 mL
of HyO were added, and the mixture was stirred at 25 °C for about 10 min. Then, the
temperature of the oil bath was raised to 100 °C. The flask was equipped with a condenser
and the heating was continued for 72 h. The stir bar was not removed for improving the
reaction efficiency as the substrate concentrations on this scale were much higher. After that,
the oil bath was removed and the flask was allowed to cool to ambient temperature. The
resulting powder was collected by filtration and washed with DMF (15 mL X 6). During
the washing process, two different kinds of solid with different density were observed
and separated. One was white (lower density) and the other was slightly yellow (higher
density). After analysis, the white one was found to be HyPydc, while the slightly yellow
one was product with > 95% purity (see Figure S2). Both solids were dried under vacuum
at 60 °C for 24 h. The weights of recovered H,Pydc and yellow product were 2.96 g and
4.33 g, respectively. The yield was 45% based on Zn(NOj3);-6H,0.

Using the improved ratio of starting materials an optimized 10 g synthesis of
Zny(Pydc)(Ata), was performed as follows: A 250 mL round-bottomed flask was charged
with Zn(NOs),-6H,0 (10.11 g, 34 mmol), HAta (2.86 g, 34 mmol) and H,Pydc (2.84 g,
17 mmol) and a stir bar. 144 mL of DMF and 12 mL of H,O were added, and the mixture
was stirred at 25 °C for about 10 min. Then, the flask was equipped with a condenser, the
temperature of the oil bath was raised to 100 °C and the heating was continued for 72 h.
After that, the oil bath was removed, and the flask was allowed to cool to ambient tempera-
ture. The resulting powder was collected by filtration, washed with DMF (15 mL x 6). and
dried under vacuum at 60 °C for 24 h. The weight after workup was 8.62 g with a yield of
89% based on Zn(NO3),-6H,0.

3.3. Characterization
Powder X-ray diffraction (PXRD) data were collected on an AXS D8-Advance diffrac-

tometer (Bruker, Ettlingen, Germany) (Cu KaA = 1.540598 li) with an operating power of
40 KV, 30 mA and a scan speed of 4.0°/min. The range of 26 was from 5° to 50°.
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3.4. Adsorption Measurements

The gas adsorption measurements were performed on an Autosorb iQ instrument
(Quantachrome, Florida, USA). Before gas adsorption measurements, fresh 1 was evacuated
at 200 °C for 12 h until the pressure dropped below 7 umHg. The adsorption isotherms of
CyHy, CO,, and CHy were all collected at 278, 288, and 298 K on activated samples.

3.5. Calculation for Adsorption Selectivity and Isosteric Heat of Adsorption

The adsorption isotherms in 1 were fitted using a dual-site Langmuir-Freundlich

model:
bApVA beVB

q = 9a, satm + g, satw M)

Here, p (unit: kPa) is the pressure of the bulk gas at equilibrium with the adsorbed
phase, q (unit: L kg~!) is the adsorbed gas volume per mass of adsorbent, qa sat an qp sat
(unit: L kg’l) are the saturation capacities of site A and B, by and bp (unit: kPa™") are the
affinity coefficients of site A and B, and v and vp represent the deviations from an ideal
homogeneous surface.

The isosteric heat of adsorption, Qst, is calculated based on the Clausius-Clapeyron

equation:

dln

Q. = 2 (25F) @
q
The IAST adsorption selectivity for two gases is defined as:

9%/9
ds = - ®)

/b,

where qi, and qp are the equilibrium gas uptake from the adsorbed phase with partial
pressures p1, and pp

3.6. Breakthrough Experiments

The breakthrough experiment was conducted at 298 K on a self-constructed separation
setup equipped with a stainless steel column (P 4.6 mm x 100 mm). The weight of
activated 1 packed in the column was 1.6913 g. The column packed with sample was first
purged with a Ar flow (10 mL min~1) for 12 h at 100 °C for activation. A CoH,/CO, =1/1
(v/v) gas mixture was then introduced at 2 mL min~!. The flow rates of gases were
regulated by mass flow controllers and outlet gas concentration was monitored by gas
chromatography (GC-9860-5CN]J, Hope, Nanjing, China) using a thermal conductivity
detector (TCD) with a detection limit of 100 ppm). After the breakthrough experiment, the
column was regenerated with an Ar flow (3 mL min~!) at 100 °C for 5 h.

4. Conclusions

In conclusion, a large-scale synthetic route to Zn,(Pydc)(Ata); (1), a highly water and
thermally stable MOF, was reported. The synthesized material was used in the separation
of CoHj; from CHy4 and CO, with relatively high IAST selectivities for equimolar CoH; /CO,
(5.1) and CyH, /CHy (21.5) gas mixtures, respectively, comparable to those of many popular
MOFs. The practical separation performance for C;H, /CO, mixture was confirmed by
dynamic breakthrough experiments. In addition, 1 can be easily regenerated by vacuum
or Ar purging, underscoring its potential use for CoH,/CO; (5.1) and C,H, /CHjy (21.5)
separation in industry.

Supplementary Materials: The following are available online. Figure S1: Photographs illustrating
the reaction process, Figure 52: PXRD patterns comparison, Table S1: Langmuir-Freundlich pa-
rameters fit for CoHp, CO,, and CHy4 in Zny(Pydc)(Ata); at 298 K, Table S2: Langmuir-Freundlich
parameters fit for C;Hy, CO,, and CH, in Zny(Pydc)(Ata); at 288 K, Table S3: Langmuir-Freundlich
parameters fit for CoHj, CO,, and CHy in Zny(Pydc)(Ata), at 278 K.
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