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Summary

Dysfunction of the immune system underlies a plethora of human dis-

eases, requiring the development of immunomodulatory therapeutic inter-

vention. To date, most strategies employed have been focusing on the

modification of T lymphocytes, and although remarkable improvement

has been obtained, results often fall short of the intended outcome.

Recent cutting-edge technologies have highlighted macrophages as poten-

tial targets for disease control. Macrophages play central roles in develop-

ment, homeostasis and host defence, and their dysfunction and

dysregulation have been implicated in the onset and pathogenesis of mul-

tiple disorders including cancer, neurodegeneration, autoimmunity and

metabolic diseases. Recent advancements have led to a greater under-

standing of macrophage origin, diversity and function, in both health and

disease. Over the last few years, a variety of strategies targeting macro-

phages have been developed and these open new therapeutic opportuni-

ties. Here, we review the progress in macrophage reprogramming in

various disorders and discuss the potential implications and challenges for

macrophage-targeted approaches in human disease.
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Introduction

Historically considered as broad-range phagocytes playing

a relatively ‘passive’ role within the immune system,

macrophages (MФ) have since benefited from more recent

intensive characterization. Present in almost every tissue,

MФ have been divided into two broad subclasses: those

derived from an embryonic progenitor and those from

adult monocytes. Many tissue-resident MФ have a prena-

tal origin (yolk sac- or fetal liver-derived), their develop-

ment is dependent on at least one essential tissue-specific

transcription factor, and they maintain themselves by
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self-renewal, while others are recruited from the peripheral

monocyte pool.1 The origins and replenishment of MФ
populations have been the subject of numerous reviews2-6

and are not the focus of the present one. Tissue-resident

MФ are the predominant type of MФ present during

steady state and are thought to monitor tissues, and main-

tain homeostasis, cellular communication and immune

surveillance.6,7 They also participate in developmental pro-

cesses during embryogenesis.8-11 Upon inflammation,

whether induced by infection or injury, MФ are recruited

in large numbers from circulating monocytes to the tissue

and are often loosely classified as pro- or anti-inflamma-

tory. Previously, based on the actions of interferon-gamma

(IFN-c) and interleukin (IL)-4 on MФ activation and with

analogy to the Th1/2 T-cell subsets, MФ were divided into

two subtypes: ‘M1’ MФ, ‘classically activated’ by IFN-c;
and ‘M2’ MФ, ‘alternatively activated’ by type 2 anti-in-

flammatory cytokines such as IL-10. Those two subtypes

of MФ exhibit distinct metabolic function, the ‘M1’ hav-

ing an anaerobic profile, based on glycolysis and produc-

tion of nitric oxide (NO), whereas the ‘M2’ MФ have an

aerobic one, based on oxidative phosphorylation and pro-

duction of arginase.12-14 However, with current knowledge

on MФ origin, diversity and significant plasticity,15,16 the

acceptance of this dogma has diminished. Recent cutting-

edge technological developments such as single-cell RNA

sequencing (scRNAseq), advanced animal genetic modifi-

cation and intravital microscopy17-20 have allowed for a

greater appreciation of cellular diversity than previously

acknowledged. MФ not only have impressive variability in

their gene expression but they are also phenotypically

plastic, allowing them to adapt to their environment and

ensure appropriate responses. Tissue-specific transcrip-

tional programmes, instigated by local signals, enable phe-

notypic specialization in discrete microenvironmental

niches controlled by differential transcription factor

usage.21,22 Dysfunction of MФ behaviour or phenotype

has been associated with the development of many condi-

tions such as neurodegeneration, arthritis, chronic inflam-

mation, atherosclerosis and cancer,23,24 and the

identification of distinct subpopulations of MФ may be

key in disease understanding and treatment.25-27

All MФ rely on specific cytokine availability for survival,

proliferation and phenotype, including macrophage col-

ony-stimulating factor (M-CSF), granulocyte–macrophage

CSF (GM-CSF), IL-34 and transforming growth factor

beta 1 (TGF-b1), as single factor or in combination.6,28-30

MФ programming strongly depends on the environment,

which profoundly affects the cells at a transcriptomic and

epigenetic level.21,22,31 MФ also demonstrate remarkable

immune memory or ‘trained immunity’ capacities32-35

based on epigenetic modification following stimulation

and long-term priming or ‘imprinting’, as seen with apop-

totic cell recognition leading to a relatively stable tolerant

state.36-38 This immune memory appears critical during

transplant, when monocytes and MФ acquire specific

memory to major histocompatibility class I (MHCI).39

However, once isolated for ex vivo study, the characteristic

gene signature of tissue-resident MФ, including epigenetic

modification,22,40,41 is often lost, indicating the need to

explore their function and reprogramme them preferen-

tially in vivo, or with the in vivo context considered.

The aim of this review was to have a broad overview of

current research and possible treatments directed at MФ
in a selection of disease contexts. We have confined the

focus to specific organs and conditions detailed below,

purely as exemplars of the kinds of approaches that are

being considered. However, the potential for MФ target-

ing should not be considered restricted to the provided

examples.

Methods to reprogramme macrophages

MФ exhibit a high degree of plasticity in response to envi-

ronmental signals, many of which are tissue- and context-

specific. This results in a variety of MФ subtypes with dif-

ferent origins, which may play distinct roles in human dis-

ease and potentially provide unique opportunities for

targeted therapies.26,27,42 Before considering detailed

examples of therapeutic approaches in specific tissue and

disease contexts, we briefly introduce some common

methods used to reprogramme MФ, from conventional

approaches, such as targeted antibody treatments and

small molecule drugs to cutting-edge technology of gene

expression modification using viral vectors, artificial DNA

carriers, naked DNA and cell therapy (Figure 1).

Targeted antibody treatments are among the easiest and

most efficient methods to target not only MФ surface

receptors involved in the regulation of immune responses43

but also circulating cytokines/growth factors, preventing

their interaction.44 As a result, antibodies can alter MФ
activation status. However, this technique is mostly sys-

temic and can lead to numerous off-target effects.

Gene therapy aims to alter specific gene expression by

inserting genetic material into the target cell. Free nucleic

acids can be directly injected in vivo. While this is gener-

ally considered safe,45 detection by MФ can induce

inflammatory signalling. Although possibly advantageous

when reprogramming MФ into pro-inflammatory pheno-

types, it may counter anti-inflammatory states and raises

concern of off-target effects. Free nucleic acids also lack

cell-targeting specificity, an issue that can be solved by

attachment to carrier molecules, such as coupling to pep-

tides directly targeting MФ cell surface receptors.46

Nucleic acids can also be introduced using modified

viral vectors that lack the genes necessary for replication.

Lentiviral vectors stably integrate genetic material into the

host cell genome, while adenoviruses and adeno-associ-

ated viruses (AAVs) only cause transient gene expression.

Despite their high efficacy, viral vectors are associated
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with significant disadvantages: from a manufacturing per-

spective, viral vector production is costly and requires

specific safety measurements.47 From a clinical point of

view, random lentiviral RNA insertion into the genome

could cause tumour suppressor gene disruption triggering

malignancy.48 Also, viral vectors bear the risk of poten-

tially high immunogenicity.49,50 Adenoviruses’ triggering

of immune responses could, however, be exploited for the

use in tumour contexts where immune activation could

be beneficial.
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INHIBITORS

and CYTOKINES

VIRAL VECTORS
delivering nucelic acids

NANOVECTORS
delivering small compounds

and nucleic acids
(+/- surface modifications 4b)
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Short half-life
Low specificity
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      Specific targeting
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Figure 1. Summary of macrophage manipulation techniques for therapeutic purpose. These strategies can directly be applied in vivo, as well as

in vitro followed by adaptive transfer of manipulated MФ. Free nucleic acids (1) can be manufactured easily and are very successfully used in

some tissues including lungs and skeletal muscle. However, they lack MФ specificity and are rapidly cleared from the environment, mostly by cir-

culating enzymes and kidney. Viral vectors (2) can be employed to deliver nucleic acids, preventing clearance from the system. Depending on the

type of vector, gene manipulation can be long term (lentivirus) or transient (adenovirus). Viral vectors are highly efficient and can be modified

to improve MФ targeting. However, they do entail safety considerations for patients and manufacturing staff. Free small molecules and cytokines

(3) are known to act on MФ polarization. They are easy to administer but prone to degradation. They are also often not MФ specific and can

cause off-target effects and toxicity. Encapsulation of nucleic acids, small molecules and cytokines into nanovectors (4) prolongs their half-life in

the organism, while surface modifications (4b) allow targeting of specific cell types. Antibodies (5) can manipulate MФ polarization by directly

binding Fc or other cell surface receptors. While they are generally safe, high doses are often required for therapeutic efficacy translating into high

costs
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Another option for delivery of nucleic acids are non-

immunogenic nanoparticles (<100 nm), and organic (e.g.

liposome, polymers) or inorganic (e.g. gold, silica) parti-

cles widely used in clinical applications51 that are readily

ingested by MФ. Different types of nanovectors vary in

their advantages in clinical applications52 and can inher-

ently favour polarization towards either end of the MФ
activation spectrum.53

The use of nanoparticles in not restricted to nucleic

acid delivery. MФ can also be targeted with compounds

acting on signalling pathways to promote polarization

such as cyclooxygenase-2 inhibitors,54 receptor tyrosine

kinase inhibitors55 and histone deacetylase (HDAC) inhi-

bitors,56 as well as small molecule Toll-like receptor

(TLR) agonists57 and possibly cytokines.58 Free small

molecules can be associated with systemic side effects,

while unprotected molecules and cytokines are relatively

unstable in vivo.59 Such limitations can be overcome by

encapsulation into nanovectors.60,61 In general, nanoparti-

cles are well tolerated, small enough to cross physiological

barriers including the blood–brain barrier (BBB) and

easily modified to allow cell-targeted delivery. They do,

however, need to be carefully manufactured considering

possible toxicity associated with different materials and

delivery routes, as well as inflammatory responses associ-

ated with uptake by MФ.62

Blood and bone marrow-derived MФ (BMDM) can be

reprogrammed ex vivo by the same aforementioned meth-

ods and adoptively transferred to individuals. This may

help alleviate some of the off-target limitations of directly

targeting MФ in vivo.63 To retain polarization stability,

MФ can be genetically engineered ex vivo to over- or

under-express factors associated with polarization pheno-

types. An intriguing option was proposed by Shields and

colleagues: ex vivo attachment of IFN-c-loaded phagocy-

tosis-resistant ‘backpacks’ to BMDM enabled slow release

of IFN-c in vivo, allowing injected cells to maintain a

pro-inflammatory phenotype while simultaneously polar-

izing tumour-infiltrating MФ.64

The type of protocol used for therapeutic intervention

will depend on the tissue, MФ subtype and pathology to

be treated. Recently, a first-in-human phase 1 dose–esca-
lation trial confirmed the safety of autologous MФ ther-

apy in end-stage liver disease, which was well tolerated

and is currently undergoing efficacy measures in an ongo-

ing phase 2 randomized controlled trial.65

Tissue-specific consideration in macrophage
reprogramming

Cardiac macrophages

Mouse cardiac MФ are composed of four different sub-

sets, distinguishable by their cell surface expression of

typical markers such as MHCII, Ly6C, CCR2, CD11c,

MerTK, CD206 and CD64, and are derived from yolk

sac and fetal liver.66 Their self-renewal capacity decreases

with age, and they are thought to be gradually replen-

ished by monocyte-derived MФ over time.67 Cardiac

MФ play important roles in tissue homeostasis, angio-

genesis and vascular remodelling during embryogenesis,

as well as in the action potential propagation by being

electronically coupled with cardiomyocytes.68-70 During

inflammation or following injury such as myocardial

infarction (MI), resident cardiac MФ become activated

and high numbers of monocyte-derived MФ are

recruited to the injured site where their heterogeneity is

thought to impact MI outcome.71-73 Recruited cardiac

MФ participate in all phases of MI, from the first acute

inflammatory wave to the reparative phase and the pro-

motion of angiogenesis and muscle regeneration.74,75 The

repair after MI is associated with scar formation and

fibrosis, decreasing cardiac functionality.76 Interestingly,

the resident cardiac MФ seem to limit adverse remod-

elling77 and Gata6+ pericardial MФ have recently been

shown to enter the site of injury and prevent fibrosis.78

MI is a leading cause of death worldwide.79 Clinical tri-

als mainly focus on decreasing systemic inflammation by

suppressing the immune system and inflammation with

corticosteroid,80 methotrexate (phase 3, completed and

recruiting) or blocking pro-inflammatory molecules such

as IL-6 (tocilizumab, phase 2, active) and IL-1b (Ana-

kinra, completed81). However, the use of broad-range

immunosuppressors is questionable, as a controlled first

phase of inflammation has been shown to be essential to

tissue regeneration.82 In this line, recent work has shown

that a located injury such as MI not only modifies the

local MФ pool, but also affects the number and molecu-

lar signature of off-site MФ throughout the organism

(liver, lung and kidney),83 placing the effect of systemic

drugs in an even more central question. Recent research

focusing on the modulation of cardiac MФ phenotype

and activity in animal models shows promising results

encouraging further human clinical trials. Using

nanoparticle-delivered siRNA, Courties et al. successfully

silenced interferon regulatory factor 5 (IRF5) in cardiac

MФ in a mouse model of MI, which improved healing.84

Similarly, the targeting of miRNA-21 in cardiac MФ
with nanoparticles containing mimics (intravenously

injected) or adenovirus particles overexpressing miR-21

(intramyocardially injected) reduced inflammation, fibro-

sis and cardiac dysfunction.85,86 Finally, the intramyocar-

dial transplantation of in vitro M-CSF- and IL-4-primed

‘reparative’ MФ following MI in mice showed beneficial

effects over transplantation of non-primed bone marrow

mononuclear cells.87 While human assays to modify MФ
in vivo has been less prominent, recent work explored

the MФ heterogeneity and identified at least two subsets

(CCR2+ and CCR2-) present in human heart which are

essential for tissue function.88
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Macrophages in the central nervous system

Resident myeloid cells in the central nervous system

(CNS) include parenchymal microglia and different types

of non-parenchymal MФ.89 Additionally, inflammatory

conditions can trigger the influx of monocyte-derived

MФ90 through disruption of the BBB. Under physiologi-

cal conditions, this layer of endothelial cells restricts the

crossing of cells and compounds into the CNS as previ-

ously reviewed.91 Both dysregulated resident and infiltrat-

ing MФ have been linked to the pathophysiology of

several neurological disorders including Alzheimer’s dis-

ease (AD),92,93 multiple sclerosis (MS)94 and amyotrophic

lateral sclerosis (ALS).95 Currently, no cure exists for

those conditions and potential preventative and early

treatment options face the difficulty of drug delivery.

Multiple sclerosis

MS is an autoimmune, demyelinating disease of the brain

and spinal cord. It affects young adults causing progres-

sive neurological deterioration with common symptoms

including numbness, burning sensations, visual impair-

ment, loss of balance, bladder dysfunction, fatigue and

depression.96 While the aetiology of MS is incompletely

understood, it is believed that CNS-infiltrating pro-in-

flammatory phagocytes are key drivers in tissue destruc-

tion.94 Indeed, in MS patients such cells have been found

to express reduced levels of SHP-1 causing increased acti-

vation of STAT1, STAT6 and NF-jB.97 This was associ-

ated with a pro-inflammatory phenotype characterized by

elevated proteinases including ADAM8, which could dis-

rupt the BBB and contribute to demyelination, as well as

increased molecules associated with antigen presentation

and costimulation.98 This view is supported by studies of

experimental autoimmune encephalomyelitis (EAE), the

murine model for MS.99 Depletion of infiltrating phago-

cytes protected mice form axonal damage,100 while block-

ing microglial release of nitrite and pro-inflammatory

chemokines and cytokines significantly reduced clinical

signs in the EAE model.101 The polarization of microglia

by molecular control of cytokines and costimulatory

molecules by nuclear receptor has been shown to be

essential for the onset and development of EAE.102 EAE

has limitations concerning translation to human disease

but does still play an important role in drug develop-

ment.103

Glatiramer acetate (GA) is a polymer approved for the

treatment of relapsing–remitting MS. While its mode of

action is attributed to T-cell manipulation, GA also

increases microglial phagocytic activity and IL-10 produc-

tion while decreasing TNF in vitro.104 GA likely does not

cross the BBB on its own. However, it can be taken up

by dendritic cells (DCs) and released in the CNS, with

GA uptake promoting trans-endothelial migration of

DCs.105 Alternatively, GA could enter the CNS when the

BBB is disrupted in active MS lesions. Studies report GA-

mediated reductions in relapse rates;106 however, it is still

unclear whether its effect on microglia contributes to this

and whether GA actually slows disease progression.107 As

GM-CSF has been implicated in disease induction in the

EAE model, MOR103, a monoclonal antibody (mAb)

directed against GM-CSF, has been tested in MS patients

and was found to be well tolerated, although no assess-

ment regarding efficacy was conducted at this stage

(NCT01517282).

While infiltrating pro-inflammatory phagocytes are

potentially detrimental in MS, microglial production of

pro-inflammatory factors, especially TNF, might support

remyelination,108 calling for a specific targeting of periph-

eral MФ. Indeed, preventing peripheral MФ entry into

the CNS was beneficial in EAE.109

Therapeutics aiming to interfere with peripheral MФ
need to be carefully considered to not affect microglia

populations. In EAE, scRNAseq recently identified eight

different monocyte subsets, one of which expressing

CXCL10+ was associated with a pathogenic gene signa-

ture. This subset had also been observed in other inflam-

matory models such as pathogen infection, and its

depletion in EAE was associated with clinical improve-

ment.110 Whether and how this finding translates into the

human context remains to be investigated.

Alzheimer’s disease

AD is a chronic neurodegenerative disorder associated

with CNS inflammation and the main cause of dementia.

Genome-wide association studies have uncovered a vari-

ety of loci increasing susceptibility to the development of

late-onset Alzheimer’s disease, many of which are associ-

ated with immunity.93 In addition, rare coding variants,

such as that of triggering receptor expressed on myeloid

cells 2 (TREM2), have strongly been linked to increased

risk of developing AD.111 In line with this, in a murine

AD model expressing a TREM2 risk variant (R47H), anti-

human TREM2 mAb increased microglial proliferation,

reduced neuroinflammation and was associated with cog-

nitive benefits.112 The same antibody was well tolerated in

a phase I clinical trial (NCT03635047).

Activated microglia are thought protective early in dis-

ease but over time become dysfunctional causing inflam-

matory injury.113 Importantly, scRNAseq identified

distinct microglia subsets in AD, including a type associ-

ated with neuroprotection and increased phagocytosis

also found in a mouse model of ALS.25

An important regulator in microglial differentiation is

the M-CSF receptor (M-CSFR): depending on the murine

model and dose of inhibitor used, inhibition of M-CSFR

signalling resulted in blockade of microglial prolifera-

tion114,115 or microglial depletion116 inducing an anti-
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inflammatory state and cognitive improvements not asso-

ciated with alterations in amyloid plaques. Together, these

and other studies suggest M-CSFR inhibition as a viable

option for clinical trials. Importantly, M-CSFR expression

is not restricted to microglia but important for all macro-

phages. In line with this, M-CSFR inhibition was shown

to also affect circulating and tissue-resident macrophages

and lymphocytes in other organs in a mouse model.117 In

this paper, the M-CSFR inhibitor PLX5622 was adminis-

tered through diet. While not investigated by the authors,

it is likely that such a method of drug delivery would also

affect the gut microbiome. Considering the link between

intestinal dysbiosis and neurodegeneration,118 such a

method could affect treatment outcomes and a more

localized way of drug delivery, potentially by intranasal119

or direct intraventricular/intrathecal administration,120

could minimize off-target effects.

Amyotrophic lateral sclerosis

ALS is characterized by motoneuron degeneration typi-

cally causing paralysis and death within five years of diag-

nosis. In murine models, the number of resident

microglia increases throughout disease progression con-

comitant with a switch from an anti- to a pro-inflamma-

tory phenotype.121 Simultaneously, peripheral monocytes

from ALS patients have been suggested to be more readily

activated into pro-inflammatory phenotypes compared

with those of healthy individuals, further driving neuroin-

flammation after CNS infiltration.122

Vascular endothelial growth factor (VEGF) has been

suggested to play a neuroprotective role by reducing

motor neuron death through downregulation of pro-in-

flammatory cytokine production.123 Intrathecal injection

of adeno-associated virus containing VEGF expressing

plasmid induced VEGF expression in motor neurons in a

mouse model of ALS. This prolonged survival of the mice

by two modes of action: increasing anti-apoptotic factors

such as Bcl-2 and decreasing pro-apoptotic ones such as

Bax, caspase-3 and caspase-9 in neurons and a switch in

the inflammation balance (reduction in the pro-inflamma-

tory TNF, IL-1b and CD68 while increase in anti-inflam-

matory TGF-b released by microglia).124 Unfortunately,

phase II clinical trials for intracerebroventricular adminis-

tration of the common splicing isoform VEGF165 were

terminated due to a lack of favourable benefit–risk ratio

(NCT01384162).

The involvement of pro-inflammatory MФ and micro-

glia in the pathophysiology of neuroinflammatory condi-

tions strongly suggests the targeting of CNS myeloid cells

for re-education as a treatment option. However, to date

no agent designed to manipulate MФ activation states in

the CNS has been approved for the treatment of a neuro-

logical condition. This is partly due to poor animal mod-

els, which do not fully mimic human pathophysiology. It

is essential to understand the heterogeneity of myeloid

populations and individual contributions to neurological

pathologies in the CNS, to specifically target disease-asso-

ciated cell types. Imaging mass cytometry is already used

to characterize key players in neurological diseases by

applying antibodies to post-mortem sample.125 Addition-

ally, scRNAseq of human microglia from brain autopsy

samples could also uncover cell-specific targets for inter-

vention that could aid the development of therapeutics.

With potential targets being discovered, it is vital to also

reconsider options for drug delivery: compounds deliv-

ered systemically can eventually reach the brain but will

also affect cells in other tissues and organs. In particular,

in the case of macrophage manipulation, many receptors

and targets are shared by different tissue-resident macro-

phage populations making it difficult to prevent off-target

effects. This issue could be overcome by exploring intrac-

erebral,126 interstitial127 or intranasal128 delivery methods.

Liver macrophages

The murine liver comprises two distinct populations of

tissue-resident MФ, the Kupffer cells (KCs) that occupy

the sinusoidal vascular space, and the phenotypically

distinct liver capsular MФ, which reside in the hepatic

capsule.129 Additionally, the liver may also contain mono-

cyte-derived and peritoneal MФ,86 which are recruited

following inflammatory events or injury.130-132 Liver MФ
heterogeneity was recently reviewed.130,131 In mice, fetal

liver monocytic precursors give rise to embryonic KCs,

which at steady-state maintain the KC pool through self-

renewal, independent of BM-derived progenitors.1,133,134

In contrast, liver capsular MФ arise entirely from adult

circulating monocytes.129 More recently however, BM-

derived monocytes were shown to populate the KC niche

during postnatal liver development, contributing signifi-

cantly to the adult KC population.135 Following the loss

of KCs after infection,136 or experimental deple-

tion,135,137,138 the KC pool is repopulated through prolif-

eration of surviving KCs, as well as the recruitment and

differentiation of blood monocytes into KCs (mo-KCs).

These mo-KCs were shown to be highly functionally and

transcriptionally homologous to their embryonic counter-

parts135 after 30 days post-depletion, although other stud-

ies have shown that embryonically derived KCs may

exhibit some phenotypic and functional differences to

their monocyte-derived counterparts.137,139 The replenish-

ment of the depleted KC niche by either mechanism how-

ever, appears to be context-dependent. Indeed, in an

acute liver injury model, the depleted KC niche was

replenished through proliferation of the surviving KCs

without input from circulating monocytes.140 Similar to

the development and maintenance of other tissue-resident

MФ populations, recent studies have highlighted the criti-

cal role of transcription factors in governing KC
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development and identity, with the loss of inhibitor of

DNA 3 (ID3)141 or liver X receptor-alpha (LXR-a)142

resulting in KC deficiency in mice. Two recent studies in

mice demonstrated that liver-derived signals orchestrate

monocyte recruitment143 and initiate and maintain KC

identity through the induction of lineage-determining fac-

tors including ID3 and LXR-a by acting on pre-existing

but poised enhancers143,144. Additionally, leveraging of

scRNAseq technology for profiling human liver MФ has

revealed distinct subpopulations of KCs with discrete gene

expression signatures26,145-147, but our understanding of

their biology is still restricted compared with mouse liver

MФ.

Liver MФ play a key role in the pathogenesis of acute

and chronic liver diseases, including acute liver failure,

alcoholic liver disease, non-alcoholic fatty liver disease

(NAFLD), viral hepatitis and hepatocellular carcinoma.

They are also critically required for the restoration of tis-

sue homeostasis and resolution of liver disease.148 These

seemingly contrasting roles for liver MФ highlight the

importance to identify and understand the relative contri-

butions that distinct subsets have in disease progression,

as well as tissue repair, to help the development of

improved-targeted therapeutics, as well as the definition

of biomarkers indicating either disease progression or

regression (for a recent review, see Ref 131).

A recent study described a subset of Trem2hi MФ
enriched in mouse models of non-alcoholic steatohepati-

tis (NASH), as well as in human NASH livers, correlating

with disease severity.149 Interestingly, in a diet-induced

mouse model of NASH, KC identity was significantly

altered by the NASH diet. NASH-induced changes in KC

enhancers and gene expression were driven by activator

protein 1 and early growth response protein 1 inducing a

scar-associated MФ phenotype, with increased expression

of both Trem2 and Cd9.150 Interestingly, an independent

study also identified a scar-associated TREM2+CD9+ sub-

population of MФ in humans, which differentiate from

circulating monocytes and expand during liver fibrosis.26

In another study, a subset of MФ (MerTK+HLA-DRhigh)

was reported to expand during the resolution phase of

acute liver disease, with a comparable population identi-

fied in mice during the resolution phase of an acute liver

injury model.151 Further studies are needed to fully define

liver MФ subsets and their contributions to disease pro-

gression, as well as in tissue repair and the restoration of

homeostasis. However, some approaches to target MФ in

liver disorders are already under investigation.

Glucocorticoid and antibody–drug conjugate

Glucocorticoid receptor signalling modulates inflamma-

tion in KCs, suggesting that glucocorticoid treatment

could serve as a potential MФ-directed treatment for liver

diseases.152 Liposomal delivery of dexamethasone was

shown to significantly reduce liver injury and fibrosis in

experimental models of both acute and chronic liver inju-

ries.153 Direct targeting of MФ with an antibody–drug
conjugate composed of dexamethasone linked to an anti-

body against CD163 (a scavenger receptor highly

expressed in KCs and infiltrating monocytes/MФ) was

shown to reduce inflammation, hepatocyte ballooning

and fibrosis in a mouse model of NASH, while having no

apparent systemic side effects.154

Cytokines modulation

The pro-inflammatory cytokine TNF plays a major part

in the development of steatosis, inflammation and fibro-

sis in NAFLD. KCs have been identified as the main cel-

lular source of TNF in mouse models of NAFLD.

Mannose-modified trimethyl chitosan–cysteine-conjugated
nanoparticles were used to deliver siRNA targeting TNF

to MФ and protected mice from inflammation-driven

liver damage and lethality in an acute liver injury

model.155

Gene expression modification

Oxidative stress and the associated damage have been sug-

gested to link obesity and liver disease. Recently, Azzimato

and colleagues156 showed that oxidative stress was triggered

by obesity in mouse and human livers. In parallel, nuclear

factor erythroid 2-related factor 2 (NRF2), a transcription

factor regulating the antioxidant response, was reduced,

leading to an impaired antioxidant response. miR-144 was

greatly upregulated in the liver of obese and insulin-

resistant mice and humans and was shown to target NRF2.

Consequently, delivery of an antagomiR targeting miR-144

expression to MФ in vivo with glucan-encapsulated RNA

interference particle technology increased NRF2 protein

levels, reduced oxidative stress and improved hepatic meta-

bolism in insulin-resistant mice.

Small molecule inhibitors

Galectin-3 is a pleiotropic protein highly expressed by

MФ in the liver and upregulated in models of liver dis-

ease.157,158 Galectin-3 deficiency in mice was protective in

a concanavalin A-induced liver injury model, reducing

pro-inflammatory cytokines, as well as attenuating fibro-

sis.159 Similarly, pharmacological inhibition of Galectin-3

in liver injury models significantly reduced fibrosis and

led to a reversal in cirrhosis and is now under evaluation

for NASH in clinical trials.157,158

The dual CCR2/CCR5 inhibitor cenicriviroc was shown

to reduce monocyte recruitment and liver injury in an

acute liver failure model,160 as well as ameliorating hep-

atic inflammation and fibrosis in experimental models of

NASH,161 and is also currently under evaluation in
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clinical trials for the treatment of liver fibrosis in NASH

(NCT03059446 and NCT03028740).162

Adoptive transfer

In an experimental model of acute liver injury, adoptive

transfer of ex vivo IL-4/IL-13-polarized BMDM rapidly

reduced liver injury and several mediators of inflamma-

tion.163 Of note, the adoptive transfer of primary human-

polarized monocyte-derived MФ partially recapitulated

the therapeutic effect observed with polarized mouse

BMDM in the same mouse model.163 Similarly, injection

of BMDM or embryonic stem cell-derived MФ reduced

both fibrosis and improved liver regeneration in a hepatic

injury and fibrosis model.164,165 Clinical trials in humans

have demonstrated the safety of administration of large

and frequent infusions of autologous MФ. A recent first-

in-human trial evaluated the safety of a single peripheral

infusion of autologous MФ in end-stage liver disease,

which was well tolerated and led to a reduction in clinical

scoring, and is currently undergoing efficacy measures in

an ongoing phase 2 randomized controlled trial.65 How-

ever, this study did not determine whether the infused

MФ migrated to and engrafted in the liver. Previous

studies in mice, as well as a case study in humans, suggest

that the administration via peripheral or central veins

MФ traffic from the pulmonary vasculature via the blood

before engrafting in the liver and spleen.164,166-168 Signifi-

cant challenges remain for the adoption of autologous

MФ therapies, such as their scalability, as well ensuring

that engrafted cells maintain the intended phenotype,

which can be greatly impacted by the tissue microenvi-

ronment.

Macrophages in arthritis

Rheumatoid arthritis (RA) is a chronic, systemic inflam-

matory autoimmune disorder that primarily affects syn-

ovial joints, leading to irreversible bone and cartilage

destruction. Multiple studies have implicated monocytes

and MФ in the initiation and progression of RA.169 MФ
are the most abundant immune cell and are a source of

pro-inflammatory cytokines associated with RA pathogen-

esis including TNF, IL-6 and IL-1b,170 as well as chemo-

attractants and metalloproteinases. Conversely, synovial

tissue MФ in healthy and RA patients in sustained remis-

sion suggest that MФ have a fundamental role in main-

taining and/or reinstating synovial homeostasis.171,172 In a

murine model of sterile inflammatory arthritis, non-clas-

sical Ly6C- but not Ly6C+ monocytes were reported to be

crucial for the initiation of arthritis, while tissue-resident

synovial MФ restricted the development of arthritis.173

Murine synovial lining CX3CR1+ MФ form an immuno-

logical barrier in the lining layer of the synovium of

healthy joints.174 Depleting them in a mouse model of

arthritis disrupted barrier function and accelerated the

onset and magnitude of arthritis, whereas depletion of

CSF1R+ monocytes and MФ expedited the resolution of

inflammation. Interestingly, comparison of scRNAseq

data with human data sets from RA patients revealed sig-

nificant overlap, suggesting cells similar to synovial lining

MФ may also exist in humans.174 A recent study

described synovial MФ subsets enriched in active RA

(MerTK- CD206-) or sustained remission (MerTK+

CD206+), which are thought to contribute to RA patho-

genesis or remission through the production of pro-in-

flammatory cytokines or lipid mediators, respectively.175

Similarly, IL1B+ pro-inflammatory monocytes were

enriched in synovial tissue from patients with RA,

whereas NUPR1+ monocytes were inversely correlated

with tissue inflammation.176 Another study recently iden-

tified HBEGF+ inflammatory MФ enriched in the human

RA tissues,177 which promote synovial fibroblast invasive-

ness in an epidermal growth factor receptor (EGFR)-de-

pendent manner. Interestingly, a previous study showed

that EGFR inhibition reduced the severity of established

RA in mice.178 Collectively, these studies demonstrate that

distinct monocyte and MФ subsets have defined roles in

RA. Strategies are currently being developed to target MФ
and improve RA pathology.

Cytokines

Several lines of evidence suggest that MФ and GM-CSF

strongly influence the development and progression of

RA.179,180 In patients with RA, GM-CSF is elevated in

plasma, synovial fluid and synovial tissues, while adminis-

tration of recombinant GM-CSF has been reported to

exacerbated RA disease activity.181 Depletion of GM-CSF

or blockade of GM-CSFRa in a mouse model of RA sig-

nificantly reduced the number of MФ in the inflamed

synovium, decreased synovial inflammation and joint

destruction.182,183 Therapeutic antibodies targeting GM-

CSF and its receptor have been developed and evaluated

in clinical trials.181,184 Collectively, these studies have

shown that treatment is associated with rapid and sus-

tained improvements in measures of RA disease out-

comes, as well as being well tolerated in safety studies.185

Of note, a phase III clinical trial is currently ongoing

evaluating otilimab, a fully human anti-GM-CSF mono-

clonal antibody, in RA patients who have had an inade-

quate response to disease-modifying anti-rheumatic drugs

and/or Janus kinase inhibitors (NCT04134728).

Gene therapy

In the collagen-induced arthritis (CIA) mouse model,

Kong and colleagues identified three key pro-resolving

factors that were elevated in mouse synovial tissues dur-

ing the resolution phase of CIA.186 Among them, tyrosine
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3-monooxygenase/tryptophan 5-monooxygenase activa-

tion protein zeta (Ywhaz) was also shown to be elevated

in rat synovial tissue in a CIA model during the resolu-

tion phase compared with the peak phase, as well as in

RA patients who responded well to treatment with anti-

rheumatic drugs. Ywhaz is highly expressed in Tregs and

MФ and is one of the most common proteins found in

exosomes187 from Tregs, although no data were shown

for MФ in this study. Interestingly, treatment of thiogly-

collate-elicited peritoneal MФ with recombinant Ywhaz

reduced the expression of Tnf and Il6, while enhancing

Il10 expression.186 Furthermore, siRNA knockdown of

Ywhaz or treatment with an anti-Ywhaz antibody

enhanced the expression of Tnf and Il6 following LPS

stimulation, supporting a role of Ywhaz in modulating

pro-inflammatory cytokine production in MФ.186 Intra-

articular delivery of adenovirus expressing Ywhaz sup-

pressed the production of pro-inflammatory cytokines

and significantly reduced synovial inflammation and joint

destruction in mice.186 Ywhaz is a member of the 14-3-3

protein family, which modulate the activity of binding

partners by controlling protein localization, stability, con-

formation and activity mainly through phosphoserine/

threonine motifs.188 Previous studies have suggested that

Ywhaz can modulate the activity of forkhead box tran-

scription factor family O 3 (FOXO3), a transcription fac-

tor regulating the expression of cytokines,189 and

tristetraprolin (TTP),190 which regulates cytokine produc-

tion by destabilizing target mRNA molecules.191 However,

further studies are needed to understand how Ywhaz reg-

ulates the production of cytokines and the subsequent

resolution of arthritis. In arthritic rats, MФ phenotype

has been manipulated in vivo by tuftsin-modified

nanoparticle-mediated delivery of plasmid encoding IL-

10, leading to a significant reduction in pro-inflammatory

cytokine production, diminishing inflammation and pre-

venting the progression of joint damage.192

Tumour-associated macrophages

Cancers are heterogeneous tissues with tumour-infiltrat-

ing immune cells playing key roles in disease progres-

sion.193 Tumour-associated macrophages (TAMs) are

major components of the immune cells infiltrating solid

tumours. They are a heterogeneous population often

coexpressing pro- and anti-inflammatory markers.194

While pro-inflammatory functions could aid tumour cell

elimination,195 immune-suppressive TAMs are linked to

worse prognosis due to their contribution to tumour

growth and metastasis.196,197 TAMs repolarization to pro-

duce inflammatory mediators is currently being evaluated

in a number of clinical trials, examples of which are sum-

marized in Table 1.198-206 Several strategies to target

TAMs have been adopted, and we will describe common

ones below.

Receptor targeting

Just as in other tissues, the M-CSFR axis is an attractive

target in the tumour context: in many pre-clinical mod-

els, the use of M-CSFR inhibitors is associated with MФ
depletion and tumour regression in a T-cell-dependent

manner.207 However, blocking M-CSFR signalling in

murine proneural glioblastoma multiforme (PGM) and

hepatocellular carcinoma caused tumour regression with-

out TAM depletion, with persisting TAMs associated with

functional alterations.208,209 M-CSFR signalling can be

blocked by the use of antibodies targeting either M-CSF

or its receptor. While in some clinical trials antibody

treatment achieved disease stabilization,210 other studies

report TAM reductions without anti-tumour activity.211

Another option is the use of small molecule inhibitors

acting on the receptor tyrosine kinase domain (e.g.

PLX3397, BLZ945). Those inhibitors also interfere with

other receptors expressed in myeloid and tumour cells,

which could enhance their efficacy. As it has been shown

in a PGM model that tumours can acquire resistance to

BLZ945-mediated inhibition,212 the combination of M-

CSFR inhibitors with other immune- or chemotherapeu-

tic agents could be beneficial and is being evaluated in

clinical trials.

TLRs are involved in immune surveillance, and their

agonists can drive pro-inflammatory mediator release.213

Imiquimod (TLR7 agonist) is already approved for topi-

cal therapy in squamous and basal cell carcinoma, and

clinical trials are ongoing for several other TLR agonists.

Imiquimod’s mechanism of action likely affects not only

MФ but also dendritic cells and neutrophils.214 in vivo,

many TLR agonists have short half-lives, and some free

agonists have been associated with toxicity. Such issues

could be prevented by encapsulation into nanovectors.

While no such strategies are currently in clinical trials,

murine models support the efficacy and safety of resiqui-

mod-loaded nanoparticles61 and ferumoxytol-linked Poly

(I:C).215

Another example of receptor targeting exploits CD40, a

costimulatory molecule expressed on the surface of mye-

loid cells and B cells, with key roles in immune regula-

tion.216 Ligation with an agonist CD40 mAb triggered T-

cell-dependent anti-tumour immunity in murine models

of pancreatic ductal adenocarcinoma (PDAC) associated

with increased MHCII, CD80 and CD86 expression on

MФ and elevated serum levels of IL-12 and TNF.204

Depletion of MФ in this context prevented tumour

regression. In a clinical trial, CD40 mAb combined with

chemotherapy showed a trend of increased overall sur-

vival, even though the sample size was too small (n = 21)

for conclusive results.204 Several other clinical trials that

investigate the effect of targeting CD40 in different types

of tumours have already been summarized.217 While some

of these therapeutics are associated with positive tumour
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Table 1. Selective examples of TAMs reprogramming compounds currently undergoing clinical trials updated

Compound Target

Clinical

phase

Clinicaltrials.gov

identifier Status Results Type of malignancy

Imiquimod,

cyclophosphamide

and radiotherapy

TLR7 Phase II NCT01421017 Complete No results available Skin metastasis in breast

cancer

Imiquimod together

with Abraxane

TLR7 Phase II NCT00821964 Complete Pathologic clinical response in

71�4% of patients

Advanced breast cancer200

Imiquimod TLR7 Phase II NCT00031759 Complete No impact on recurrence of

cervical dysplasia

Cervical cancer201

Imiquimod TLR7 Phase

III

NCT00941252 Complete Histologic regression in 73% of

patients

Cervical intraepithelial

neoplasia202

Imiquimod TLR7 Phase

III

NCT01861535 Active, not

recruiting

- Vulvar intraepithelial

neoplasia

Imiquimod TLR7 Phase

III

NCT02394132 Recruiting - Complex lentigo maligna

Imiquimod TLR7 Phase

IV

NCT01161888 Complete No results available Lentigo malignant of the

face

Resiquimod TLR7/8 Phase I/

II

NCT01676831 Complete Significant improvements of

treated lesions in 75% of patients,

clearing of all treated lesions in

30%

Cutaneous T-cell

lymphoma203

852A TLR7 Phase I NCT00095160 Complete No results available Refractory solid organ

tumours

852A TLR7 Phase II NCT00319748 Complete Evidence of immune activation as

evaluated by cytokine production

Breast, ovarian,

endometrial and cervical

cancers

852A TLR7 Phase II NCT00189332 Complete No results available Metastatic cutaneous

melanoma

Imo-2055 TLR9 Phase II NCT00729053 Complete Treatment-emergent adverse events

observed in > 90% of patients

Renal cell carcinoma

CD40 mAb CP-

870,893

CD40 Phase I NCT02225002 Complete No results available Advanced solid tumours

CD40 mAb CP-

870,893 and

gemcitabine

CD40 Phase I NCT01456585 Complete No results available Pancreatic ductal

adenocarcinoma204

CD40 mAb CP-

870,893 and

chemotherapy

CD40 Phase I NCT00711191 Complete Partial response in 4/21 patients,

stable diseases in 11/21 patients

Advanced cancer of the

pancreas205

Vorinostat, gefitinib HDAC Phase I NCT02151721 Unknown - EGFR mutant lung cancer

IPI-549 alone and

with nivolumab

PI3Kc Phase I NCT02637531 Recruiting - Advanced solid tumours

IPI-549 with

Tecentriq and

Abraxane/Avastin

PI3Kc Phase II NCT03961698 Recruiting - Breast cancer, renal cell

carcinoma

IPI-549 PI3Kc Phase II NCT03795610 Recruiting - Locally advanced

HPV + and HPV- head

and neck squamous cell

carcinoma

IPI-549 with

nivolumab

PI3Kc Phase II NCT03980041 Recruiting - Advanced urothelial

carcinoma

BLZ945

monotherapy or

combination with

PDR001

M-CSFR

(+/- PD-

1

blockade)

Phase I/

II

NCT02829723 Recruiting - Advanced solid tumours
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outcomes, MФ-specific effects of treatment are generally

not investigated.

In a novel particle-based strategy, Shields and col-

leagues injected MФ equipped with ‘backpacks’ of

biodegradable polymers loaded with IFN-c into mice

bearing 4T1 tumours; they showed that ex vivo-polarized

MФ carrying these backpacks were able to not only main-

tain a pro-inflammatory phenotype in the tumour

microenvironment, but also induce the same phenotype

in resident TAMs, associated with reduced tumour

growth, lung metastasis and improved survival.64 As back-

packs could also be filled with cytokines promoting anti-

inflammatory polarization, such an approach could be

useful in other disease contexts.

Intracellular pathway targeting

TAMs can also be targeted with compounds that interfere

with internal signalling, including modifications of

nucleic acids, cellular kinases or HDAC.

Vorinostat, a small molecule inhibitor of HDAC, is

approved for cutaneous T-cell lymphoma due to its

growth-inhibiting effect on tumour cells.218 Vorinostat

also affects TAMs in murine models: encapsulating

vorinostat and a chemotherapeutic drug within liposomes

that target both non-small-cell lung cancer cells and

CD206-expressing MФ suppressed tumour growth via the

upregulation of iNOS, CD86 and TNF while downregu-

lating CD206, arginase and IL-10 in MФ.219

Another internal target for influencing MФ signalling is

PI3Kc, a phosphoinositide 3-kinases subunit mainly

expressed by myeloid cells. In a murine model of PDAC,

PI3Kc blockade with the PI3Kc/d inhibitor TG100-115

reduced MФ expression of Arginase1, TGF-ß and IL-10 and

increased IL-12 and IFN-c.220 This induced tumour suppres-

sion and prevented metastasis. MФ-specific effects were repli-

cated in a clinical trial of the selective PI3Kc inhibitor IPI-

549 as monotherapy and in combination with chemotherapy,

although the study is still ongoing and no results regarding

survival and tumour regression are available yet.221

In mouse models of ovarian cancer, melanoma and

glioblastoma, nanoparticle-mediated delivery of in vitro-

transcribed mRNAs encoding IRF5 together with its acti-

vating kinase IKKb increased pro-inflammatory myeloid

cells and caused tumour clearance in some animals.222

Similar results were found with nanoparticles delivering

siRNA targeting growth factors including VEGF and pla-

cental growth factor, which reduced MФ CD206 expres-

sion and IL-10 production while increasing IL-12 and

IFN-y in tumour tissues.223 Recently, siRNA-loaded

nanoparticle mediated silencing of signal transducer and

activator of transcription 3 and hypoxia-inducible factor

1 a prevented TAM-mediated angiogenesis and decreased

tumour size.224 In vitro, repolarization has also been

achieved with nanoparticle delivery of plasmid DNA

encoding the IL-12 gene225 and with overexpression of

microRNA-155 in triple negative breast cancer TAMs.226

Another approach delivers CRISPR-Cas9 gene editing

machinery into MФ: knock out of signal regulatory pro-

tein a, which engages CD47 on cancer cells and prevents

phagocytosis, significantly increased MФ targeting of

osteosarcoma cells in vitro.227

Table 1. (Continued)

Compound Target

Clinical

phase

Clinicaltrials.gov

identifier Status Results Type of malignancy

PLX3397

+ radiation therapy

+ temozolomide

M-CSFR

(+ cKit,

Flt3)

Phase

Ib/II

NCT01790503 Complete Stable disease in 24/50 patients,

complete response in 2/50, partial

response in 5/50 patients

Glioblastoma

PLX3397 and

sirolimus

M-CSFR

(+ cKit,

Flt3)

Phase I/

II

NCT02584647 Recruiting - Unresectable sarcoma and

malignant peripheral

nerve sheath tumours

MCS110 with

carboplatin and

gemcitabine

M-CSF Phase II NCT02435680 Complete No results available Advanced triple negative

breast cancer with high

TAMs

MCS110 with

PDR001

M-CSFR

(+/- PD-

1

blockade)

Phase

Ib/II

NCT02807844 Complete Partial response in 1/48, stable

disease in 9/48 patients

Advanced malignancies206

LY3022855 M-CSFR Phase I NCT02265536 Complete Stable disease in 5/22 MBC and 3/

7 MCPRC patients

Metastatic breast cancer

(MBC)

Metastatic castration-

resistant prostate cancer

(MCRPC)207
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TAMs re-education into pro-inflammatory phenotypes

can be beneficial to overcome tumour-induced immune

suppression. Reprogramming strategies can be combined

with existing immunotherapies, chemotherapy and radia-

tion, which has been shown to be successful in a variety

of clinical trials. Importantly, TAMs targeting should be

localized to cancerous areas to prevent systemic inflam-

mation, and only affect pro-tumoral MФ types. To

achieve this, further investigation into TAMs heterogene-

ity and careful design and delivery of potential therapeu-

tics are required.

Discussion

The recent development of individual cell-based technolo-

gies has led to an explosion of knowledge about MФ
ontogeny and diversity. The identification of their sub-

populations in homeostatic and disordered contexts is a

constantly growing field that highlights a broad pheno-

typic repertoire consistent with the variety of stimuli they

are exposed to. Their impact on disease development is

still under intense investigation and seems to be subtype-

dependent. While some subsets are thought to directly

contribute to disease progression, others have been found

to be protective. However, most investigation is per-

formed in animal models and the translation of this to

human patients is often less clear.

Past approaches to MФ reprogramming did not appre-

ciate MФ heterogeneity and plasticity, and how microen-

vironmental niche influences the phenotype. Early

adoptive transfer studies had limited/no efficacy because

of the impact of the in vivo microenvironment on MФ
phenotype once transferred.228 Novel experimental ave-

nues, however, have succeeded in maintaining the pheno-

type of adoptively transferred cells despite environmental

factors.64 Other strategies have focused on direct in vivo

modulation of MФ phenotypes, also giving promising

results. While different approaches to MФ reprogram-

ming have been described, each is associated with pitfalls

and benefits influencing their utility for specific tissues.

Where possible, future therapeutic approaches should

consider tailoring of strategy towards a specific tissue

microenvironment, as well as a specific disease-associated

subset of cells, to improve efficacy and minimize off-

target effects.

As MФ reprogramming is a recent approach to ther-

apy, important questions still need to be answered: How

stably can different subsets of MФ be re-educated? Is

long-term reprogramming of long-lived resident MФ safe?

As MФ are in constant interaction with their environ-

ment and other immune cells, including other MФ sub-

types, will modifying one particular subtype have

secondary unintended impacts on the tissue? An alterna-

tive approach may be secondary targeting of MФ popula-

tions via manipulation of their environmental cues

through alteration of the communication between tissue

and MФ. This could be achieved by targeting the cells

that support MФ growth and/or polarization, for exam-

ple. Either way, it is clear that further growth in under-

standing of MФ phenotypic heterogeneity in a given

microenvironmental/disease context is required to appre-

ciate the potential of targeting the MФ in disease and

capitalize on the advances that have begun to be made in

this area.
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