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The clinical problem in acute myocardial 
infarction

Time is muscle in patients undergoing acute myocar-
dial infarction (AMI): the less time the coronary artery is 
occluded, the smaller the infarct size (IS) and the better the 
outcome for the patient [9, 17]. Although myocardial reper-
fusion is essential to salvage viable myocardium, it comes 
at a price in terms of myocardial reperfusion injury which 
paradoxically also damages the vulnerable post-ischemic 
myocardium. Studies in animal models of AMI suggest that 
reperfusion injury may account for a significant contribution 
to the final myocardial IS [45]. Therefore, targeting myocar-
dial injury using therapies aimed to protect the heart against 
ischemia/reperfusion injury (IRI), known as cardioprotective 
therapies [33], remains one of the top ten unmet clinical 
needs in cardiology [7].

Ischemic preconditioning: the starting point

Murry et al. published a seminal study demonstrating that 
several short cycles of non-injurious ischemia and reper-
fusion significantly protected from a subsequent sustained 
ischemic insult [29]. This phenomenon, whereby the myo-
cardium can endogenously be protected from lethal IRI, was 
defined as “ischemic preconditioning” (IPC). This finding, 
firstly described in dogs, has been subsequently replicated in 
numerous pre-clinical studies [41], as well as in other organs 
[42] and in man [43]. The concept of IPC has evolved into 
“ischemic conditioning”, a broader term that encompasses 
a number of related endogenous cardioprotective strategies, 
applied either to the heart (ischemic preconditioning or post-
conditioning) or from afar (remote ischemic pre-, per- or 
postconditioning).
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Although the translational potential of IPC is inevitably 
limited by the necessity to apply the intervention before the 
index ischemia, which is unpredictable in AMI patients, this 
observation was still of significant importance for two main 
reasons: (1) infarct size was demonstrated to be potentially 
modulated through an endogenous mechanism, still con-
sidered the most powerful cardioprotective therapy to date, 
and (2) IPC triggered more than three decades of research 
[11] in which significant advances have been made in our 
understanding of the mechanisms underlying IRI and IPC 
and therefore in the potential development of cardioprotec-
tive therapies.

Origins of the finding of the RISK pathway: 
necrosis vs apoptosis

During the 90s, the focus of the research on cardioprotection 
attributed to different types of cellular death resulting from 
IRI, namely—both apoptosis and necrosis. This was evi-
denced by terminal deoxynucleotidyl transferase dUTP nick-
end labelling and triphenyl tetrazolium chloride staining, 
respectively [26]. Briefly, necrosis is the form of cell death 
that occurs following severe cellular damage and includes 
uncontrolled disruption of organelles, membrane rupture, 
and does not require adenosine 5′-triphosphate (ATP) [21]. 
On the other hand, apoptosis is an ATP-dependent pro-
grammed cell death that involves cytochrome-c release from 
injured mitochondria or autocoid cell-surface receptor (Fas 
Ligand) activation, followed by the downstream propaga-
tion of the signal via caspases and other signalling proteins. 
These in turn cause the formation of nonselective pores in 
the outer mitochondria or the opening of the mitochondrial 
permeability transition pore, as well as in DNA cleavage and 
nuclear degradation [21]. Unlike necrosis, apoptosis does 
not result in the release of cellular content into the extracel-
lular milieu.

From this early period, pro-apoptotic proteins were the 
subject of study to try and develop new targets against IRI 
based upon the hypothesis that it would be possible to sal-
vage cardiomyocytes already committed to die when the 
signal of programmed cell death is potentially interrupted. 
It was therefore demonstrated that inhibiting caspases, at the 
time of reperfusion, limited infarct size in animal models 
[28]. Besides reducing cell death through the inhibition of 
pro-apoptotic caspases, the focus was also on using growth 
factors to antagonize the apoptotic process through the acti-
vation of pro-survival proteins—most notably the PI3K 
and ERK 1/2 pro-survival kinases as a means of protecting 
ischemic and reperfused myocardium [2, 44].

This leads to the so-called “Reperfusion injury salvage 
kinase (RISK) pathway” which was first described by 
Yellon’s group in 2002 whilst assessing the mechanisms 

underlying the cardioprotective effect induced by urocor-
tin [34]. The use of this growth factor reduced myocardial 
infarct size and increased the phosphorylation of ERK 1/2 
when administered upon reperfusion, these effects being 
abolished by the co-administration of PD98059 (ERK 1/2 
inhibitor) also at reperfusion. The RISK pathway, which 
is actually a combination of two parallel cascades, PI3K-
Akt and MEK1-ERK1/2, was thoroughly dissected through 
a series of subsequent pharmacological studies where the 
protective effect of several interventions was blocked with 
the co-administration of both PI3K and ERK inhibitors at 
different time-points [14]. In its broadest term, the RISK 
pathway refers to a group of pro-survival protein kinases, 
which confer cardioprotection when activated specifically 
at the time of reperfusion [14, 34].

Relevance of the RISK pathway

The importance of this pathway is based upon three 
concepts:

1.	 The short-term activation of its kinases is protective

The recruitment of pro-survival kinases are protective when 
acutely activated, whilst their chronic activation would be 
considered to be harmful due to their growth-inducing effect; 
the chronic activation of the PI3K-Akt cascade is deleteri-
ous, as it induces cardiac hypertrophy [30]. Furthermore in 
the clinical setting, ERK and Akt have been demonstrated 
to be chronically activated in the failing heart [10]. Impor-
tantly, the heart seems to have developed an ability to con-
trol phosphorylation of these kinases by the activation of 
PTEN which has been described as an important “switch” 
for controlling the growth-induced pathways [27, 31]. To 
put this in context, acutely activating this survival pathway 
is ideally suited to the setting of AMI patients who would 
only require a one-off intervention, at reperfusion, to protect 
the heart from IRI.

2.	 This pathway must be activated at the time of early rep-
erfusion for a given cardioprotective therapy to protect 
against IRI

Following an IPC stimulus, the activation of the RISK path-
way was demonstrated to occur at two time-points, following 
a biphasic pattern response [33, 45]: (1) during the precon-
ditioning cycles, prior to the index ischemic episode, this 
phase known as the “trigger phase”, and (2) during the onset 
of reperfusion, known as the early phase of reperfusion. It 
is believed that the underlying target for protection against 
reperfusion injury is the mitochondrial permeability transi-
tion pore (MPTP) which opens within the first 15 min of 
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reperfusion [12]. Importantly, the link between the RISK 
pathway and the MPTP has been shown to occur in rat myo-
cytes [5]. Equally relevant is the lack of protection observed 
when the MPTP is targeted following 15 min of reperfusion 
with agents that directly affect the pore such as cyclosporin, 
sanglifehrin and insulin [12, 20]. The importance of the 
activation of intracellular mediators at the onset of reperfu-
sion was unknown 15 years ago and has substantial clinical 
implications—this molecular signalling can potentially be 
mimicked by pharmacological agents to produce benefits 
for patients undergoing myocardial IRI.

3.	 The RISK pathway is a universal signalling cascade for 
cardioprotection

The RISK pathway may be recruited not only by ischemic 
conditioning, but also by other pharmacological agents such 
insulin, bradykinin adenosine or statins [33, 45]. It is there-
fore considered a universal signalling cascade, or a common 
pathway, shared by most cardioprotective therapies [15].

RISK and other important pro‑survival pathways

Most of the experimental evidence involving the RISK 
pathway have been carried out in small rodent models of 
AMI, whereas its central role in large animals is less well-
established [8, 36]. Whilst the link between IPC and RISK 
activation has been demonstrated in human atrial trabeculae 

[35], its role in remote conditioning is still at an early phase 
in both large animal models [13, 37] and humans [18].

In addition to the RISK pathway, other signalling cas-
cades have been suggested to mediate the IPC-induced pro-
tective effect [16]: the Survivor Activating Factor Enhance-
ment (SAFE) and the NO/PKG pathway. Lecour et  al. 
demonstrated that the administration of TNF-α before index 
ischemia (used as pharmacologic IPC-mimetic) was cardio-
protective without involving the RISK signalling cascade 
[25]. Four years later, they described that the administra-
tion of TNF-α at reperfusion was recruiting an alternative 
pathway, coined as the SAFE pathway [22–24], and they also 
linked the activation of this pathway with preconditioning 
[39]. In humans, it seems that STAT5, instead of STAT3, 
may play a relevant role in cardioprotection [6, 18]. A third 
signalling cascade based on the protein kinase G (PKG) and 
involving nitric oxide has been also proposed to mediate 
cardioprotection [4].

The ability to manipulate and up-regulate pro-survival 
kinase cascades during the early reperfusion phase provides 
a potential approach to limiting IRI-induced cell death. 
Indeed, the use of pharmacological agents targeting such 
pathways is a feasible intervention which can be applied 
at the onset of myocardial reperfusion for patients present-
ing with an ongoing AMI, either in the ambulance or the 
cath lab. Therefore, strategies enhancing these pro-survival 
pathways are an attractive target to develop adjuvant thera-
pies to be used alongside cardiac catheterization. The syn-
ergistic activation of several pathways using combination 

Fig. 1   The multi-target hypothesis. DAMP danger-associated molecular patterns, PAMP pathogen-associated molecular patterns, RISK reperfu-
sion injury salvage kinase, SAFE Survivor Activating Factor Enhancement
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therapies represents an attractive target in this context. In the 
experimental setting, matrix metalloproteinase inhibition has 
been demonstrated to be protective against IRI through an 
MPTP-independent pathway, and more importantly, to pro-
vide an additive effect to the protection observed following 
inhibition of MPTP opening [3]. Based on the assumption 
that insulin and exenatide activate cardioprotective pathways 
different from those of remote ischemic conditioning (RIC), 
both therapies have also demonstrated to provide additive 
effects with RIC on infarct size reduction in pigs [1]. Others 
have demonstrated that targeting two specific isoforms of 
PKC (a combined treatment with an ε-PKC activator before 
ischaemia and δ-PKC inhibitor at the onset of reperfusion) 
has been proved to induce greater protection against IRI than 
the treatment with each peptide alone [19]. Moreover, we 
believe that the RISK pathway as well as the other survival 
pathways (and their combinations) are by no means the sin-
gular route to cardioprotection. To obtain maximum protec-
tion, there is still a need to assess complementary and paral-
lel pro-survival mechanisms that can potentially be targeted 
simultaneously—i.e. mitochondrial and Genomic DNA 
and the activation of the inflammasome complex, which 
would target other types of cell death including pyroptosis 
and necroptosis, both of which are forms of inflammatory 
cell death [38, 40]. The figure illustrates this “multi-target 
hypothesis” (Fig. 1).

As such, future research should focus not only on improv-
ing the potency of the RISK pathway kinases (i.e. assessing 
the impact of the relevant isoforms for each kinase [32]) but 
also defining alternative pathways and new mechanisms to 
study the synergistic effect of combination therapies which 
gives the cell its best possible chance of survival.
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