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MOTIVATION The physiological processes that determine the longevity and the aging rate of our species
are poorly understood. In principle, it should be possible to use deeply phenotyped data from long-term
observational studies to identify key biological pathways involved in the aging process. In practice, howev-
er, the development of an epidemiological framework capable of capturing the full complexity of physiology
and the effect of its decline on survival outcomes remains both theoretically and computationally chal-
lenging.
SUMMARY
Wedescribemethodology for joint reconstruction of physiological-survival networks fromobservational data
capable of identifying key survival-associated variables, inferring a minimal physiological network structure,
and bridging this network to the Gompertzian survival layer. Using synthetic network structures, we show
that the method is capable of identifying aging variables in cohorts as small as 5,000 participants. Applying
the methodology to the observational human cohort, we find that interleukin-6, vascular calcification, and
red-blood distribution width are strong predictors of baseline fitness. More important, we find that red blood
cell counts, kidney function, and phosphate level are directly linked to the Gompertzian aging rate. Ourmodel
therefore enables discovery of processes directly linked to the aging rate of our species.We further show that
this epidemiological framework can be applied as a causal inference engine to simulate the effects of inter-
ventions on physiology and longevity.
INTRODUCTION

In humans, the probability of death at age twenty is approxi-

mately 1 in 10,000 and it increases exponentially, doubling every

eight years. This relationship was first discovered by Benjamin

Gompertz in 1825 (Kirkwood, 2015) when modeling actuarial

life tables of England, and since has been demonstrated to be

an accurate model of mortality generalizable to all human popu-

lations. The hazard function described by Gompertz takes a

mathematical form of l (t) = a*exp(b*t) where the alpha parameter

captures the time-independent probability of failure of an individ-

ual at the baseline (t = 0), and the beta parameter captures a

time-dependent increase in failure for an individual (i.e., the aging

rate of an organism).

Despite the success of the Gompertz equation in describing

the shape of the mortality hazard, remarkably little is known

about what biological factors determine the aging rate (Moffitt

et al., 2017). At the individual level, an age-dependent increase

in the probability of mortality is a consequence of the decline in
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physiological robustness (Dent et al., 2016). Underlying this

loss in robustness are gradual declines in functions of tissues/or-

gans and ultimately a failure of homeostatic mechanisms to

maintain a functional state (López-Otı́n et al., 2013; Muñoz-Espı́n

and Serrano, 2014). In principle, given broad multi-function

multi-organ measurements, it should be possible to determine

which biological pathways influence the aging rate. However,

in practice, this is difficult for three reasons.

The first is a practical data limitation. To identify longevity fac-

tors, we need information from deeply phenotyped longitudinal

cohorts, optimally profiled starting at a young age, before the

onset of significant pathologies. Acquiring such data is difficult

if not impossible over the complete human lifespan. Conse-

quently, most longitudinal cohorts span only a fraction of the

human lifespan and usually focus on elderly individuals with

pre-existing conditions. Although some of these limitations are

partially addressed in general population longitudinal cohorts

such as the Framingham Heart Study (Tsao and Vasan, 2015),

Baltimore Longitudinal Study of Aging (Ferrucci, 2008),
s Methods 2, 100356, December 19, 2022 ª 2022 The Author(s). 1
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Cardiovascular Health Study (Fried et al., 1991), Health Aging

Body and Composition Study (Sutton-Tyrrell et al., 2005), Oste-

oporotic Fractures in Men (MrOS) Study (Orwoll et al., 2005),

Study of Osteoporotic Fractures (SOF) (Cummings et al.,

1995), these cohorts are relatively small, limiting our power to

detect time-dependent interactions (Schmoor et al., 2000).

The second limitation is methodological. To date, there are no

computational models capable of describing the full complexity

of interactions between multiple layers of biology and time-

dependent components of the survival function. Most epidemio-

logical techniques rely on statistical approximations with a

selected set of variables. Indeed, many commonly used epide-

miological regression techniques such as Cox proportional

hazards model explicitly factor out time-dependent contribu-

tions of the hazard function, focusing specifically on time-

invariant contribution of covariates (Cox, 1972; Stensrud and

Hernán, 2020). Furthermore, most multivariate regression tech-

niques assume only direct effects of variables on survival,

neglecting second-order indirect effects and time-dependent

interactions when modeling survival outcomes.

The third limitation is an incomplete description of the physio-

logical network architecture. The robustness of a biological sys-

tem is determined by a complex set of stabilizing interactions,

and we currently lack a full description of these interactions for

humans, as well as how this network responds to environmental

perturbations and changes as a function of age (Cannon, 1929;

Pomatto and Davies, 2017). Over many years, researchers

have developed smaller dynamic models of subsets of physi-

ology, such as glucose-insulin regulation, calcium-phosphate

homeostasis, or iron homeostasis (Chifman et al., 2012; Makro-

glou et al., 2006; Peterson and Riggs, 2010). However, these

models do not capture long-term steady-state behavior and

the full dynamic model of human physiology is yet to be devel-

oped. Although it is currently infeasible to capture the complete

dynamic state of physiological systems, it is possible to build

network models capturing the long-term steady-state behavior

of key variables that affect survival.

Graphical networks can be used as high-level representations

of biological systems (Barabási and Oltvai, 2004; Freund, 2019;

Stelzl et al., 2005). It is possible to approximate the steady-state

behavior of physiological networks with directed acyclic graphs

(DAGs) in which no feedback loops or cycles are allowed. In

these networks, each node captures the state of biological

variables, and each edge or connection captures the influence

of one node on another. The connectivity can be thought of as

directional if changes in one node (parent) propagate to another

node (child). These types of models are direct analogs of graph-

ical representations that are used for inference in causal infer-

ence (Pearl, 2000; Spirtes et al., 2000). Here we are adopting

methods from the field of causal inference (Glymour et al.,

2019) to study the influence of physiological variables on sur-

vival. In this representation, variables that influence human

health are captured by measurements such as glucose levels,

inflammation, hematology, etc. and the structure of their con-

nectivity is inferred from underlying data.

The key utility of these methods is that they can be used to

reconstruct physiological network DAG and to identify variables

directly affecting survival in absence of any prior information.
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These networks can be used to understand the causal structure

of relationships, identify confounding, and confirm previously

known relationships. More important, such methods allow us

to uncover heretofore unknown causal relationships and to pro-

pose experiments and interventions to test these hypotheses. As

a proof of concept, we have applied this model to the MrOS

longitudinal cohort, and demonstrate unique insight afforded

by the methodology (Figure 1).

RESULTS

Identification of optimal methodology for variable
selection
The computational strategy to select survival variables and phys-

iological network inference is highly dependent on the size of the

cohort, the number of input variables, and their variability. We

evaluated several multivariate and univariate approaches to

identify a method with the best performance in cohort sizes

between 1,000 and 50,000 individuals.

Using 17 years of survival data, we generated two sets of sim-

ulations (1,000 simulations in total) to determine the accuracy of

different methods for inferring covariates and the corresponding

effect sizes associated with survival (see STAR Methods).

In each simulation, we evaluated the performance of three

methods to recover correct associations with latent Gompertz

parameters: univariate, multivariate greedy hill-climbing algo-

rithm, and multivariate LASSO (least absolute shrinkage and

selection operator). The first set of simulations was used to eval-

uate the accuracy of different methods for identifying the causal

covariates directly influencing the Gompertz parameters (a and

b). The second set of simulations extended the first set of simu-

lations by including a physiological DAG, thus simulating the

effects of confounding (i.e., causal relationships within different

survival-related parameters), and indirect effects on the Gom-

pertz terms. The setup of simulations is illustrated in Figure 2.

We evaluated power and accuracy by running simulations with

cohort sizes of N = 1,000, 5,000, 10,000, 25,000, and 50,000.

For the full description of the setup of simulations, variable/a,

variable/b selection, as well as the inference methods, see

STAR Methods.

Inference of survival-associated variables
The results of our simulations are shown in Figures S1–S6 and

Table 1. In the absence of confounding in simulation set

#1, univariate methods performed reasonably well, but as ex-

pected, the presence of confounding significantly reduced

the specificity of the method in simulation set #2. Variable se-

lection in multivariate methods is partly able to take confound-

ing into account. Both multivariate methods showed high

sensitivity and specificity for the identification of variables

directly connected to the survival layer in both simulation sets

#1 and #2.

As expected, the sensitivity (or power to identify the true

covariates) of all methods increases with cohort size, as a

larger number of observations provides more power to pick

up true effects (Figures S2 and S3). We found that we have

more power to identify a� covariates in comparison with

b-covariates (Figures S2 and S6). This is probably because
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Figure 1. Overview of theoretical framework and applications to real human datasets

Physiological DAG captures causal relationships between physiological variables and their effects on Gompertz survival function.

(A) The variables can affect hazard at the baseline, as well as the aging rate of an organism. For example, changing variable x2 will change the baseline fitness

(orange curve), while changing variable x4 changes the aging rate (green curve). In the illustration, x1 affects survival indirectly by modifying x2 while changing x5

does not affect survival even though it may be correlated with survival.

(B) We construct simulations with synthetic networks to determine the power of the methodology to identify survival covariates in realistic settings. Applying this

method to human cohort physiological datasets, allows us to reconstruct the network model of human physiology and its connectivity to survival. We can also

simulate potential longevity interventions by propagating information through physiological networks to survival outcomes.
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b-covariates are identified through their interaction with time

while the effects of a-covariates are constant throughout

time. As a result, most of the variation (R2) in alpha is ex-

plained across all simulations, but we do not have the power

to explain most of the variation in beta (Figure S4). With a

cohort size of 5,000, our simulations show that most of the

variation in alpha is explained using the hill-climbing model

(mean R2 = 0.94) while the variation in beta is only partially ex-

plained using any of the models (mean R2 = 0.42 in the hill-

climbing model).

Results for a medium-size cohort with approximately �5,000

individuals are shown in Table 1 and results for all cohort sizes

are shown in Figures S2–S6. Overall, the univariate method

has the highest sensitivity but the least specificity, producing

the highest number of false positive associations. On the other

hand, although the multivariate LASSO regression method was

much more specific, additional accuracy comes at the cost of

reduced sensitivity. Overall, the greedy hill-climbing inference

method offered the best compromise between sensitivity and

specificity, and thus is the most practical method for medium-
size cohorts. In very large cohorts with N > 50,000, we find multi-

variate LASSO regression catches up to the performance of the

hill-climbing algorithm.

Inference of physiological network architecture
To evaluate the performance of different causal inference ap-

proaches for physiological network reconstruction, we compared

multiple published methods including incremental association

Markov blanket (IAMB) (Tsamardinos et al., 2003), grow-shrink

(GS) (Margaritis and Thrun, 1999), Peter Clark (PC) (Spirtes and

Glymour, 1991), max-min parents and children (MMPC) (Tsamar-

dinos et al., 2006), and inductive causation (Verma and Pearl,

1991) algorithms (Figure S7). We compared methods that use

score-based or constraint-based metrics to identify the network

structure. The score-based methods optimize the network

architecture on the basis of goodness of fit after penalizing for

the number of parameters. The constraint-based method deter-

mines conditional independence between variables and creates

a Bayesian network structure based on this. For a more complete

description see STAR Methods.
Cell Reports Methods 2, 100356, December 19, 2022 3
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Although performance varied, we observed that the accuracy

of these methods saturates at cohort sizes of around 5,000. This

is probably due to the limitations of these algorithms when

applied to observational data as they can only identify Markov

equivalent causal networks without interventional experiments

(Guo et al., 2020). Of all algorithms, the IAMB algorithm pro-

duced the most precise causal structure while also giving

reasonable recall (Figure S7).

On the basis of this evaluation, we decided to use the following

three-step approach for the construction of a hybrid physiology-

survival network in the MrOS cohort:
Table 1. Accuracy of inference methods based on simulations

(N = 5,000)

Inference method Sensitivity Specificity PPV NPV

Parameters affecting baseline fitness (a)

Univariate (set #1) 0.94 0.75 0.52 0.98

Hill climbing (set #1) 0.88 0.92 0.77 0.96

LASSO (set #1) 0.64 1 0.99 0.91

Univariate (set #2) 0.95 0.12 0.42 0.77

Hill climbing (set #2) 0.8 0.79 0.71 0.86

LASSO (set #2) 0.5 1 0.99 0.75

Parameters affecting aging rate (b)

Univariate (set #1) 0.69 0.61 0.13 0.96

Hill climbing (set #1) 0.51 0.92 0.35 0.96

LASSO (set #1) 0.35 0.92 0.27 0.95

Univariate (set #2) 0.88 0.1 0.39 0.55

Hill climbing (set #2) 0.32 0.85 0.59 0.65

LASSO (set #2) 0.17 0.91 0.54 0.62

All parameters affecting survival

Univariate (set #1) 0.9 0.69 0.55 0.94

Hill climbing (set #1) 0.87 0.89 0.78 0.94

LASSO (set #1) 0.66 0.99 0.96 0.87

Univariate (set #2) 0.94 0.11 0.71 0.43

Hill climbing (set #2) 0.73 0.7 0.85 0.52

LASSO (set #2) 0.42 0.99 0.99 0.42

PPV, positive predictive value; NPV, negative predictive value.
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1. Identify variables associated with survival outcomes using

univariate analysis.

2. Construct the physiological network using the IAMB

causal inference method.

3. Identify a subset of variables directly connected to survival

using a multivariate hill-climbing approach.
Univariate analysis of survival in MrOS cohort
The MrOS cohort is a multi-center prospective, longitudinal,

observational cohort study designed to examine risk factors of

osteoporosis in older men (R64 years) and has more than 17

years of survival data (baseline characteristics in Table S1).

The cohort is well characterized at baseline providing us with

an excellent opportunity to identify biomarkers and physiological

markers associated with long-term survival within humans. We

performed a univariate survival analysis for 164 variables

measured at baseline and found 34 variables associated with

long-term survival in the MrOS cohort (see STAR Methods). All

univariate survival models were created after adjusting for the

age of the participant at baseline. The cumulative density and

Kaplan Meier (KM) plots for some of the most significant associ-

ations are shown in Figures 3 and S8. In addition to age at base-

line, the most significant associations in MrOS include:

1. diabetes (glucose and insulin),

2. kidney health (creatinine and cystatin C),

3. inflammation (immune cell counts in complete blood cell

counts, interleukin-6 [IL-6], and C-reactive protein [CRP]),

4. anthropometric measurements such as body mass index

(BMI),

5. cardiovascular health (systolic blood pressure and

abdominal aorta calcification [AAC]), and

6. iron homeostasis measures (red blood cell [RBC] count,

hematocrit, RBC distribution width [RDW], mean corpus-

cular hemoglobin concentration [MCHC]).

Most of these associations consist of well-established risk

factors, but we were particularly surprised by the strength of

association between AAC and all-cause mortality in the

MrOS cohort (age-adjusted hazard ratio [HR] of �1.2; Fig-

ure S8). AAC is a measure of the amount of hydroxyapatite

buildup in the abdominal arteries and is a well-known prog-

nostic indicator of cardiovascular disease (Budoff et al., 2007;

Prabhakaran et al., 2007; Sethi et al., 2020). Our analyses

show that vascular calcification is one of the largest risk factors

for mortality of R65-year-old men, and its presence at baseline

can be used as a prognostic indicator of poor long-term

outcomes.

Although univariate associations with survival are informative,

they cannot be interpreted as causal to the survival outcome, as

these associations could be due to correlation with unaccounted

factors missing from the model (see Table 1). The presence of

confounding can be seen in the clustered heatmap of correlation

patterns of 34 survival-associated biomarkers as shown in Fig-

ure 4. There is a high degree of correlation between multiple sur-

vival-associated biomarkers. These correlation patterns arise

through a set of shared biological processes, suggesting that it

should be possible to reconstruct the underlying physiological



Figure 3. Cumulative density of event plots for selected biomarkers

Age-adjusted cumulative density of event plots for selected biomarkers associated with survival in MrOS are plotted after adjusting biomarker differences for age

(see STAR Methods). BP, blood pressure; AAC, abdominal aortic calcification; TNFR1, tumor necrosis factor (TNF)-alpha receptor 1; RDW, red blood cell

distribution width; IL-6, interleukin-6.
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network structure. To go beyond simple univariate associations,

we will need to use more rigorous multivariate inference

methods.

Multivariate inference of survival layer
To identify a set of variables jointly associated with survival, we

implemented a multivariate greedy hill-climbing algorithm

(Spirtes and Glymour, 1991) (see STAR Methods). The algorithm

tests for the association of each variable with the baseline fitness

(a) and/or the aging rate (b) by exploring various network archi-

tectures (creating and removing edges between variables and

latent parameters) while optimizing the Watanabe-Akaike

information criterion (WAIC) that maximizes the likelihood of

the Gompertz survival function while penalizing for the number

of parameters in the model. This procedure is critical to our anal-

ysis as it implements both feature selection: identification of a

minimal set of survival-associated variables, as well as provides

information on how each variable influences survival. Running

the algorithm on the MrOS cohort, starting with 34 survival vari-

ables, the algorithm identified a minimal set of 11 independent

variables. Most variables (8 of 11) directly associated with sur-

vival were found to contribute to the baseline fitness, with three

variables associated with the aging rate (Figure 5).

Variables associated with the aging rate (b)
The decline in the robustness of the physiological system can be

observed as an increased hazard of mortality as a function of

time, which reads as characteristic latent parameter beta in the

Gompertz equation. By definition, factors that affect the aging

rate (b) change the slope of the hazard trajectory (Figure 1A). In

theMrOS cohort, the strongest associationwe seewith the aging

rate is the protective effect of high RBC counts. According to our

model, maintenance of high RBC counts can slow the aging rate

by �6% per SD increase in RBCs. Previous reports have estab-

lished that loss of ability to maintain steady production of RBC

is strongly associated with a variety of disease outcomes, but

the effects of RBC on aging rate were not analyzed (Weiss and

Goodnough, 2005). On the other hand, an increase in creatinine

and serum phosphate levels, which are associated with reduced

kidney function and bone maintenance respectively, accelerate

the aging process by �3%. High levels of serum phosphate

and creatinine are known to be associated with adverse out-

comes (Eddington et al., 2010; Kestenbaum et al., 2005; Wanna-

methee et al., 1997), but were previously not linked to an increase

in the aging rate. In addition, the concentration of serum phos-

phate is well known to be a predictor of lifespan across different

species even after taking body size into consideration (Kuro-o,

2010). To our knowledge, this is the first time that these bio-

markers were directly linked to the aging rate of our species.

Variables associated with baseline fitness (a)
The age of individuals at the baseline in the MrOS cohort ranges

from 64 to 100 (mean 73 ± 5.9). As a consequence, themajority of

the cohort has pre-existing conditions, and variables associated

with baseline fitness are strong predictors of their long-term sur-

vival outcome. As expected, baseline age has the largest effect

on survival as it broadly captures the physiological fitness of

each participant (connectivity of age within the network in Fig-
6 Cell Reports Methods 2, 100356, December 19, 2022
ure 5). Following baseline age, the red blood cell distribution

width had the largest effect on baseline fitness. RDW is the mea-

sure of variability in the volume and size of the red blood cells.

Higher RDWs indicate an alteration in the erythropoietic system,

which is suggestive of several pathological conditions. Higher

RDW values are strongly associated with cardiovascular events

(Tonelli et al., 2008; Zalawadiya et al., 2010) and are prognostic

of heart failure (Allen et al., 2010; Felker et al., 2007), aging related

outcomes (Kim et al., 2021) and pulmonary hypertension (Ham-

pole et al., 2009; Tanindi et al., 2012). Moreover, elevated RDW

levels are strongly associated with all-cause mortality within the

general population (Patel et al., 2009; Perlstein et al., 2009).

Abdominal aortic calcification had the second biggest effect

on baseline fitness within the MrOS cohort. AAC is caused by

the formation of hydroxyapatite crystals in the arteries and is

associated with multiple types of cardiovascular events (Leow

et al., 2021; Sethi et al., 2020). There are multiple possible

mechanisms by which calcification of arteries can occur,

such as chronic kidney disease, diabetes, and loss of calcium

phosphate homeostasis. In particular, because phosphate has

been associated with the aging rate in MrOS, the association of

baseline fitness with AAC may reflect the accelerated reduction

in fitness due to exposure of elevated phosphate prior to

baseline.

In addition, higher systolic blood pressure and inflammatory

marker IL-6 are also associated with adverse mortality risk.

High blood pressure is a significant risk factor for a variety of car-

diovascular and renal events, including myocardial infarction,

stroke, atherosclerosis, aortic aneurysm, hypertensive heart dis-

ease, heart failure, peripheral artery disease, and end-stage

renal disease (Rahimi et al., 2015). IL-6 signaling is associated

with increased cardiovascular events while anti-IL-6 therapy is

associated with a reduction of the risk for cardiovascular events

(Ridker et al., 2018).

Overall, our single-layer multivariate survival model with just

11 variables performed well for the prediction of 17-year survival

outcome (concordance index = 0.78) and is capable of distin-

guishing between a and b covariates. However, this single-layer

survival model does not consider the physiological network that

accounts for covariation within the variables (see Figure 4), a

problem that will be addressed in the next section.
Construction of physiological network
On the basis of our simulations, we used the IAMB algorithm to

create a physiology DAG of physiological measures with 34

unique survival-associated variables identified using univariate

analysis. Each variable is represented as a node in the network.

On average every node is connected to approximately six other

nodes in the network (�6 edges per node). All the nodes form a

single connected component.

As expected, the baseline age of individuals has a high degree

of influence on various physiological processes. In our network

reconstruction, age directly influences ten other variables:

(1) increase in systolic blood pressure (Pinto, 2007),

(2) changes in body composition (reduction in weight [Seidell

and Visscher, 2000] and increase in BMI),

(3) decrease in red blood cell count,



Figure 4. Correlation of survival-associated

physiological variables

The correlation matrix between the 34 variables

associated with survival in a univariate model (after

age correction) in the MrOS cohort is shown. Red

indicates a high correlation between the markers,

while blue represents anticorrelation between the

markers. Biomarkers are ordered on the basis of a

similarity in correlation profiles across the MrOS

cohort. Interpretation of these highly correlated

patterns is possible only by reconstruction of un-

derlying causal relationships.
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(4) increase in red-blood distribution width (Salive et al.,

1992),

(5) accumulation of abdominal aortic calcification (Kiel et al.,

2001; Sethi et al., 2020),

(6) reduction in the serum concentration of albumin (Cooper

and Gardner, 1989),

(7) increase in inflammation (TNF-R1) (Stowe et al., 2010),

(8) reduction in immune function reduction in platelet count

(Jones, 2016),

(9) increased monocyte counts (Hearps et al., 2012), and

(10) reduced kidney function (increase in creatinine) (Tiao

et al., 2002).

Interestingly, nearly all the nodes in the physiological network

(28 of 33 nodes) are connected to the baseline age within two

steps (neighbor of a neighbor), capturing a broad influence of

age on multiple physiological systems.

The network consists of several densely connected subnet-

works such as the cholesterol subnetwork (low-density lipopro-

tein [LDL], high-density lipoprotein [HDL], and cholesterol),

glucose subnetwork (glucose and insulin), the kidney homeosta-

sis subnetwork (cystatin C and creatinine), haemopoietic system

(monocytes, lymphocytes, neutrophils, basophils, RBCs, and

RDW), and the inflammation markers (TNF receptors TNF-R1

and TNF-R2 and C-reactive protein).

The connectivity of the reconstructed physiological networks

recapitulates known physiological relationships but also sug-

gests previously unidentified relationships. A presence of an
Cell Reports
edge between two nodes suggests a

potentially causal relationship between

the two variables. Although it may not

be possible to test all these hypotheses,

some are supported by epidemiological

studies. For example, it is known that

changes in cholesterol are associated

with changes in sodium and glucose

concentrations (Parhofer, 2015) and al-

bumin concentrations (Gillum, 1993) in

the serum. Changes in concentrations

of inflammatory proteins are intricately

associated with changes in immune

cell types (Rea et al., 2018). The concen-

tration of CRP and IL-6 changes in

response to changes in platelet cell

counts (Burstein, 1994; Semple, 2015)
while TNF-R1 is predicted to change in response to changes

in white blood cell (WBC) count (He et al., 2010). In addition

to these known associations, our analysis suggests potentially

novel relationships.

Our models predict that an increase in insulin concentration

can increase resting pulse, calcification of arteries (AAC),

inflammation (TNF-R1), serum sodium concentration, albumin

concentration, and immune cell composition (percentage of

basophil cells). An increase in phosphate levels is predicted

to increase HDL, platelet cell count, creatinine, calcification of

arteries (AAC), and decrease chloride. Overall, in absence of

randomized clinical trials (RCTs), it is infeasible to test all

these statistical connections, but they serve as useful mecha-

nisms for generating hypotheses and further experimental

validation.

Simulating effect of physiological perturbations on
median survival time
In the absence of randomized clinical trials, it is hard to know the

effect of an intervention on overall survival. Unfortunately, RCTs

are often impractical and technically difficult. As an alternative,

our models allow us to carry out such simulations by carrying

out hypothetical ‘‘what if’’ scenarios, where the effects of pertur-

bation are propagated throughout the physiological network to a

survival layer. This is exactly the problem of counterfactual infer-

ence in the causal analysis of observational data (Pearl, 2009;

Prosperi et al., 2020).
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Figure 5. MrOS hybrid physiological and survival network

(A) Inferred hybrid physiology-survival network fromMrOS observation cohort. Nodes in the network represent biomarkers associated with survival in a univariate

model (after adjusting for baseline age). The arrows represent inferred causal relationships learned through the causal structure discovery method (IAMB). The

Gompertz survival latent parameters are represented by green and yellow nodes. The nodes directly influencing Gompertz parameters in the network are colored

red (a) and orange (b), while the rest of the nodes in the physiological network are colored blue. Biomarker-survival layer a or b associations are learned with the

(legend continued on next page)
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We compared the effects of perturbation on a median

survival time in the MrOS cohort between the survival layer

and hybrid physiological-survival network. In our in silico inter-

vention experiments on physiological DAG, when the perturba-

tion is applied to a particular node, it is assumed that the

effects of the biomarker are only felt downstream of that

node (i.e., only children of the intervened node feel the effect

of the intervention). The hybrid physiological-survival network

captures both indirect and direct effects on survival while the

survival network only captures the direct effects of a covariate

on survival.

Direct effects: Intervention on nodes without including

physiology network effects

We evaluate the effect of intervening on each node within the

network using counterfactual simulations (Figures 6 and S9).

For example, while considering counterfactual intervention on

phosphate, which is directly connected to the aging rate, we

simulate the median survival time on the basis of modulating

changes in phosphate without considering how phosphate af-

fects any other physiological parameters, that is, all other

parameters are maintained at mean levels (i.e., �74-year-old

man). On the basis of these counterfactual simulations, a

decrease in phosphate levels by 3 SDs leads to an increase

of �1 year in estimated median survival time. Simulating effects

on intervention, a decrease in AAC and RDW levels by 3 SDs

has the largest effects on median survival time (�2–3 years in-

crease in expected lifespan) (Figure 6). It is important to note

that for nodes connected to the aging rate, the effect of an

intervention is non-linear. For example, b-associated covariates

like RBC and phosphate lead to non-linear effects on median

survival time because of its interaction with time in our model

(Figure 6).

All effects: Intervention on nodes including

physiological network effects

For a node that is not directly connected to the survival layer, a

simulated intervention can also lead to changes in other physio-

logical nodes, and those changes can further change the survival

outcome. In this scenario, we include indirect effects that

approximate how changes propagate in biological networks.

Figure 6 shows differences between direct and overall effects if

the effect of the interventional node on survival is mediated by

a node that is directly linked to the Gompertz parameters. For

example, phosphate not only changes the aging rate directly,

but also affects the rate of calcification of arteries, thereby

changing levels of AAC, which in turn reflects in decreased base-

line fitness of individuals (a). In another example, an imbalance in

iron homeostasis can lead to problems in the production of he-

moglobin, which further leads to a reduction in RBC counts,

thereby increasing RDW measurements (Salive et al., 1992).

These events are then reflected in increased baseline fitness

and higher aging rate. The models suggest that interventions

that restore normal phosphate or RBC counts levels may have
hill-climbing procedure. Red arrows represent correlated links, while blue arrow

causal effect size of one node on another.

(B and C) Themean effect size (circle) of each relevant node to the two Gompertz p

Thesemedian effect sizes and credible intervals (95% [thin line] and interquartile ra

(error bars are shown for each chain).
additional indirect benefits on median survival time in the

MrOS cohort.

It is also worth pointing out that there are nodes in the

network without any children, and therefore one would predict

that intervention would not change the outcome of interest. For

example, the percentage of basophil cells has a negligible ef-

fect on survival in either the multivariate survival model or the

physiological network because it does not affect any other var-

iable in the network (Figure 6). Hence, the physiological

network provides clues as to which interventions will be most

beneficial.

DISCUSSION

The question of which factors determine the remarkably long life-

span of our species has been the subject of intense research in

the field of aging epidemiology. At the heart of this question is a

necessity to compile a comprehensive catalog of molecular

changes over a large portion of a human lifespan, as well as the

difficult task of developing novel modeling techniques capable

of capturing the full complexity of their physiological interactions

and declines. There are a wide array of statistical techniques

available to aging researchers, such as Cox proportional hazard

models (Cox, 1972), biological age predictions (Horvath, 2013;

Levine et al., 2018; Lu et al., 2019), and frailty indices (Clegg

et al., 2013). However, these models do not capture interdepen-

dence between different variables, their interactions with time,

as well as their effect on the aging rate of the biological system.

As aging is a process that involves time-dependent changes, it

is essential to also identify molecular changes that accelerate or

decelerate the aging rate (Margolick and Ferrucci, 2015).

Here we set out to address these modeling challenges. We

asked two questions. First, is it possible to build an interpretable

model of survival that considers the complexity of physiological

network interactions and can provide insight into which factors

directly contribute to the aging rate of our species? Second, is

it possible to identify variables that affect the aging rate in human

cohort data? To answer these questions, we developed a fully

parametric Bayesian framework for inference of the physiolog-

ical network that is linked to the Gompertz survival function. In

this framework, variables that are linked to beta components

of the hazard function can be interpreted as interacting with

time, and variables that are linked to alpha components are

said to be present at the baseline and their effects stay constant

throughout follow-up time.

To our knowledge, this is the first attempt to combine both

physiological and Gompertz survival analysis to model how the

steady state levels of different markers affect survival. Prior

work has focused on incorporating Gompertzian behavior within

kinetic models to predict biomass growth rate or physiological

behavior of different species (Boshagh and Rostami, 2021; Ste-

venson et al., 2008). To achieve our goal, we not only model the
s represent anticorrelated links. The edge thickness and shade represent the

arameters is displayed along with their 95% credible intervals (horizontal lines).

nge [thick line]) are estimated using fourMonte CarloMarkov-chain simulations
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Figure 6. Counterfactual plots: Simulation of interventional effects
Effect of an intervention on a variable in hybrid physiology-survival networks on survival outcome (years gained). The median survival time was calculated for

different interventions on the basis of the extremes of these biomarkers within the MrOS cohort. In the network structure, hemoglobin is not connected directly to

latent Gompertz parameters in the survival model; as such, the direct effect of hemoglobin on survival is 0. However, once the network is taken into consideration,

indirect effects of hemoglobin on other nodes (hemoglobin/ hematocrit/ RBC/ b) and (hemoglobin/ glucose/ SBP/ a) can be observed as non-zero

survival effect.
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networks but perform causal structure discovery, without any

prior assumptions on the connectivity of different biomarkers

to latent parameters. To test the accuracy of these network infer-

ence methods, we have carried out extensive simulations with

synthetic cohorts, as well as a variety of physiological network

structures with and without confounding factors. This framework

provides a powerful methodology to identify survival parame-

ters. We find that it is substantially more difficult to identify vari-

ables influencing aging rate compared with identifying variables

that affect fitness at baseline. Beta covariates by definition

interact with time and are harder to detect, but with larger co-

horts, we expect that the power to detect aging rate biomarkers

will increase. Furthermore, the length of the follow-up time is a

critical parameter for the identification of variables that affect ag-

ing rates. On the other hand, alpha covariates are easier to

detect, because they measure the historical dysregulation of

different processes within individuals up to the point of entry

into the study. For example, in theMrOS cohort, these covariates

reflect a cumulative 65–90 years of individuals’ health history.

Using simulations, we evaluated the trade-offs of three

different causal inference methods to identify biomarkers that

affect alpha and/or beta.We find that although univariate models

offer the highest sensitivity, they produce incorrect inferences in

the presence of confounding variables (Figure S5). Multivariate

models do much better, but at the cost of false negatives, and

not surprisingly performance depends on the details of the im-

plementation of variable selection. For example, hill-climbing
10 Cell Reports Methods 2, 100356, December 19, 2022
variable selection works best in small cohort sizes, while

LASSO variable selection technique performs best on larger da-

tasets. The main advantage of using causal graph algorithms is

that they work well in moderate to large cohort settings, capture

connectivity in physiology, and provide clues to interventions

that might be most beneficial for longevity.

Applying the method to the MrOS cohort revealed several

interesting findings. We observed that the age of individuals at

the first visit was strongly linked to the alpha baseline component

of the Gompertz hazard function. This is consistent with the

Gompertz model that predicts that the hazard of a person in-

creases exponentially with baseline age, as the age variable cap-

tures a lifetime reduction of fitness in participants before they

enter the study. We also checked if baseline age influences the

aging rate itself. In the MrOS cohort, the model showed that

baseline age does not change aging rate significantly. On the ba-

sis of our power simulations, we believe that this cohort is suffi-

ciently powered to detect the interaction between the baseline

age and aging rate if such interaction existed.

We also find that most biomarkers and physiological mea-

sures that determine the lifespan of individuals are already pre-

sent at the baseline. These biomarkers include parameters

such as arterial health (blood pressure and AAC), inflammation

(IL-6), hematology (RDW and eosinophils), kidney function (cys-

tatin C, chloride), and liver function (albumin). Many of these vari-

ables are seen in the first layer of physiology-survival network

and are linked directly to the alpha component of hazard in
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Figure 5. In addition to these direct connections, many variables

indirectly contribute to survival throughmultiple interactions with

each other. These variables include BMI (5 connections), HDL (3

connections), CRP (4 connection), total cholesterol (5 connec-

tions), and LDL (4 connections).

Perhaps themost interesting aspect of these graphical models

is that they allow us to simulate what-if interventional hypotheses

(Pearl, 2000). Unlike simpler multivariate models, the physiolog-

ical-survival network hybrid model can consider indirect effects

of an intervention, by propagating effects throughout the physi-

ological layer to the survival layer. For example, we predict that

reducing elevated phosphate levels would decrease the aging

rate directly, as well as indirectly by reducing progression of

vascular calcification, thus resulting in a significant extension

of lifespan in elderly individuals. A similar association between

levels of phosphate and aging rates has been observed in other

species (Kuro-o, 2010). We believe that this powerful methodol-

ogy can be further extended by taking into consideration genetic

effects, use of medications, and pre-existing conditions. The

technique could be further extended to include an additional

biomarker-disease layer before the survival layer.

Limitations of the study
There are several critical limitations in this methodology that

should be considered when interpreting our results. First, the

DAG network structures do not take into account the cyclical na-

ture of physiological systems. Our networks were constructed at

the baseline of the study and thus represented a snapshot of

physiological systems, under the assumption that physiological

networks are approximately at a steady state. Given longitudinal

data, it is possible to extend the methodology to construct cyclic

causal networks that capture the dynamics of physiological

systems.

Second, the correctness of network skeleton and edge direc-

tionally depends on many factors such as the presence of un-

measured confounding, linearity of response, and a number of

independent measurements (statistical power). Unmeasured

confounding is assumed to be absent, which is unrealistic in

complex biological systems. Although some of these issues

could be resolved with increased depth and breadth of

biomarker sampling, accommodating non-linear effects would

require further development.

Third, it is important to recognize that causal structure discov-

ery is a computationally difficult NP-hard problem. Heuristic-

based methods are not guaranteed to find an optimal solution

and the robustness of the result may depend on the nature of

the confounding variable. Recent advances in feature selection

techniques such as ‘‘stability selection’’ could be used to eval-

uate the stability of network architecture through bootstrapping

techniques (Pfister et al., 2021), however, even the most robust

computational associations will ultimately require experimental

interventions to confirm causal connectivity. In addition, the

application of genetic variants as instrumental variables could

help identify the directionality of some of the causal links in the

physiological network (Sanderson et al., 2022).

Finally, caution is warranted when interpreting the results of the

what-if interventional analysis. Our method assumes that the

network structure is correct, that there is an absence of con-
founders in the children downstream of the intervention node,

and that the network does not change on intervention (i.e., that

there is no rewiring and feedback in the network). Furthermore,

the current implementation removes all incoming edges of a

node on the intervention. Softer interventions are possible by tar-

getingaparticularedge for intervention (asingleprotein’s function).
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KEY RESOURCES TABLE
RESOURCE SOURCE IDENTIFIER

MrOS Data https://mrosonline.ucsf.edu/DataRelease/

ReleasedDatasets

dbGaP Study Accession: phs000373.v1.p1
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Anurag

Sethi anurag@calicolabs.com.

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Data for MrOS study is available through University of California San Francisco and California Pacific Medical Center Research

Institute: https://mrosonline.ucsf.edu/. dbGaP study accession numbers are listed in the key resources table.

d Code is available at https://github.com/calico/Bayesian_Survival_Analysis/. All original code has been deposited at Zenodo

and is publicly available as of the date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

Software -Bayesian Survival Analysis This study https://doi.org/10.5281/zenodo.7186584
EXPERIMENTAL MODEL AND SUBJECT DETAILS

We received all deidentified baseline and survival data from the MrOS cohort.

METHOD DETAILS

Parametric Gompertz approach to survival analysis
The Gompertz survival model describes a fully parametric form of survival, in which the hazard increases exponentially with time.

Hazard is a measure of an instantaneous probability of an event for an individual that survived to a certain time t

liðtÞ = ai 3 expðbi tÞ (Equation 1)

where ai is ameasure of fitness at baseline and bi is the aging rate of individual i. These latent variables are estimated based on best fit

of the survival curve to the mortality curve. It is well known that a combination of genetics and environment can lead to heterogeneity

in these latent parameters. For example, in the Center of Disease Control and Prevention mortality dataset, survival analysis after

stratifying by gender shows that gender is significantly associatedwith the aging rate in addition to being associatedwith the baseline

fitness (data not shown). Unlike the commonly used Cox Proportional Hazards (CoxPH), where a baseline hazard function is elimi-

nated (Cox, 1972), we formulate the Gompertz function with a covariate structure, allowing us to evaluate both constant hazard as

well time-dependent hazard.

Given the hazard in equation (1), the probability of individual i surviving beyond time t can be calculated using the equation (Col-

lett, 2015):

SiðtÞ = exp
� �

Zt
0

liðuÞdu
�
= exp

�ai

bi

�
exp

�
bi t

� � 1
�

(Equation 2)

Given a set of measured covariates such as physiological parameters or biomarkers at some fixed time point t, it is not known a

priori which covariates are associated with changes in baseline-fitness (a) and/or the aging rate (b) component of survival. To make

such an inference, we developed a Bayesian network that can test for the association of factors with alpha and beta terms of survival

function, as well as model second-order interactions between various factors. We assume that the individual i survival parameters

vary linearly with an individual’s covariates xi:
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logðaiÞ = log
�
a0
�
+
X
j

ajxi;j
0
bi = b +
X
j

bjxi;j (Equation 3)

where xi;j refers to the baseline measurement of covariate j for individual i, and a0 and b0 are shared whole cohort-level parameters

representing mean baseline fitness levels and aging rate.

Parametric bayesian approach
To identify survival parameters we use Bayesian models. The overall likelihood of observing survival time distribution in a cohort is

given as product of individual survival time probabilities (Equation 2)

L =
YN
i = 1

SiðtiÞ3 li
Ci ðtiÞ =

YN
i = 1

exp

�
ai

bi

ðexpðbi tÞ � 1Þ
�
3 ðai 3expðbi tÞÞCi (Equation 4)

where ti is the time of an event, Ci = 1 if death was observed, and Ci = 0 if the individual was right censored.

The priors for the parameters in equation 3 are assumed to be:

log
�
a0
� � Nð0; 30Þ
j
a � Nð0; sas 3 saj Þ
sas = HNð0;10Þ
saj = HNð0;10Þ
0
b � Nð0;10Þ
j
�

b � N 0; sbs 3 sbj

�

sbs = HNð0;10Þ
sbj = HNð0;10Þ (Equation 5)

where Nðm;sÞ and HNðm;sÞ represent the normal and half-normal distribution with mean m and standard deviation s respectively. All

the covariates have a common factor sas or sbs while they have individual variances saj or sbj . To ensure that the Bayesian inference

is stable, logða0Þ is constrained to be negative between 0 and -30 as a0 represents the baseline probability of the event occurring

while aj is bound between +3 and �3 based as each risk factor typically has a small effect on the baseline fitness in our experience.

In addition, b0 is the aging rate and is a measure of how fast the risk of event occurring increases with time and is constrained to be

a positive value between 0 and 0.5. Typically, the aging rate calculated frommortality data for human populations is � 0.08 per year

for adult populations. Finally, bj is constrained between +0.1 and�0.1. All the covariates are transformed to such that their means are

0 and standard deviations are 1 and the biomarkers are log-transformed before the transformation so that they obey close to a normal

distribution.

Inference of survival parameters in synthetic cohorts

Identification of variables that affect survival depends on baseline characteristics of the cohort, size of the cohort, length of the follow-

up, censorship rates, technical variability of measurement, etc. To gain a better understanding of limitations of the methodology, we

performed a number of power simulation aimed at answering the following questions:

1. Power: what is the cohort size/effect size required to identify variables associated with a or b components of survival?

2. Directionality: Is it possible to identify the correct directionality of the effects?

3. Effect sizes: Is it possible to accurately estimate coefficients of association?

4. Correlation versus causation: Can causal variables be identified accurately from other correlated variables in the survival

network?

5. Network architecture: Is it possible to accurately connect components of a physiological network?

To address these questions, we carried out theoretical simulations with a variety of synthetic network architectures where covar-

iate structure and effect sizes were predetermined. The follow-up time period of these synthetic networks was similar to the follow-up

time in the MrOS cohort. To evaluate the effect of cohort size on the statistical power and accuracy of various causal inference
Cell Reports Methods 2, 100356, December 19, 2022 e2
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techniques, we ran the simulations with cohort sizes ofN=1000, 5000, 10000, 25000, and 50000 participants. To evaluate the impact

of confounding, our synthetic networks include large numbers of covariates that did not affect survival parameters, as well as cova-

riates correlated with survival outcomes but not causally linked to survival.

Given known synthetic network architectures, we evaluated the ability of three different algorithms to correctly recover the struc-

ture, directionality, and effect sizes of covariates.

1. Univariate association between covariates and survival parameters.

2. Greedy Hill-climbing algorithm for multivariate structure inference.

3. Regularized LASSO approach for multivariate structure inference.

We performed two sets of simulations, evaluating inference with and without a physiological DAG.

Simulation Set 1 - Survival analysis in the absence physiological network

In a simple model of survival, all the variables are independent of each other and have a direct impact on survival. To simulate this

scenario. we generated a single layer networks with 40 independent variables of which 9 variables affect awhile 3 variables affect b:

The parameters for these simulations are chosen based on our observations withinMrOS cohort with�40 variables taken in the phys-

iological DAG, 8 of which directly affect alpha while 3 variables affect beta. All variables follow a standardized normal distribution, and

none of the variables affect a and b simultaneously.

logðaiÞ = log
�
a0
�
+
X8

j = 0

ajxi;j
bi = b0 +
X11
j = 9

bjxi;j (Equation 6)

The effect sizes aj for each of the covariates xj on variation in a is randomly chosen in the interval [-0.5, 0.5] while the effect sizes bj

for each of the covariates xj on variation in b is randomly chosen in the interval [-0.01, 0.01]. We simulated 17 years of follow up, 100

times for each cohort size assuming baseline logða0Þ = -4.5 and b0 = 0.083 such that there were 40% events observed within the

follow up time. These settings were chosen to match observed censorship in the MrOS dataset.

Simulation Set 2 - Survival analysis in presence of physiological network

To simulate amore realistic scenario that captures the complexity of physiological networks, we simulated randomDAGswhere vari-

ables can regulate each other, as well as impact survival parameters directly and indirectly. In these simulations, we generated 10

variables of which 4 variables affect a while 4 variables affect b: The variables were generated using a randomly generated DAG

with 0.5 probability for the relationship between variables and all variables follow a standardized normal distribution (i.e., mean of

0 and standard deviation of 1). The density of edges was set based on observed density in the MrOS cohort. The correlations in

the DAG are randomly chosen in the range [-1, 1]. To evaluate the sensitivity of our methods to identify covariates that affect both

alpha and beta we include a covariate with a joint effect (x3). We generated the simulations with the following conditions:

logðaiÞ = log
�
a0
�
+
X3

j = 0

ajxi;j
bi = b0 +
X6

j = 3

bjxi;j (Equation 7)

All other parameters were the same as in Simulation Set #1. Here, the presence of regulation between variables, allows us to inves-

tigate the accuracy of physiological DAG reconstruction and its impacts on survival.

Methods for identifying variables that directly impact survival

We utilized Markov Chain Monte Carlo (MCMC) sampling (Gilks et al., 1995) with the No U-Turn Sampler (NUTS) (Hoffman and

Gelman, 2011) to infer the parameters that affect survival outcomes. Each MCMC run consists of 4 chains with 2000 steps (1000

burn-in) and is checked for convergence using Rhat<1.04 (https://mc-stan.org/users/documentation/).

We evaluate three modeling techniques (univariate, LASSO, greedy hill climbing) for their ability to identify the true causal relation-

ship between covariates and the latent Gompertz parameters (Equations 6 and 7 and STAR Methods). Reconstruction of the phys-

iological network is done independently of the survival layer (method described in the next section).

In a univariate model, the covariate j directly affects survival of individual i by influencing either alpha or beta in the absence of

covariate structure. Variable selection is based on theWatanabe-Akaike information criterion (WAIC) (Watanabe, 2013) as compared

to the null model without a covariate.

logðaiÞ = log
�
a0
�
+ ajxi;j

bi = b0 +bjxi;j
(Equation 8)
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Second, we evaluated the multivariate model with Bayesian LASSO regularization as a means of identifying variables that affect

survival. In this model, the effect sizes aj and bj for each of the covariates xj on the Gompertz parameters are assumed to have regu-

larized Laplace priors.

Third, we used a Greedy-Hill climbing algorithm. In this approach, variables are selected sequentially, by measuring improvement

in statistical fit (WAIC) after adding or deleting each variable from multivariate. During each iteration, we accepted the addition or

deletion of a covariate to ai or bi that produced the most significant improvement in the fit. We repeat this process until convergence.

We also utilized leave one out cross validation (Vehtari et al., 2015) as a criterion for convergence and obtained consistent results with

WAIC-based convergence.

Methods for identifying physiological network interaction and their impact on survival

The connectivity of a biological system can be represented as a network of state variables (nodes) and their interactions (vertices),

where changes in one variable are propagated to other variables of the network through a complex set of functional relationships. The

propagation of changes between nodes in a realistic physiological network is hard to model computationally, as the structure of the

network is typically unknown. With that in mind, we have chosen to represent a physiological network as a simple directed acyclic

graph (DAG) with a linear set of relationships between nodes. Of course, even in this simplemodel most connectivity is not known and

needs to be discovered.

The structure of the Physiology DAG can be discovered by searching all possible permutations of connectivity and selecting the

architecture that has the highest probability of explaining data. The joint probability of observing all variables in a particular state for

an individual is given in the formula below:

PðX1;X2; ::::;XnÞ =
Yn
i = 1

GðXi

��Xj:::Þ (Equation 9)

where n represents the number of nodes, X are state variables, and the network G is represented as a set of all conditional depen-

dencies between children and parents. Finding themost likely architectureG (learning structure) can be carried out by a set of search

algorithms thatmaximize the probability of observing the data across all individuals after takingmodel complexity into account. There

are a number of algorithms that have been developed for this task (Glymour et al., 2019; Guo et al., 2020).

Construction of physiological networks in simulations

In Simulation Set #2, we generated 10 variables that were generated using a randomly generated DAG with 0.5 probability for a rela-

tionship between variables and all variables follow a standardized normal distribution (i.e., mean of 0 and standard deviation of 1). We

generated the variables based on the DAG with the following conditions:

xi;j � N
�
mi;j; sj

�

mi;j =
X
k˛paj

gkjxi;k
sj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

X
k˛paj

g2
kj

s

where the correlations in the DAG (gkj) are randomly chosen in the range [-1, 1]. The simulation was rejected if the standard deviation

for any variable was imaginary. The parents of each variable (xj) within the DAG are denoted by paj. The standard deviation in these

simulations placed additional constraints on the causal effect sizes (gkj) within the network. Of the 10 variables, 4 of these variables

affect a while 4 variables affect b:a and b share a single covariate (x3) in these simulations.

Methods to infer physiological network

We evaluated different algorithms from the causal structure discovery literature for inferring the network connectivity structure of the

synthetic physiological network. In particular, we compared methods that used score-based or constraint-based metrics to identify

the network structure in the physiological network. The tested methods include:

1) Greedy Equivalence Search (GES) uses Bayesian information criterion (BIC) as the score to optimize.

2) Incremental AssociationMarkov Blanket (IAMB) algorithm identifies theMarkov blanket or variables that can be used to predict

a variable locally before identifying the global connectivity of the network.

3) Grow-Shrink (GS) algorithm also identifies the local Markov structure to build up the network structure.

4) Peter Clark (PC) algorithm identifies the conditional independencies from the data to build up the network structure.

5) Max-Min Parents and Children (MMPC) algorithm identifies the parent-children set, for each node that contains all variables

that are a parent or a child of the node.

6) Inductive Causation (IC) algorithm creates a Bayesian network structure based on constraints identified from conditional inde-

pendence between variables.
Cell Reports Methods 2, 100356, December 19, 2022 e4
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In this work, we build upon these methods and evaluate six different algorithms for structure discovery. Using simulations,

we calculated the accuracy of incremental association Markov blanket (IAMB) (Tsamardinos et al., 2003), Grow-Shrink (GS)

(Margaritis and Thrun, 1999), Peter Clark (PC) (Spirtes and Glymour, 1991), Max-Min Parents and Children (MMPC) (Tsamardinos

et al., 2006), and inductive causation (IC) (Verma and Pearl, 1991) algorithms from the constraint-based algorithms and compared

it to the accuracy of the score-based algorithm - Greedy Equivalence Search Algorithm (GES) (Chickering, 2002). All algorithms

were tested with default settings as implemented in bnlearn (Scutari, 2010).

Accuracy of parameter and effect size identification in simulations

We estimate the accuracy of physiological network reconstruction and the accuracy of identification of variables with direct connec-

tivity to survival parameters. We also evaluate the impact of correctly selecting a variable given its true effect size. For this, we simu-

lated a range of effect sizes on both alpha and beta covariates as detailed in the simulated networks set#1 and set#2 sections above

(Equations 6 and 7). We compared the inferred effect size in the final survival model to the actual effect size in the simulation.

We calculate the following measures. A true positive (TP) is a true causal relationship in the simulated dataset (either between sur-

vival parameters and covariates or between different simulated variables within the simulated network). A false positive (FP) is an

edge that was identified by an algorithm but does not exist in simulated data. A false negative (FN) is the missing identification of

a causal edge that exists within the network, and a true negative (TN) is the correct prediction of the absence of an edge. For the

evaluation of physiological network reconstruction, wemeasured precision and recall. The definition of these measures is as follows:

Sensitivity (recall) measures the ability of the algorithm to detect the true positives. Defined as:

Sensitivity =
TP

TP+FN
(Equation 10)

Specificity measures the ability of the algorithm to detect the true negatives. Defined as:

Specificity =
TN

TN+FP
(Equation 11)

Positive Predictive Value (precision or PPV) is the fraction of predicted positives that are true positives. PPV is defined as:

PPV =
TP

TP+FP
(Equation 12)

Negative Predictive Value (NPV) is the fraction of predicted negatives that are true negatives. NPV is defined as:

NPV =
TN

TN+FN
(Equation 13)
Bayesian inference of survival layer
We applied and compared three methods for Bayesian inference. We utilized Markov Chain Monte Carlo (MCMC) simulations (Gilks

et al., 1995) with the No U-Turn Sampler (NUTS) (Hoffman and Gelman, 2011) to infer the parameters given the structure of the

network. Each simulation was run for 1000 steps with 1000 steps of burn-in time and 4 chains were run per simulation to check

for convergence of the simulations. Except for LASSO fit, in all other inference methods, the goodness of fit during structural infer-

ence was measured using the Watanabe-Akaike Information Criterion (WAIC) with lower values of WAIC considered to be better fits

(Vehtari et al., 2015). WAIC is based on an estimate of the predictive distribution of individual observations. WAIC tries to predict the

accuracy of themodel for out of sample prediction (also called cross-validation) based on the log likelihood of the observations within

the training sample and contains a penalty for the effective number of parameters used within the model.

Univariate association between covariates and survival parameters

The goal of univariate association methods is to identify all the covariates that are associated with either Gompertz parameter. The fit

is applied with each individual covariate applied to either affect baseline fitness or aging rate.We run 2 simulations per covariate using

either fit:

logðaiÞ = log
�
a0
�
+ ajxi;j

or

bi = b0 +bjxi;j

Using MCMC simulations, all variables that show improved fit for the survival model (lower WAIC as compared to null model) are

taken for further analysis. The null model for univariate variable selection is the model in which the Gompertz parameters are inde-

pendent of all covariates (i.e., X0-X39 in set 1 and X0-X9 in set 2).

Regularized LASSO approach for multivariate structure inference

LASSO is a regularized approach to identify all the relevant variables associated with survival in a single iteration (Tibshirani, 1996). In

this approach, the effect sizes aj and bj for each of the covariates xj on the Gompertz parameters are assumed to have regularized

Laplace priors. The hyperparameters on the Laplace distribution are also learned from the data:

aj = Lð0; lÞ
e5 Cell Reports Methods 2, 100356, December 19, 2022
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bj = Lð0; lÞ
l = HCð0;1Þ
where Lð0; lÞ represents the Laplace distribution with the location at 0 and l is the scale parameter whileHCð0; 1Þ represents the Half
Cauchy distribution with location at 0 and a scale parameter of 1. During the simulation, a variable is selected if the 95% credible

interval of the corresponding coefficient does not overlap with 0.

Greedy hill-climbing algorithm for multivariate structure inference

This model is a multivariate version of the Gompertz survival function, where feature selection is based on incremental improvement

in WAIC.

logðaiÞ = log
�
a0
�
+
X3

j = 0

ajxi;j
bi = b0 +
X6

j = 3

bjxi;j:

The covariates chosen for the hill climbing procedure are the variables that passed the univariate variable selection. In the greedy

hill-climbing algorithm, we learn the structure using multiple iterations. During each iteration, the method explores the space of

models in which one of two steps can be taken:

a) A new covariate can be associated with either alpha or beta (single edge addition).

b) A pre-existing association of covariates with either alpha or beta can be removed from the model (single edge deletion).

At the end of each iteration, the model with the best WAIC (minimum) is chosen. The iterative hill climbing is performed until no

further improvement in WAIC is possible.

Application of models to human cohorts
Selection of variables for inclusion into physiological networks

The Osteoporotic Fractures in Men (MrOS) cohort is a multi-center prospective, longitudinal, observational cohort study designed

to examine the extent to which fracture risk is related to bone mass, bone geometry, lifestyle, anthropometric and neuromuscular

measures, and fall propensity, as well as to determine how fractures affect the quality of life in men. The MrOS study population

consists of ambulatory men aged 64 years or older at baseline. The study was designed to study osteoporosis in elderly men (Orwoll

et al., 2005).

In this study, there were hundreds of biomarkers and physiological parameters measured. We focused on biomarkers associated

with long-term survival within the MrOS cohort and removed individuals that died within the first 3 years, or were deemed unhealthy.

The unhealthy participants were unable to complete at least one of the following tasks: (i) climb ten steps, (ii) walk two blocks, (iii)

perform a narrow walk trial, or (iv) complete 5 stands. To identify variables that are potentially associated with survival outcomes,

we carried out a univariate analysis with age adjustment to identify all covariates associated with survival using Gompertz analyses.

After removing highly correlated biomarkers, we identified 34 covariates in theMrOS cohort that improved the prediction of survival

and were chosen for multivariate survival analyses and for the construction of physiological networks. The complete list of selected

variables can be found in Figure 5 and age-adjusted hazard ratios for some of the selected variables can be found in Figure S8. All

details of the preprocessing steps and variable selection are in the methods.

Baseline measurements

At baseline, a comprehensive assessment of physiological and biochemical measures was conducted This includes skeletal mea-

surements such as bone mineral density (BMD) using dial energy X-ray absorptiometry (DEXA) and quantitative computed tomog-

raphy (QCT) as well as lifestyle, medical, and nutritional factors using surveys as well as a physical activity using self-reported sur-

veys. In addition, they also made physical and anthropometric measurements such as weight, height, body mass index (BMI) as well

as measured the cognitive, visual, and neuromuscular function bymeasuring grip strength, walking speed, as well as the ability of the

participant to rise from the chair and the Modified Mini-Mental Status (3MS) examination. Blood and urine samples were collected

after fasting for biochemical measurements.

Baseline characteristics of MrOS

In order to identify biomarkers associatedwith baseline fitness and aging rate under realistic scenarios, we applied Gompertz survival

analyses to a human cohort with�17 years of follow up time. The Osteoporotic Fractures in Men (MrOS) Study is a multi-center pro-

spective, longitudinal, observational study designed to examine risk factors associated with longer term health outcomes in elderly

individuals.

To focus on biomarkers associated with long-term survival, we removed participants that died in the first two years of a study or

had clear indications of poor health. This resulted in a subset of 4,864 participants (MrOS) as shown in the baseline table. We focused
Cell Reports Methods 2, 100356, December 19, 2022 e6
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on biochemical and physiological measures collected in Year 1 and Year 2 of this study, as these years had the most complete

biochemical characterization.

Event outcomes

Study participants received a one-page Tri-Annual Questionnaire every four months. This instrument is used to update contact in-

formation and to ascertain the incidence of falls and fractures and back pain. Vital status and cause of death during the study are

verified through state death certificates. The February 2018 release was used for all analyses in this manuscript.

Data preprocessing

All survival analyses were performed with respect to all cause mortality within this manuscript. We removed unhealthy participants at

baseline to focus on early predictive biomarkers of aging. All variables were normalized to Z-scores before survival regression. The

log of all biochemical measurements were taken before Z-score normalization.

Univariate association with survival

We initially performed univariate analysis with age adjustment to identify all covariates associated with survival using Gompertz an-

alyses. Before testing for a univariate association, we removed all outliers from the data (modified Z-score > 3.5).

We performed a univariate analysis with anthropometric measurements, abdominal aortic calcification measured using DEXA

scans, serum biochemistry panel, serum and urine bone marker assay, cytomegalovirus seropositivity assay, serum cytokine assay,

serum glucose assay, serum FGF23 and uric acid assay, vascular endothelial growth factor assay, medical inventory form, vitamin D

assay, PTH assay, osteocalcin assay, renal function assay, thyroid assay, and urine mineral assay for association with either Gom-

pertz parameter after adjusting for age.

Some of these measurements were not made for all participants in the cohort but we did not impute missing values during univar-

iate association tests. We identified the subset of physiological markers and/or biomarkers that contributed significantly to either of

the latent Gompertz parameters ai or bi after age and sex correction based upon the survival data for the different cohorts.

To identify the biomarker ðxÞ that significantly affect survival of the cohort, we ran Markov Chain Monte Carlo (MCMC) with No

U-Turn Sampler (NUTS) with the following model:

logðaiÞ = log
�
a0
�
+ aAgeAgei + axxi
logðbiÞ = log
�
b0

�
+bxxi

Each chain was run for 1000 stepswith 1000 steps of burn-in time and 4 chains were run per simulation to check for convergence of

the simulations. The contribution of a biomarker to survival was considered significant if its inclusion improved the WAIC measure

relative to the null model.

Construction of physiological and survival networks
In the first step, the physiological networks were constructed using the Incremental Association Markov Blanket (IAMB) algo-

rithm (Tsamardinos et al., 2003) followed by a greedy hill climbing algorithm (Tsamardinos et al., 2006) to find the directionality

of undirected edges. The Markov blanket of a variable X is defined as the smallest set of variables in the network that improve

the accuracy of predicting variable X. The Markov blanket of X includes the variables that are directly connected to X in the DAG

as well as variables that have a common successor (i.e., collider variables). IAMB is a two-step variable selection process,

where first all variables that predict X are identified (forward phase) and then this set is pruned (reverse phase) based on con-

ditional independencies in the data. Following this, we used a hill climbing algorithm to identify the directionality of edges within

the DAG.

In the second step, we utilize a greedy hill climbing algorithm to identify which covariates from the physiological network are asso-

ciated with alpha or beta using amultivariate survival model. Once the survival regression converges, we thenmerge the edges in the

physiological and survival networks within a single causal network.

Assessment of accuracy of survival regression
Wemeasured the goodness of fit using the concordance index or C-index. The C-index is a generalization of the area under the ROC

curve (AUC) that can take into account censored data. It represents the global assessment of the model discrimination power: this is

the model’s ability to correctly provide a reliable ranking of the survival times based on the individual risk scores. To estimate the

C-index for the Gompertz model, we simulated 18 years of survival data with each participant having the mean hazard predicted

by the multivariate survival model identified in this study. Then we compared the order of simulated events with the order of real

events as implemented in the lifelines package v0.26.04.

Modeling effect of intervention in physiological networks
There are two types of questions one can ask of joined physiology - survival network. First, what is the effect of an intervention on

physiology nodes directly connected to survival nodes? Second, what is the indirect effect of an intervention on the physiology layer?

The second question can be modeled by propagating changes on one node to all its successors within the physiology layer, and

ultimately modeling how that information propagates into the survival layer. Simulating these hypothetical scenarios, can be thought
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of as counterfactuals –what if there was a treatment that modulated physiological variables andwhat effect would the treatment have

on median survival in the individuals?

Direct effects
In the multivariate survival model, the effect of modifying a single covariate X on survival time was measured by keeping all other

covariates at the mean value (Z-score = 0) and only modifying X. The range of Z-scores for X was based on the range of X observed

within the cohort. The coefficients of aj & bj from the MCMC trajectory of the multivariate survival model was used to measure the

uncertainty in predicted median survival time under this model (Equation 14). The median survival time (T1=2) was calculated based

on the Gompertz survival quantile function:

T1=2 =
1

b
log

��
b

ea

�
� logð2Þ + 1

�
(Equation 14)

where the Gompertz parameters are calculated using the counterfactual condition.

Total effects
During the counterfactual calculations with the combined physiological-survival networks, we used do-calculus for estimating the

median survival time for each covariate (Pearl, 2000) based on the optimized DAG. During do-calculus, the variable under consider-

ation X is changed to a particular value and the edges from its parents are removed. In themodified network, all descendants of X are

updated to a new value based on their relationship with X. This update ensures that information is propagated to descendants of X,

and ultimately their effects on survival. Themedian survival time is calculated using the same formula as with the direct effects above.

The advantage of thismethodology is that indirect effects are allowed during the counterfactual calculation, which is not possible with

the simple multivariate survival model.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical approach used in this article is described in method details. All Bayesian models were implemented using PyMC3, and

Kaplan-Meier curves were constructed using Lifelines python package.
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