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ABSTRACT
Chronic kidney disease (CKD) is a common public health problem worldwide characterized by
gradual decline of renal function over months/years accompanied by renal fibrosis and failure in
tissue wound healing after sustained injury. Patients with CKD frequently present with profound
signs/symptoms that require medical treatment, mostly culminating in hemodialysis and renal
transplantation. To prevent CKD more efficiently, there is an urgent need for better understanding
of the pathogenic mechanisms and molecular pathways of the disease pathogenesis and
progression, and for developing novel therapeutic targets. Recently, several lines of evidence
have shown that epigallocatechin-3-gallate (EGCG), an abundant phytochemical polyphenol
derived from Camellia sinensis, might be a promising bioactive compound for prevention of CKD
development/progression. This review summarizes current knowledge of molecular mechanisms
underlying renoprotective roles of EGCG in CKD based on available preclinical evidence (from
both in vitro and in vivo animal studies), particularly its antioxidant property through preservation
of mitochondrial function and activation of Nrf2 (nuclear factor erythroid 2-related factor 2)/HO-1
(heme oxygenase-1) signaling, anti-inflammatory activity, and protective effect against epithelial
mesenchymal transition. Finally, future perspectives, challenges, and concerns regarding its
clinical use in CKD and renal fibrosis are discussed. Curr Dev Nutr 2019;3:nzz101.

Introduction

Chronic kidney disease (CKD) is one of the major noncommunicable diseases worldwide,
especially in the aging population (1, 2). A deceptive feature of renal failure, it can remain
unnoticed by patients until the disease progresses, making CKD one of the most challenging
diseases to diagnose, and is considered a silent killer (3). Progression of CKD has been
thought to be initiated by renal injury, followed by a defective repair process that subsequently
causes impaired nephron function and compensatory response of the remaining nephrons to
maintain renal function (4). However, a vicious cycle of these alterations continues, resulting in
mechanical andmetabolic stresses andultimately loss of the nephron (4). Because of the increasing
expenditure on CKD, much greater efforts have been made during the last decade toward its
prevention (5).

Epigallocatechin-3-gallate (EGCG) is the most abundant catechin derived from the tea plant
(Camellia sinensis), especially green tea, which contains∼77.8 mg EGCG per gram of dried leaves
(accounting for 60% of all catechins found in tea polyphenols) (6). Computational molecular
docking and X-ray crystallographic studies have revealed that EGCG can anchor a galloyl
moiety in a protein cleft and interact with the protein through its hydroxyl groups, giving
it greater biological activity than nongalloylated catechins (7). EGCG is widely recognized as
a potent antioxidant that effectively eliminates intracellular free radicals by its phenol ring
structure, which can act as an electron trap (8). In addition, anti-inflammatory, antiaging, and
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antifibrosis properties of EGCG appear to involve several molecular
signaling pathways and cellular machineries that are responsible
for specified cellular functions under physiological and pathological
conditions (9, 10). Therefore, EGCG has received wide attention
for its beneficial roles in chronic diseases (e.g., cardiovascular and
neurodegenerative diseases and various types of cancers), which
frequently involve sustained oxidative stress and inflammation (11).
Recently, several lines of evidence from various in vitro and in vivo
animal studies have suggested that EGCG exerts renoprotection against
CKD (12, 13). This review summarizes the current knowledge and
recent progress made in this research area. Also discussed are future
perspectives, challenges, and concerns over the clinical use of EGCG
for CKD and renal fibrosis.

Preclinical Evidence for Molecular Mechanisms of EGCG
in CKD and Renal Fibrosis

Antioxidant property of EGCG
Preservation of mitochondrial function.
Mitochondria play several important roles in cellular adaptive responses
to a stressful environment. In general, mitochondria are important for
biosynthesis of macromolecules, regulation of calcium homeostasis,
maintenance of cellular redox status, and regulation of apoptotic cell
death (14). In addition to the heart, the kidney is anothermitochondria-
rich organ per tissue mass (15). Therefore, renal functions are
highly dependent on mitochondrial performance to maintain body
homeostasis (16). Moreover, the kidney is highly sensitive to cellular
redox imbalance, resulting in overproduction of reactive oxygen
species (ROS) and subsequently oxidative stress, which is critical for
development of several kidney diseases (17, 18).

It has been hypothesized thatmitochondrial dysfunction contributes
to the progression of CKD, particularly in diabetic nephropathy
(DN) (17, 19). Renoprotective effects of EGCG against mitochondrial
dysfunction have been extensively studied in CKD. In rats with DN
induced by streptozotocin injection and nephrectomy, oral administra-
tion of EGCG for 50 d suppressed hyperglycemia and proteinuria (20).
Decreases in lipid peroxidation and advanced glycation end products
(AGEs) were observed, indicating an improvement in mitochondrial
oxidative stress (20). An in vitro study using human embryonic kidney
(HEK) cells treated with high glucose concentration revealed that
EGCG in combination with lipoic acid attenuated suppression of
superoxide dismutase expression and ROS overproduction caused by
high glucose (21). Regarding the role of mitochondria in regulating
apoptotic cell death, a recent study has revealed antiapoptotic activity
of EGCG in DN rats (22). Supplementation with EGCG suppressed
expression of the apoptotic protein Bax and active caspase 3, but
maintained expression of the antiapoptotic protein B cell lymphoma-
2 (Bcl-2) in the diabetic kidney (22). Similar findings were observed in
models of renal ischemia-reperfusion injury in rats (23) and unilateral
ureteral obstruction (UUO) in mice (24).

Cisplatin has been used for chemotherapy in many solid tumors but
can induce toxic renal effects. It is thus worth mentioning a protective
role of EGCG against mitochondrial oxidative stress and dysfunction
in cisplatin-induced nephrotoxicity (25). Patients who survive acute
kidney injury (AKI) can have a 2-fold greater risk of developing

CKD in their lifetime (26). In a mouse model of cisplatin-induced
nephrotoxicity, EGCG preserved renal mitochondrial function by
maintaining electron transport and mitochondrial antioxidant enzyme
activities, leading to protection against inflammation and apoptotic cell
death (27). In addition, EGCG reduced mitochondrial ROS production
in HK-2 cells (27). Consistent with the previous study, combined
treatment of EGCG and coenzyme Q10 in a rat model of cisplatin-
induced renal damage attenuated oxidative stress, inflammation, and
renal cell death (28). Additionally, EGCG attenuated cisplatin-induced
nephrotoxicity in animals with solid Ehrlich ascites carcinoma by
increasing concentration of the antioxidant glutathione (10). Likewise,
EGCG protected renal cells against cisplatin-induced apoptosis by
inhibiting Bax, while promoting Bcl-2 expression (29). Moreover,
beneficial effects of EGCG on aging and kidney function have been also
reported (30). Supplementation of EGCG for 6 mo in Fischer 344 rats
reduced oxidative damage (by lowering H2O2 and malondialdehyde),
increased mitochondrial membrane potential of lymphocytes, and
increased antioxidant enzyme activities (30).

Activation of Nrf2/HO-1 signaling.
Kelch-like ECH-associated protein 1 (Keap1) coordinates with nuclear
factor erythroid 2-related factor 2 (Nrf2) to govern the defense
mechanism against oxidative and electrophilic stresses (31). Under
quiescent conditions, Keap1 quenches Nrf2 activity by forming an E3
ubiquitin ligase complex with cullin-3 (Cul3) that links Nrf2 with E2
ubiquitin-conjugating enzyme, which transfers ubiquitin to Nrf2 and
targets Nrf2 for proteasomal degradation (32). However, exposure to
an electrophile can directly modify the reactive cysteine residues inside
Keap1, and consequently reduce the E3 ubiquitin ligase activity of the
Keap1-Cul3 complex and release Nrf2 from E2 ubiquitin-conjugating
enzyme (33). Nascent Nrf2 then translocates to the nucleus, where
it combines with small musculoaponeurotic fibrosarcoma (sMAF)
protein, and subsequently binds to the antioxidant response elements
of a myriad cytoprotective genes and activates their transcripts (34).
Prolonged activation of Nrf2 can exert the dark side of Nrf2 in cancer
progression and chemoresistance (35, 36). However, this is not the case
for CKD, in which pharmacological activation of Nrf2 is nowadays
considered as one of the strategies to reduce oxidative stress and to
prevent the disease progression (37).

EGCG has been documented as a phytochemical that can modulate
Nrf2 signaling, resulting in upregulation of antioxidant or detoxifying
enzymes (38). In the context of CKD, antioxidative activity of EGCG
has been evaluated in lupus nephritis (LN) (39). In such a study,
daily supplementation of EGCG in a mouse model of LN improved
renal function and prevented proteinuria. In addition, oxidative stress
parameters in serum, urine, and kidney were significantly lowered
in the EGCG-treated mice. Moreover, nuclear translocation of Nrf2
was observed in the EGCG-treated mice in concordance with the
increased expression or activities of its downstream phase II enzymes
[i.e., NAD(P)H:quinone oxidoreductase, heme oxygenase-1 (HO-1)
and glutathione peroxidase (GPx)]), indicating Nrf2 activation by
electrophilic EGCG (39).

Similarly, the therapeutic potential of EGCG has been shown
in a mouse model of crescentic glomerulonephritis (GN) (40). In
this study, EGCG-treated mice showed improved renal function and
histopathology. EGCG treatment also restored expression of nuclear
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Nrf2 and its downstream targets, including glutamate–cysteine ligase
catalytic subunit, glutamate–cysteine ligase modifier subunit, and GPx
(40). In addition, the renal glutathione expression level was increased
whereas the renal malondialdehyde expression level was decreased in
the EGCG-treated mice, suggesting a reduction of oxidative stress by
Nrf2 restoration (40). These findings imply that EGCG could reactivate
the Nrf2 pathway, thereby reversing the progression of crescentic GN.

In a mouse model of high-fat-diet–induced obesity, the EGCG-
treated animals showed significant reduction in fasting blood glucose
and AGE formation, most likely via Nrf2 activation as shown by the
increased expression levels of nuclearNrf2 andHO-1 (41). Interestingly,
EGCG prevented DN in streptozotocin-induced diabetic mice via Nrf2
activation (42). Nrf2-knockout mice showed a complete abolition of
such protective effects of ECGC against DN, resulting in sustained
oxidative stress, inflammation, and fibrosis (42). In addition, direct
evidence by molecular docking assay revealed that EGCG directly
interacted with the Keap1 interior by hydrogen bonding (42). This
direct interaction of EGCG with Keap1 was confirmed by a silencing
assay using small interfering RNA (siRNA) specific to Keap1 (42).

Activation of Nrf2 by EGCG has been also reported in a UUO
model of obstructive nephropathy (43, 44). Intraperitoneal injection of
EGCG after unilateral ureteral ligation improved renal ultrastructure,
especially in renal tubules (43). The amelioration of the renal injury
was inferred from the increased expression of Nrf2 and its nuclear
translocation as well as the increased expression of γ -glutamylcysteine
synthetase (γ -GCS) in the kidney (43). Similarly, another study demon-
strated that 14-d administration of EGCG in UUO mice ameliorated
renal damage and renal dysfunction through activation of Nrf2 as
shown by the increase in Nrf2 and its nuclear accumulation, resulting
in enhanced HO-1 production (44). Moreover, a recent in vitro study
has also shown that EGCG protects renal cells from oxidative damage
induced byH2O2 throughNrf2 activation, resulting in increased γ -GCS
expression (45).

Anti-inflammatory activity of EGCG
Uncontrolled inflammation is an intermediate mechanism in the
development of many chronic diseases including CKD. The NF-κB
pathway is recognized as a classical pathway regulating expression of
proinflammatory cytokines/chemokines in response to inflammation
(46). Both canonical and noncanonical NF-κB pathways have been
discovered in various inflammatory kidney diseases (47, 48). However,
themost common formof activatedNF-κB stimulated by a pathological
condition is the heterodimeric complex of p65/p50 (46). During
the resting state, heterodimeric p65/p50 is kept inactive by the IκB
inhibitory protein. Shortly after stimulation, inhibitor of kappa B
(IκB) is phosphorylated by the NF-κB essential modulator (NEMO)-
containing IκB kinase complex and is marked for degradation via
proteasomes, resulting in nuclear translocation of p65/p50 and binding
of the complex to promoter regions of genes encoding proinflammatory
mediators (49, 50). Therefore, targeting the NF-κB signaling pathway
in order to alleviate the inflammatory response and to restore a proper
balance of anti-inflammatory signaling pathways is a strategic approach
in the context of chronic diseases (51).

The anti-inflammatory property of EGCG has been reported
in many models of CKD, including DN, immune-mediated
kidney diseases, and renal fibrosis. In general, EGCG exhibits

anti-inflammatory effects by inhibiting the NF-κB pathway, resulting in
reduction of proinflammatory mediators and decreased recruitment of
inflammatory cells. An in vitro study of AGE-induced inflammation of
HEK cells and human mesangial cells revealed that both of these renal
cells had significantly increased concentration of the proinflammatory
cytokine TNF-α upon AGE treatment, but pretreatment with EGCG
could attenuate such an increase (52). Interestingly, the inhibitory
property of EGCG was comparable to that of L-165,041, a selective
ligand for peroxisome proliferator-activated receptor delta (PPARδ)
(52). In addition, both EGCG and L-165,041 induced PPARδ while
suppressing expression of receptor of AGE (RAGE). Accordingly,
EGCG suppressed activation of NF-κB as indicated by the decreased
expression of nuclear NF-κB and the remaining IκB in the cytoplasm
(52). However, this effect was abolished by siRNA specific to PPARδ.
These findings indicate that the inhibitory effect of EGCG on AGE-
induced inflammation is mediated through PPARδ activation (52).
Similarly, EGCG in combination with alpha-lipoic acid had an anti-
inflammatory effect on high glucose-treated HEK cells by reducing the
production of proinflammatory cytokines (i.e., TNF-α and IL-6) and
RAGE expression (21).

The anti-inflammatory action of EGCG has been also demon-
strated in vivo using a rat model of streptozotocin-induced DN (20).
EGCG treatment significantly inhibited NF-κB signaling, resulting
in decreased expression levels of NF-κB and p-IκB-α as well as
downstream enzymes, namely, inducible nitric oxide synthase (iNOS)
and cyclooxygenase-2 (20). EGCG treatment also ameliorated renal
pathological changes (including mesangial matrix expansion and
glomerular enlargement) and markedly reduced expression of inflam-
matory markers, including intercellular adhesion molecule-1 (ICAM-
1) and vascular cell adhesion molecule-1 (VCAM-1) in the diabetic
mice (42). However, such protective effects of EGCG were not found in
theNrf2-knockout diabeticmice, suggesting that the anti-inflammatory
effects of EGCG were mediated through Nrf2 signaling (42).

Furthermore, the anti-inflammatory effects of EGCG have been
demonstrated in immune-mediated CKD, including GN and LN.
EGCG inhibited inflammation induced by anti–glomerular base-
ment membrane antibody in 129/svJ GN mice (53). Histopathology
showed improvement of glomerular and tubulointerstitial injury
and significant reduction of macrophage and lymphocyte infiltration
together with downregulation of osteopontin, a known marker for
monocyte/macrophage recruitment, in the EGCG-treated mice (53).
Additionally, p65/NF-κB molecules were stained strongly positive in
the GN renal tissues, indicating NF-κB activation in GN. EGCG
pretreatment ameliorated such NF-κB activation markers and also
reduced iNOS expression (53). The same group of investigators later
demonstrated that the inhibitory activity of EGCG against inflamma-
tion observed in crescentic GN was Nrf2-dependent (40). Another
study in mesangial cells isolated from the kidney of mice with GN
induced by systemic lupus erythematosus–like disease demonstrated
that EGCG suppressed nuclear translocation of NF-κB induced by LPS
and IFN-γ , resulting in downregulation of iNOS and proinflammatory
mediators (54). Likewise, a reduction of renal expression of p65/NF-
κB has been found in EGCG-treated LNmice (39). This was consistent
with the decreased number of infiltrating immune cells (i.e., T-cells
and macrophages). In addition, EGCG markedly reduced expression
of nucleotide-binding domain, leucine-rich repeat-containing family,
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pyrin domain-containing 3 (NLRP3) and production of IL-1β and
IL-18. This effect was confirmed by decreased expression of mature
caspase-1 (p20 subunit), suggesting an inhibitory effect of EGCG on
NLRP3-dependent inflammasome activation (39).

In an obstructive nephropathy model, EGCG inhibited NF-κB
signaling as shown by significantly decreased expression levels of NF-
κB and p-IκB, which were related to a decrease in DNA binding activity
of NF-κB determined by electrophoretic mobility shift assay (44). The
decreased expression levels of proinflammatory cytokines (i.e., TNF-α,
IL-6, and IL-1β) were also observed in the EGCG-treated group (44). In
addition, the same group of investigators demonstrated by histological
staining of renal sections that EGCG inhibited infiltratingmacrophages
(55).

Besides CKD, a beneficial effect of EGCG on age-associated kidney
inflammation has been demonstrated in healthy rats (56). Long-
term consumption of EGCG decreased renal expression of NF-κB
and proinflammatory mediators IL-6 and TNF-α in Wistar rats.
Interestingly, these findings were correlated with the increase in
longevity factors, sirtuin (SIRT1) and forkhead box O3 (FOXO3a), in
liver and kidney as well as the extended lifespan of EGCG-treated rats.
These data suggest that the anti-inflammatory activity of EGCG might
be mediated by increasing SIRT1 and FOXO3a expression (56).

EGCG and other signaling pathways
Apart from the 2major signaling pathways (Nrf2 andNF-κB pathways),
EGCG can also regulate other signaling pathways. Pharmacological
inhibition of PPAR-γ (an anti-inflammatory transcription factor)
by using GW9662 diminished the renoprotective effect of EGCG
(53). This finding was concomitant with an inability of EGCG to
mitigate activation of Akt and extracellular signal-regulated kinases
1 and 2 (ERK1/2), suggesting that the anti-inflammatory property
of EGCG in GN could be mediated at least through PPAR-γ , Akt,
and mitogen-activated protein kinase (MAPK) pathways (53). EGCG
also inhibited inflammation induced by both NF-κB activation and
the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway in a mouse
model of GN (54). In this regard, EGCG blocked the PI3K/Akt/mTOR
pathway as indicated by decreasing phospho-Akt and phospho-p70s6K
(54). These results were further confirmed by another study providing
evidence that the anti-inflammatory activity of EGCG in a model of
GN was mediated by inhibiting multiple signaling pathways, including
PI3K, Akt, and MAPK pathways [i.e., c-Jun N-terminal kinase (JNK),
ERK1/2, and p38] (40).

Additionally, an antiapoptotic effect of EGCG has been demon-
strated in UUO mice (24). Decreased expression levels of Bax, active
caspase 3, and poly ADP-ribose polymerase were observed in the
EGCG-treated mice, indicating inhibition of the apoptotic pathway
(24). EGCG also inhibited activation of theMAPK pathway observed in
the obstructed kidney as shown by decreasing phosphorylation of ERK,
JNK, and p38 (24). In concordance, this inhibitory effect was confirmed
in the TGF-β1–treated NRK-52E cell line (24). Taken together, the data
suggest that EGCG can inhibit apoptosis of renal tubular cells in UUO
mice by inactivation of the TGF-β1–induced MAPK pathway (24).

Anti–epithelial mesenchymal transition property of EGCG
Epithelial mesenchymal transition (EMT) is a process that normally
occurs during embryogenesis, allowing phenotypic change of epithelial

cells to acquire mesenchymal features to perform specific organ
functions (57). However, EMT can occur under pathological condi-
tions, for example, cancer metastasis and organ fibrogenesis (57, 58).
The fibrogenic milieu is primed by sustained renal injury followed
by an inflammatory response and activation/expansion of fibrogenic
effector cells, for example, extracellular matrix (ECM)–producing cells
(59, 60). These ECM-producing cells are of mesenchymal origin,
including fibroblasts, myofibroblasts, fibrocytes, pericytes, and cells
derived from transdifferentiation of tubular epithelial cells through
EMT (61). Fibrotic mediators such as TGF-β1 are well documented
to induce epithelial cells to undergo EMT, in which they lose their
epithelial phenotypes [markers include E-cadherin, zonula occludens-
1 (ZO-1), and cytokeratins] while gaining mesenchymal phenotypes
[markers include α-smooth muscle actin (α-SMA) and vimentin] and
contributing to ECM production (62, 63). Although a recent study has
elucidated that EMT-derived myofibroblasts contributed only 5% to
ECM production in renal fibrosis, it is imperative to prevent or inhibit
such pathological cellular events (61).

The protective effect of EGCG against EMT has been reported
in TGF-β1–treated renal tubular epithelial cells (64). EGCG reduced
mesenchymal-like features of the TGF-β1–treated cells by restoring
cytokeratin-18 and α-SMA expression. In addition, EGCG suppressed
activation of Smad3, ERK1/2, and β-catenin, suggesting that its anti-
EMT might be mediated through these signaling molecules (64).
In the UUO mouse model (55, 65), EGCG alleviated renal injury
and renal interstitial fibrosis (55). These findings were accompanied
by a reduction of collagen production and α-SMA expression, and
increase in expression of E-cadherin (55). An in vitro study showed
that EGCG inhibited TGF-β1–induced Smad2/3 phosphorylation,
and promoted Nrf2 expression and its nuclear accumulation in
renal tubular cells (65). A similar effect was observed when Nrf2
was overexpressed. By contrast, Nrf2 knockdown abolished these
beneficial effects of EGCG, as indicated by the increased expression
of fibrotic proteins such as collagen and α-SMA (65). Collectively,
these findings indicated that the anti-EMT property of EGCG
against TGF-β1/Smad signaling was mediated through the Nrf2
pathway (65).

The antifibrotic effect of EGCG has been also investigated in
another model of EMT induced by high concentration of oxalate
(66). Pretreatment with EGCG suppressed expression of EMT markers
(vimentin and fibronectin) whereas it maintained epithelial markers (E-
cadherin, occludin, cytokeratin, and ZO-1) in the oxalate-treated renal
tubular cells. In addition, EGCG significantly reduced oxalate-induced
ROS overproduction and enhanced expression of an antioxidant
catalase enzyme (66). Moreover, these beneficial effects of EGCG were
abrogated by Nrf2 silencing, indicating that the protective mechanism
of EGCG against oxalate-induced EMT was most likely due to its
antioxidative property to reduce ROS overproduction through Nrf2
activation (66). In addition, EGCG exhibited its anti-EMT property
in a rat model of cadmium-induced chronic renal injury and fibrosis
(67). Supplementation with EGCG attenuated the increased expression
levels of TGF-β1, p-Smad3, α-SMA, and vimentin. Interestingly,
EGCG affected expression of several microRNAs regulated by TGF-
β1/Smad signaling [TGF-β1–induced miR-21 and miR-192 were
suppressed, whereas the antifibrotic miR-29 family (miR29a/b/c) was
enhanced] (67).
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Summary of Preclinical Evidence

Molecular targets of EGCG are mostly proteins that can be classified
as membrane receptors, transcription factors, epigenetic regulators,
inflammatory molecules, intracellular enzymes, cell cycle–related pro-
teins, apoptosis-related proteins, and others (68). Studies of molecular
interactions of EGCG and proteins have revealed that EGCG modifies
enzymatic activities and bioactivities of other proteins by occupying
protein active sites (69). In addition, dynamic interactions between
EGCG and proteins can affect many biological processes through regu-
lation of transcription, posttranslational modifications, and epigenetic
changes, which largely depend on cell types (70–72). In the context of
CKD, previous and recent preclinical studies have indicated that EGCG
could prevent CKD by several mechanisms, including preservation
of mitochondrial function, activation of Nrf2/HO-1 signaling, anti-
inflammation, and prevention of EMT (see the summary in Figure 1).
Continuing efforts are underway to prevent and mitigate progression
of CKD. Although the precise mechanisms of the disease progression
remain to be clarified, aberrant oxidative stress and inflammation are
recognized as the crucial players contributing to the renal damage in
CKD (73). Therefore, maintaining redox balance in the kidney would
provide a key strategy for defining new therapeutic interventions. Based
on the molecular mechanisms of EGCG and its renoprotective effects,
it might be possible to develop EGCG or its derivatives for treatment
of CKD in 2 ways: 1) as an Nrf2 activator, and 2) as a mitochondria-
targeting agent.

Challenges and Concerns for Clinical Use of EGCG

The health-promoting effects of EGCG involve many cellular and
molecularmechanisms that remain poorly understood. Based on recent
preclinical evidence, the Keap1-Nrf2 system has gained considerable
attention as the therapeutic target to prevent progression of CKD
because of its main function to protect cells from oxidative stress
and inflammation (32, 37). Nrf2 activators or Keap1 inhibitors have
been extensively investigated in many kidney disease models and some
have already entered into clinical trials (74). A phase 2/3 clinical trial
(CARDINAL study) of an Nrf2 activator, bardoxolone methyl (also
known as CDDO-methyl ester), in CKD patients is in progress (74).
Bardoxolone methyl is classified as an electrophilic Nrf2 activator,
which can alter the Keap1–Cul3 interaction by direct complexing with
Cys151 residing at the BTB (broad complex, tramtrack, and bric-a-
brac) domain of Keap1 protein, resulting in an inability of Keap1–
Cul3 to target Nrf2 for proteasomal degradation (33, 75). A covalent
modification of thiol groups in Keap1 is thus crucial for regulation of
Nrf2 signaling.

It has been demonstrated that EGCG can interact with specific
residues of Keap1. In a rat model of fluoride-induced oxidative stress
in lungs, EGCG has been shown to be docked in Keap1, forming
interaction bonds with Gly343, Thr595, Leu578, and Asp579 (76).
Another molecular docking analysis has revealed that EGCG can
directly interact with Ser508, Ser555, Ser602, Tyr525, Tyr572, Gln530,
and Arg483 inside Keap1 through hydrogen bonding (42). These
interacting residues fall into P1, P3, and P4 subpockets within the
kelch domain of Keap1, where interaction with ETGE and DLG motifs

of Nrf2 takes place (77–79). Therefore, it is possible that EGCG can
disrupt the Keap1–Nrf2 interaction and thereby activate Nrf2 signaling
through this molecular docking. Alternatively, EGCG probably induces
Nrf2 activation via Keap1-independent mechanisms (34, 80), for
example, transcription regulation (via microRNAs), posttranslational
modification (phosphorylation, sumoylation, acetylation, methylation,
etc.), and epigenetic factors, that cannot be ruled out and deserve
further investigations in CKD models. This sheds light onto the
potential use of EGCGor its derivatives asNrf2 activators for preventing
renal damage and progression of CKD. Nonetheless, because a relation
between Nrf2 signaling and disease pathology is sophisticated and
context-dependent, it is imperative to interpret and evaluate the
information cautiously.

Although the Nrf2-based therapy has proven to be beneficial,
another interesting approach is the mitochondria-targeting therapy.
It is conceived that mitochondrial bioenergetics stress, increasing
mitochondrial fission, and ROS overproduction in adaptation to
nephron loss contribute to the CKD progression (19). These alter-
ations are well documented in the chronic stage of DN (81–83).
Maintaining mitochondrial homeostasis in terms of its dynamics and
bioenergetics could offer beneficial effects over downstream events
like inflammation and fibrogenesis (14). A pharmacological strategy
to improve mitochondrial dysfunction has been evaluated in animal
models of both AKI and CKD (84). Based on their disparate modes
of action, such compounds are classified as cardiolipin-targeting
peptides, mitochondria-targeting antioxidants, mitochondria-homing
agents, mitochondrial biogenesis-stimulating agents, and fatty acid
oxidation-stimulating agents (84). Among these, Szeto–Schiller peptide
(SS-31, also known as elamipretide) targeting cardiolipin has been
tested in a phase 2a trial, with positive results showing that this
compound could reduce postprocedural hypoxia, increase renal blood
flow, and improve kidney function in patients with atherosclerotic renal
artery stenosis (85). Although the mitochondria-targeting antioxidants
might help to preserve or improvemitochondrial function inCKD, only
MitoQ has been entered into a phase 4 clinical trial (NCT02364648) of
stages 3–5 CKD patients.

Interestingly, EGCG is also known as a mitochondria-targeting
agent because of its well-documented roles in regulating mitochondrial
biogenesis, bioenergetics, and mitochondria-dependent apoptosis (86–
91). For example, EGCG can increase mRNA expression level of
PPAR-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial
biogenesis, in HepG2 cells and can differentiate 3T3-L1 adipocytes
by enhancing the activity of PGC-1α promoter (87). In a model of
Down syndrome (DS), EGCG has been demonstrated to rescue ox-
idative phosphorylation and promote mitochondrial biogenesis in DS-
phenotypically characterized fetal skin fibroblasts via cAMP/protein
kinase A (PKA)- and SIRT1-dependent pathways (88). Similar results
were obtained when EGCG or resveratrol (another natural polyphenol)
were tested in neural progenitor cells from a DS mouse model (90).
However, there are few experimental studies to support the protective
effect of EGCG on renal mitochondria. Interestingly, a recent study
has unveiled that a structurally modified EGCG prodrug (peracetylated
EGCG, or AcEGCG), also known as 4′′-O-alkyl AcEGCG derivative,
can increase mitochondrial mass and mitochondrial DNA content
and markedly enhance mitochondrial biogenesis (92). As an enhancer
of mitochondrial biogenesis, 4′′-O-alkyl AcEGCG could enhance
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FIGURE 1 Summary of molecular basis on which epigallocatechin-3-gallate (EGCG) prevents chronic kidney disease (CKD) and renal
fibrosis based on preclinical evidence. The anti–oxidative stress properties of EGCG are exerted through its inhibition of mitochondrial
dysfunction and its induction of antioxidant enzymes via activation of the Nrf2/HO-1 signaling pathway. For its anti-inflammation property,
EGCG inhibits NF-κB signaling and inflammasome formation resulting in inhibition of the inflammatory cascade. Moreover, EGCG exhibits
an anti-EMT property through various signaling pathways, including TGF-β1/Smad, β-catenin, and Nrf2 pathways, to prevent fibrotic
transdifferentiation by the EMT process. Shaded boxes (in light orange) represent molecular events that occur in CKD, which can be
inhibited or prevented by EGCG. ARE, antioxidant responsive element; Cul3, cullin-3; E2, E2 ubiquitin-conjugating enzyme; ECM,
extracellular matrix; EMT, epithelial mesenchymal transition; GPx, glutathione peroxidase; HO-1, heme oxygenase 1; Keap1, Kelch-like
ECH-associated protein 1; MDA, malondialdehyde; MPO, myeloperoxidase; NLRP3, nucleotide-binding domain, leucine-rich
repeat-containing family, pyrin domain-containing 3; NQO1, NAD(P)H:quinone oxidoreductase 1; Nrf2, nuclear factor erythroid 2-related
factor 2; ROS, reactive oxygen species; SOD, superoxide dismutase; TGF-β1, transforming growth factor-β1; Ub, ubiquitin; ZO-1, zonula
occludens-1; α-SMA, α-smooth muscle actin; 8-OHdG, 8-hydroxy-2’-deoxyguanosine.

expression of many regulators for mitochondrial function (i.e., PGC-
1α, phospho-5’ adenosine monophosphate-activated protein kinase
(p-AMPK), SIRT1, estrogen-related receptor-α, nuclear respiratory
factor 1, nuclear respiratory factor 2, and mitochondrial transcription
factor A) (92). Additionally, it could increase the NAD+/NADH ratio,
cytochrome c concentration, ATP synthesis, and oxygen consumption
in Hepa1-6 cells (92). These findings underscore that an in-depth
knowledge of compound structures and mitochondrial activities in
combination with further development of powerful tools that can
directly assess mitochondrial function is necessary for mitochondria-
targeting pharmacotherapy in CKD.

Nonetheless, there is a big gap before EGCG is implemented
in clinical use. Because of the low stability, poor absorption, and
low bioavailability of EGCG (93, 94), clinical trials are quite so-
phisticated and translation of preclinical findings to clinical practice
is currently handicapped. Recently, nanotechnology-based delivery
systems, including metal-based and organic-based nanoparticles, have
been applied to enhance EGCG bioavailability to overcome these
difficulties (95, 96). A recent study in rats with nephrotic syndrome
has shown improved bioavailability of EGCG when using EGCG-
polymeric nanoparticles compared with free EGCG powder, resulting
in improved renal function, reduced renal damage, and reduced
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FIGURE 2 Potential pan-reactivity of epigallocatechin-3-gallate
(EGCG). EGCG is one of the Pan-Assay INterference compoundS
(PAINS) and contains a PAINS motif, catechol, that frequently
triggers signals in various bioassays by different mechanisms. For
example, catechol can undergo redox cycling that causes
formation of reactive chelators or orthoquinones, which
subsequently modify proteins, nucleic acids, or lipids.

proteinuria (93). Althoughmost of the preclinical studies using EGCG-
loaded nanoparticles have provided promising results, there were some
inconsistencies in terms of nanoparticle size, cytotoxicity effects at
high doses, and pharmacokinetics. Furthermore, it is imperative to
understand the pharmacokinetic interaction between EGCG and other
drugs when EGCG is used as an adjuvant. However, such information
is currently limited, especially at the level of the clinical trial (97, 98).

Unlike the progress made for clinical trials of EGCG in various
cancers, there is currently no clinical study to demonstrate a reno-
protective role of EGCG or green tea in CKD in humans. Besides
the poor bioavailability of EGCG, the complexity of CKD in terms
of extremely varied etiologies and natural history also contributes
to this hurdle. Moreover, the pan-specific bioactivity of EGCG is
also a concern (Figure 2). According to a substructure-based drug
screening tool, EGCG is defined as one of the Pan-Assay INterference
compoundS (PAINS) (99). EGCG contains a PAINS motif, catechol,
which frequently triggers signals in various bioassays by different
mechanisms (100). For example, catechol can undergo redox cycling,
which causes formation of reactive chelators or orthoquinones that
subsequently modify proteins, nucleic acids, or lipids (Figure 2). Such
a property might also contribute to its cytotoxicity and affect its
therapeutic efficacy (100). However, care must be taken in interpreting
the PAINS alerts because the existence of a PAINS substructure does
not always convey PAINS behavior in a compound, and some FDA-
approved drugs and dark chemical matters (compounds that have been
tested in 100 or more assays but have never shown any substantial

biological activity) contain the PAINS motif in their structures (101–
103).

In conclusion, although clinical research of EGCG in CKD is still
immature, it is likely that EGCG might serve as a potential medication
or adjuvant therapy for targeting many signaling pathways involved in
CKD progression, including oxidative stress, inflammatory response,
and energy sensing throughmitochondria.Nonetheless, for safety,more
efforts should be put into investigating specific targets of EGCG to
minimize off-target effects and to better understand its mechanisms
of action against CKD. More importantly, the clinical trials should
be performed to precisely address whether EGCG is really beneficial
for prevention of CKD and, if so, to what extent. Finally, connecting
multiple pathways regulated by EGCG coupled with recent advances in
drug delivery systems might accelerate the whole process to achieve the
ultimate goal of effective prevention of CKD.
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